全 文 :Chemical constituents from leaves of Alchornea trewioides
(Ⅳ). Polyphenols
HUANG Yong-Lin, YANG Zi-Ming, CHEN Yue-Yuan, YAN Xiao-Jie, LIU Jin-Lei,
LI Dian-Peng
(Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization,
Guangxi Institute of Botany, Guilin 541006, China)
Abstract: The 80% acetone extracts of the fresh leaves of Alchornea trewioides was successively
separated by Sephadex LH-20, MCI gel CHP 20P, and Toyopearl Butyl-650C column
chromatography to yield nine polyphenols. Their structures were elucidated by spectroscopic
analyses as: ellagic acid(1), 3-O-methylellagic acid(2), decarboxyellagic acid(3),
1-O-galloyl-β-D-glucose(4), 1,6-di-O-galloyl-β-D-glucose(5), corilagin(6), phyllanthusiin D(7),
furosonin(8), and geraniin(9). Compounds 1-9 were isolated from the Alchornea trewioides for
the first time.
Key words: Alchornea trewioides; chemical constituents; polyphenols
中图分类号:R284.1 文献标识码:A 文章编号:
红背山麻杆叶的化学成分研究(Ⅳ)—多酚类化合物
黄永林,杨子明,陈月圆,颜小捷,刘金磊,李典鹏
(广西植物功能物质研究与利用重点实验室,广西植物研究所,桂林 541006)
摘 要:采用 80%丙酮提取物水萃取部位,利用凝胶柱、MCI 及 Toyopearl Butyl-650C 柱色
谱进行分离纯化得到 9 个多酚类化合物。根据化合物的波谱数据分析鉴定为鞣花酸(1)、3-O-
甲基并没食子酸(2)、decarboxyellagic acid(3)1-O-没食子酰基-β-D-葡萄糖(4)、1,6-二-O-
没食子酰基-β-D-葡萄糖(5)、柯里拉京(6)、叶下珠鞣质 D(7)、furosonin(8)、老鹳草素
收稿日期:2013-12-18 修回日期:2014-01-09
基金项目:广西自然科学基金(2011GXNSFD018038);广西科技合作与交流计划项目(桂科合:1298014-10);
广西植物研究所基本业务费项目(桂植业:13002);广西植物功能物质研究与利用重点实验室开放基金
(ZRJJ2013-7)
作者简介:黄永林(1974-),男,广西桂林人,博士,副研究员,主要从事天然产物物质基础、生物活性及
开发利用研究,(E-mail)hyl@gxib.cn。
网络出版时间:2014-06-18 18:15
网络出版地址:http://www.cnki.net/kcms/detail/45.1134.Q.20140618.1815.034.html
(9)。化合物 1~9 均为首次从本属植物中分离得到。
关键词:红背山麻杆;化学成分;多酚
The genus Alchornea belongs to the family Euphorbiaceae and contains approximately 70
species. Over 6 species have been recorded in China(Editorial Committee in Flora of China,
1996), many of which have been used for treating inflammation of the prostate gland, hematuria,
shigella, inflammation, lumbocrural pain and many other diseases(Jiangsu New Medical College,
1977). The Alchornea trewioides belongs to the family Alchornea, it was used as traditional
medicines to alleviate disease and discomfort. Previously, flavonoid glycosides, phenylethanoid
glycosides, phenolic acids, quinic acids and antioxidant activity have been reported from the
species (Lu, 2011; Lu, 2012; Qin, 2012). To further research for the material basis of
pharmacological effects from the species Alchornea trewioides, nine polyphenols were isolated
from the 80% acetone extracts of the fresh leaves of Alchornea trewioides. All compounds(1-9)
were isolated from the Alchornea trewioides for the first time.
1 Materials and methods
1
H- and
13
C-NMR spectra were measured in DMSO, CD3OD or acetone-d6 at 27℃ using a
Bruker Avance 500 spectrometer(500 MHz for 1H and 125 MHz for 13C)(Bruker Biospin AG,
Faellanden, Switzerland)or a JEOL JNM-AL 400 spectrometer(400 MHz for 1H and 100 MHz for
13
C)(JEOL Ltd., Tokyo, Japan). Coupling constants are expressed in Hz and chemical shifts are
given on a (ppm)scale. Column chromatography was performed using MCI gel CHP
20P(75-150 μm; Mitsubishi Chemical, Tokyo, Japan), Sephadex LH-20(25-100 m; GE
Healthcare Bio-Science AB, Uppsala, Sweden), Chromatorex ODS(100-200 mesh, Fuji Silysia
Chemical Ltd., kasugai, Japan), and Toyopearl Butyl-650C(TOSOH Co., Tokyo,
Japan)columns. TLC was performed on precoated Kieselgel 60 F254 plates(0.2 mm thick; Merck,
Darmstadt, Germany) with toluene-ethyl formate-formic acid(1:7:1, v/v)as the solvent, and spots
were detected by UV illumination(254 nm) and by spraying with a 2% ethanolic FeCl3.
The leaves of Alchornea trewioides were collected at Guangxi Institute of Botany, Guangxi,
China, in August 2011, and identified by Prof. Wei Fa-nan. The voucher specimen (2011 0920N)
was deposited in the Guangxi key laboratory of functional phytochemicals research and utilization,
Guangxi Institute of Botany.
2 Extraction and separation
The fresh leaves of A. trewioides(5.35 kg)were cut into small pieces and extracted with
acetone-H2O(8:2, v/v)by maceration at room temperature. After filtration, the plant debris
remaining on the filter paper was extracted with the same solvent a further two times. The filtrate
was combined and concentrated under reduced pressure to give an aqueous solution with dark
green precipitates. The precipitant was mainly composed of chlorophylls and waxes, and removed
by filtration. The extract(610 g)was partitioned between H2O(3 L) and Et2O(1 L)3 times. The
Et2O fraction(Fr. E 5.46 g)was subjected to Sephadex LH-20 column chromatography with EtOH
containing increasing proportions of water(4 cm i. d. × 40 cm, 10050%, 10% stepwise elution,
each 400 ml)and finally 100% MeOH(500 ml)to give five fractions. Fraction E-3(0.67 g)was
successively applied to a MCI gel CHP 20P column chromatography(2 cm i. d. × 30 cm)with
0–100% MeOH(10% stepwise elution, each 100 ml)to yield 3(70 mg). The aqueous layer was
fractionated by Sephadex LH-20 column chromatography (10 cm i.d. × 40 cm)with water
containing increasing proportions of MeOH(0–100%, 10% stepwise elution, each 2 L) and finally
with 60% acetone, to yield 9 fractions(Fr. 1–9). Fraction 3(6.51 g)was by a combination of
column chromatography over MCI gel CHP 20P(3 cm i.d. × 40 cm)with 0–100%
MeOH(10% stepwise elution, each 400 ml), Sephadex LH-20(4 cm i.d. × 40 cm) with 0–100%
MeOH(10% stepwise elution, each 200 ml), and Toyopearl Butyl-650C(3 cm i.d. × 40 cm)with
0–100% MeOH(10% stepwise elution, each 200 ml), to afford 4(45 mg) and 5(28 mg). Fraction
6(36.0 g)was further fractionated by MCI gel CHP 20P column chromatography(8 cm i. d. × 40
cm)with 0–100% MeOH(10% stepwise elution, each 1 L)to give nine fractions. Fraction
6-4(2.45 g) was successively applied to a Sephadex LH-20 column chromatography(3 cm i. d. ×
30 cm) with 0–100% MeOH(10% stepwise elution, each 200 ml) to yield 6(2.15 g). Fraction
7(43.0 g)was further fractionated by MCI gel CHP 20P column chromatography(8 cm i. d. × 40
cm)with 0–100% MeOH(10% stepwise elution, each 1 L)to give five fractions: frs. 7-1(12.9 g),
2(1.02 g), 3(10.6 g), 4(8.32 g), 5(6.17 g). Fraction 7-1 was further fractionated by MCI gel
CHP 20P(6 cm i.d. × 40 cm) with 0–100% MeOH in H2O(10% stepwise elution, each 500
ml)and the subfractions were separated by chromatography using the Sephadex LH-20 column(4
cm i.d. × 40 cm)with H2O containing increasing proportions of MeOH(10–100%, 10% stepwise
elution)and finally 60% acetone in H2O to give 6(4.52 g), 8(116 mg). Separation of fraction 7-2
using Sephadex LH-20(3 cm i.d. × 40 cm)with 0-100% MeOH(10% stepwise elution, each 200
ml) and finally 60% acetone in H2O afforded 7(476 mg). Separation of fraction 7-3 using
SephadexLH-20, Chromatorex ODS, and Toyopearl Butyl-650C afforded 1(14 mg), 2(31 mg),
9(6.41 g).
3 Results and analysis
Ellagic acid(1)white amorphous powder, C14H6O8.
1
H-NMR(500 MHz, DMSO):
7.50(1H, s, H-5, 5); 13C-NMR(125 MHz, DMSO) : 106.8(C-1, 1), 109.7(C-5, 5),
112.6(C-6, 6), 136.3(C-2, 2), 140.6(C-3, 3), 148.1(C-4, 4), 159.1(C-7, 7)(Khac et al.,
1990).
3-O-Methylellagic acid(2)brown amorphous powder, C15H8O8.
1
H-NMR(500 MHz,
DMSO): 4.03(3H, s, 3-OMe), 7.43(1H, s, H-5),7.50(1H, s, H-5, 5); 13C-NMR(125 MHz,
DMSO): 60.7(C-OMe), 107.1(C-6), 110.7(C-5), 111.6(C-5), 111.9(C-1), 112.2(C-6),
112.6(C-1), 136.2(C-2), 139.4(C-3), 140.6(C-3), 141.2(C-2), 148.1(C-4), 152.2(C-4),
158.6(C-7), 158.8(C-7)(Bai et al., 2008).
Decarboxyellagic acid(3)brown amorphous powder, C13H8O7.
1
H-NMR(400 MHz, CD3OD)
: 6.75(1H, d, J=8.8 Hz, H-5), 7.36(1H, s, H-5), 8.42(1H, d, J=8.8 Hz, H-6); 13C-NMR(100
MHz, CD3OD): 108.1(C-5), 112.1(C-6), 112.4(C-5), 112.8(C-1), 118.5(C-1), 119.1(C-6),
133.3(C-3), 141.1(C-3), 141.8(C-2), 144.0(C-2), 146.4(C-4), 146.8(C-4), 163.8(C-6)
(Pfundstein et al., 2010).
1-O-Galloyl-β-D-glucose(4)brown amorphous powder, C13H16O10.
1
H-NMR(500 MHz,
acetone-d6): 3.18 (1H, t, J=8.8 Hz, H-4), 3.21-3.55(3H, m, H-2, 3, 5), 3.46(1H, dd, J=6.1, 12.0
Hz, H-6ax), 3.64(1H, dd, J=3.9, 12.0 Hz, H-6eq), 5.53(1H, d, J=8.0 Hz, H-1), 7.19(2H, s, H-2,
6); 13C-NMR(125 MHz, acetone-d6): 60.3(C-6), 69.6(C-4), 72.3(C-2), 75.6(C-5), 76.1(C-3),
93.4(C-1), 108.8(2C, C-2, 6), 119.3(C-1), 136.9(C-4), 143.9(2C, C-3, 5), 165.1(C-7)
(El-Ekkawy et al., 1995).
1,6-Di-O-galloyl-β-D-glucose(5)brown amorphous powder, C20H20O14.
1
H-NMR(500 MHz,
acetone-d6): 3.21-3.75(4H, m, H-2, 3, 4, 5), 4.42(1H, dd, J=6.5, 12.0 Hz, H-6ax), 4.58(1H, dd,
J=2.7, 12.0 Hz, H-6eq), 5.67(1H, d, J=7.5 Hz, H-1), 7.08, 7.15(each 2H, s, H-2, 6 and 2, 6);
13
C-NMR(125 MHz, acetone-d6): 63.3(C-6), 70.3(C-4), 73.6(C-2), 75.1(C-5), 76.8(C-3),
95.7(C-1), 107.9, 108.0(each 2C, C-2, 6 and 2, 6), 119.3, 119.4(C-1, 1), 136.9, 137.4(C-4,
4), 143.9, 144.0(each 2C, C-3, 5 and 3, 5), 165.1, 165.1(C-7, 7)(Yan et al., 2007).
Corilagin(6) brown amorphous powder, C27H22O18.
1
H-NMR(500 MHz, acetone-d6):
4.08(1H, br s, H-2), 4.13(1H, dd, J=8.5, 11.0 Hz, H-6ax), 4.46(1H, br s, H-4), 4.52(1H, t,
J=8.5 Hz, H-5), 4.83(1H, br s, H-3), 4.91(1H, t, J=11.0 Hz, H-6eq), 6.38(1H, s, H-1),
6.70(1H, s, H-ring B-5), 6.84(1H, s, H-ring C-5), 7.12(2H, s, H-ring A-2, 6);
13
C-NMR(125 MHz, acetone-d6): 61.3(C-4), 63.5(C-6), 68.1(C-2), 69.9(C-3),
74.7(C-5), 93.5(C-1), 107.1(C-ring B-5), 109.1(C-ring C-5), 109.8(2C, C-ring A-2, 6),
115.1(C-ring B-1), 115.8(C-ring C-1), 119.8(C-ring A-1), 124.7(C-ring C-2),
124.8(C-ring B-2), 135.7(C-ring C-3), 136.3(C-ring B-3), 138.5(C-ring A-4),
143.9(C-ring C-4), 144.0(C-ring B-4), 144.1(C-ring C-6), 144.5(C-ring B-6), 145.0(2C,
C-ring A-3, 5), 164.6(C-ring A-7), 166.5(C-ring C-6), 167.9(C-ring B-7) (Chung et al.,
2003; Thitilertdecha et al., 2010).
Phyllanthusiin D (7)brown amorphous powder, C44H32O27.
1
H-NMR(500 MHz,
acetone-d6): 2.19(3H, s, H-ring E-9), 2.98(1H, d, J=15.5 Hz, H-ring E-7ax), 3.47(1H,
d, J=15.5 Hz, H-ring E-7eq), 4.40(1H, dd, J=7.5, 10.0 Hz, H-6ax), 4.78(1H, t, J=7.5 Hz,
H-6eq), 4.81(1H, t, J=7.5 Hz, H-5), 4.91(1H, br s, H-ring E-1), 5.43(1H, br s, H-4),
5.53(1H, br s, H-3), 5.56(1H, br s, H-2), 6.30(1H, s, H-ring E-3), 6.57(1H, br s,
H-glc-1), 6.65(1H, s, H-ring B-3), 7.07(1H, s, H-ring C-3), 7.17(2H, s, H-ring A-2, 6),
7.23(1H, s, H-ring D-3); 13C-NMR(125 MHz, acetone-d6): 31.0(C-ring E-9),
49.1(C-ring E-7), 51.1(C-ring E-1), 61.5(C-3), 63.0(C-6), 65.8(C-4), 69.5(C-2),
72.3(C-5), 80.0(C-ring E-5), 91.0(C-1), 107.0(C-ring C-3), 108.8(C-ring E-6),
109.5(C-ring B-3), 109.8(2C, C-ring A-2, 6), 112.5(C-ring D-3), 114.5(C-ring C-1),
116.0(C-ring D-1), 116.4(C-ring C-1), 119.3(C-ring A-1), 119.3(C-ring D-2),
123.5(C-ring B-2), 124.5(C-ring C-2), 126.0(C-ring E-3), 135.6(C-ring C-5),
136.5(C-ring D-5), 136.9(C-ring B-5), 139.6(C-ring A-4), 143.8(C-ring B-4),
144.1(C-ring B-6), 144.4(C-ring C-6), 144.6(C-ring C-4), 144.7(C-ring E-2), 145.2(2C,
C-ring A-3, 5), 146.1(C-ring D-6), 146.8(C-ring D-4), 163.9(C-ring E-10),
164.3(C-ring D-7), 164.6(C-ring A-7), 165.4(C-ring B-7), 167.7(C-ring C-7),
196.8(C-ring E-4), 205.3(C-ring E-8)(Foo et al., 1992; Yoshind et al., 1992).
Furosonin(8)brown amorphous powder, C46H36O31.
1
H-NMR(500 MHz, acetone-d6):
1.63(1H, d, J=14.0 Hz, H-ring E-3ax), 2.73(1H, d, J=14.0 Hz, H-ring E-3eq), 3.93(1H,
dd, J=2.5, 9.5 Hz, H-ring F-1ax), 4.09(1H, m, H-ring F-2), 4.12(1H, dd, J=5.5, 9.5 Hz,
H-ring F-1eq), 4.16(1H, d, J=1.5 Hz, H-ring F-3), 4.44(1H, t, J=10.0 Hz, H-6ax),
4.73(1H, m, H-6eq), 4.75(1H, s, H-ring E-1), 4.91(1H, t, J=9.0 Hz, H-5), 5.05(1H, s,
H-ring F-5), 5.36(1H, br s, H-4), 5.61(1H, br s, H-2), 5.66(1H, br s, H-3), 6.53(1H, br s,
H-1), 6.64(1H, s, H-ring B-3), 7.07(1H, s, H-ring C-3), 7.21(2H, s, H-ring A-2, 6),
7.33(1H, s, H-ring D-3); 13C-NMR(125 MHz, acetone-d6): 31.6(C-ring E-3),
51.2(C-ring E-1), 52.5(C-ring E-2), 62.1(C-3), 63.2(C-6), 65.4(C-4), 69.7(C-2),
72.6(C-5), 74.4(C-ring F-1), 76.4(C-ring F-5), 76.5(C-ring F-2), 80.7(C-ring F-3),
90.9(C-1), 97.7(C-ring E-4), 98.1(C-ring E-6), 98.2(C-ring E-5), 106.8(C-ring C-3),
108.9(C-ring F-4), 109.6(C-ring C-3), 109.8(2C, C-ring A-2, 6), 110.6(C-ring D-1),
113.9(C-ring D-3), 114.8(C-ring B-1), 116.3(C-ring C-1), 118.3(C-ring D-2),
119.0(C-ring A-1), 123.5(C-ring B-2), 124.6(C-ring C-2), 135.6(C-ring B-5),
137.1(C-ring C-5), 138.1(C-ring D-5), 139.4(C-ring A-4), 144.0(C-ring B-4),
144.1(C-ring C-4), 144.4(C-ring D-6), 144.5(C-ring B-6), 144.7(C-ring C-6),
145.1(C-ring D-4), 145.2(2C, C-ring A-3, 5), 164.7(C-ring B-7), 165.1(C-ring D-7),
165.8(C-ring A-7), 168.1(C-ring C-7), 169.9(C-ring E-7)(Taniguchi et al., 2012).
Geraniin(9)brown amorphous powder, C41H28O27.
1
H-NMR(500 MHz, acetone-d6):
4.33 [1H, dd, J=6.0, 10.5 Hz, H(a)-6ax], 4.44 [1H, dd, J=8.0, 10.5 Hz, H(b)-6ax], 4.76
[1H, d, J=1.6 Hz, H(b)-ring E-1], 4.80 [1H, m, H(a)-5], 4.80 [1H, m, H(b)-5], 4.91 [1H,
m, H(b)-6eq], 4.94 [1H, t, J=10.5 Hz, H(a)-6eq], 5.19 [1H, s, H(a)-ring E-1], 5.54 [1H,
br s, H(a)-4], 5.44 [1H, br s, H(b)-4], 5.50 [1H, br s, H(a)-3], 5.57 [1H, br s, H(b)-3],
5.58 [1H, br s, H(a)-2], 5.58 [1H, br s, H(b)-2], 6.27 [1H, d, J=1.6 Hz, H(b)-ring E-3],
6.54 [1H, br s, H(b)-1], 6.58 [1H, s, H(a)-1], 6.58 [1H, s, H(a)-ring E-3], 6.67 [1H, s,
H(b)-ring C-3], 6.68 [1H, s, H(a)-ring C-3], 7.10 [1H, s, H(b)-ring B-3], 7.16 [1H, s,
H(a)-ring B-3], 7.21 [2H, s, H(a)-ring A-2, 6], 7.21 [2H, s, H(b)-ring A-2, 6], 7.23 [1H,
s, H(a)-ring D-3], 7.27 [1H, s, H(b)-ring D-3]; 13C-NMR(125 MHz, acetone-d6): 46.2
[C(a)-ring E-1], 52.0 [C(b)-ring E-1], 62.5 [C(b)-3], 63.8 [C(a)-6], 63.8 [C(b)-6], 63.9
[C(a)-3], 65.9 [C(a)-4], 66.0 [C(b)-4], 70.2 [C(a)-2], 70.6 [C(b)-2], 72.7 [C(a)-5], 73.3
[C(b)-5], 90.9 [C(a)-1], 91.8 [C(b)-1], 91.9 [C(b)-ring E-5], 91.9 [C(b)-ring E-6], 92.4
[C(a)-ring E-6], 96.3 [C(a)-ring E-5], 107.9 [C(b)-ring C-3], 108.0 [C(a)-ring C-3],
109.8 [C(b)-ring B-3], 110.6 [C(a)-ring B-3], 110.7 [2C, C(b)-ring A-2, 6], 110.9 [2C,
C(a)-ring A-2, 6], 113.4 [C(b)-ring D-3], 113.5 [C(a)-ring D-3], 115.2 [C(b)-ring C-1],
115.3 [C(a)-ring C-1], 115.9 [C(a)-ring D-1], 117.0 [C(b)-ring B-1], 117.1 [C(b)-ring
D-2], 117.2 [C(a)-ring B-1], 119.5 [C(a)-ring D-2], 120.1 [C(b)-ring A-1], 120.2
[C(b)-ring D-1], 120.7 [C(a)-ring A-1], 124.7 [C(b)-ring B-2], 124.8 [C(a)-ring B-2],
125.1 [C(b)-ring E-3], 125.5 [C(b)-ring C-2], 125.7 [C(a)-ring C-2], 128.7 [C(a)-ring
E-3], 136.4 [C(b)-ring C-5], 136.5 [C(a)-ring C-5], 137.2 [C(b)-ring D-5], 137.7
[C(b)-ring B-5], 137.8 [C(a)-ring B-5], 139.0 [C(a)-ring D-5], 139.9 [C(a)-ring A-4],
140.0 [C(b)-ring A-4], 143.5 [C(a)-ring D-6], 144.6 [C(b)-ring B-4], 144.9 [C(a)-ring
C-6], 144.9 [C(b)-ring B-6], 145.0 [C(a)-ring B-6], 145.2 [C(b)-ring C-6], 145.3
[C(a)-ring B-4], 145.4 [C(b)-ring C-4], 145.5 [C(a)-ring C-4], 145.8 [C(a)-ring D-4],
145.9 [2C, C(a)-ring A-3, 5], 145.9 [2C, C(b)-ring A-3, 5], 147.0 [C(b)-ring D-6], 147.6
[C(b)-ring D-4], 149.3 [C(b)-ring E-2], 154.7 [C(a)-ring E-2], 164.7 [C(a)-ring A-7],
164.9 [C(b)-ring A-7], 165.4 [C(b)-ring D-7], 165.5 [C(a)-ring D-7], 165.6 [C(a)-ring
E-7], 165.8 [C(b)-ring B-7], 165.9 [C(b)-ring E-7], 166.2 [C(a)-ring B-7], 168.4
[C(b)-ring C-7], 168.5 [C(a)-ring C-7], 194.6 [C(b)-ring E-4], 191.9 [C(a)-ring
E-4](Yoshind et al., 1992).
Acknowledgements The authors are grateful to Mr. NING De-Sheng (Guangxi Key Laboratory
of Functional Phytochemicals Research and Utilization) for NMR measurements.
References:
Yan GH(杨国红),Cheng DF(陈道峰),2007.紫地榆的化学成分及其抗艾滋病病毒活性[J].
Chinese Traditional and Herbal Drugs (中草药), 38(3): 352–354
Editorial Committee in Flora of China. 1996. Flora of China, (Volume 44, Fascicule 2)[M].
Beijing: Science Press, 44: 66−74
Jiangsu New Medical College. 1977. Dictionary of Chinese Traditional Drugs [M]. Shanghai:
Shanghai Scientific and Technical Publishers, 1005
Bai N, He K, Roller M, et al. 2008. Active compounds from Lagerstroemia speciosa,
insulin-like glucose uptake-stimulatory/inhibitory and adipocyte differentiation-inhibitory
activities in 3T3-L1 cells[J]. J Agri Food Chem, 56(24): 11668–11674
Chung SK, Nam JA, Jeon SY, et al. 2003. A Prolyl Endopeptidase-lnhibiting Antioxidant from
Phyllanthus ussurensis[J]. Arch Pharm Res, 26(12): 1024–1028
Foo LY, Wong H, 1992. Phyllanthusiin D, an unusual hydrolysable tannin from Phyllanthus
amarus[J]. Phytochemistry, 31(2): 711–713
Khac DD, Tran-Van S, Campos AM, et al. 1990. Ellagic compounds from diplopanax
stachyanthus[J]. Phytochemistry, 29(1): 251–256
Lu JH, Chen YY, Hunag RS, et al. 2011. Study on the antioxidant activity of extracts from the
leaves of Alchornea trewioides[J]. Guihaia, 31: 134−138
Lu JH, Wei YX, Chen YY, et al. 2012. Chemical constituents from Alchornea trewioides[J]. Nat
Prod Res Dev, 24: 772−774
Qin RD, Cheng W, Zhang QY, et al. 2012. Phenolic acid derivatives from Alchornea trewioides[J].
Acta pharmaceutica sinica, 47: 926−929
Pfundstein B, Desouky SKE, Hull W, et al, 2010. Polyphenolic compounds in the fruits of
Egyptian medicinal plants(terminalia bellerica, terminalia chebula and terminalia horrida):
Characterization, quantitation and determination of antioxidant capacities[J]. Phytochemistry,
71(10): 1132–1148
Sahar EE, Meselhu MR, Kusumoto IT, et al. 1995. Inhibitory effect of Egyptian folk medicines on
human immunodeficiency virus(HIV)reverse transcriptase[J]. Chem Pharm Bull, 43(4):
641–648
Taniguchi S, Nogaki R, Bao LM, et al. 2012. Teruo Kuroda, Hideyuki Ito, and Tsutomu
Hatano. Furosinin, a novel hydrolyzable tannin from Geranium thunbergii [J].
Heterocycles, 86(2): 1525–1532
Thitilertdecha N, Teerawutgulrag A, Kilburn JD, et al. 2010. Identification of major phenolic
compounds from nephelium lappaceum L. and their antioxidant activities [J]. Molecules, 15:
1453–1465
Yoshind T, Itoh H, Matsunaga S, et al. 1992. Tannins and related polyphenols of euphorbiaceous
plants. Ⅸ. Hydrolyzable tannins with 1c4 glucose core from phyllanthus-flexuosus
Muell-Arg[J]. Chem Pharm Bull, 40(1):53–60