免费文献传递   相关文献

INFLUENCE OF He-Ne LASER IRRADIATION ON PROTECTIVE ENZYME ACTIVITIES AND LIPID PEROXIDATION IN WHEAT SEEDLINGS BY DROUGHT STRESS DAMAGE

He-Ne激光处理与干旱胁迫对小麦幼苗保护酶活性及脂质过氧化作用的影响



全 文 :植物生态学报 2008, 32 (5) 1002~1006
Journal of Plant Ecology (Chinese Version)

——————————————————
收稿日期: 2007-02-08 接受日期: 2007-04-26
基金项目: 国家自然科学基金(30370269和 30670366)
* 通讯作者 Author for correspondence E-mail: yueming@nwu.edu.cn
He-Ne激光处理与干旱胁迫对小麦幼苗保护酶活
性及脂质过氧化作用的影响
邱宗波1, 2 刘 晓1 李方民1 田向军1 岳 明1*
(1 西部资源生物与现代生物技术省部共建教育部重点实验室(西北大学),西安 710069) (2 河南师范大学生命科学学院,河南新乡 453007)
摘 要 用He-Ne激光(5.23 mW·mm–2)处理经5%、10%、15% PEG6000胁迫的小麦幼苗, 分析了干旱胁迫条件下
激光处理对小麦幼苗保护酶活性及脂质过氧化作用的影响。适度干旱胁迫的小麦幼苗经He-Ne激光辐照后, 丙二
醛(MDA)含量和超氧自由基(O2–.)产生速率显著降低(p<0.05), 而过氧化物酶(POD)活性和抗坏血酸(AsA)、谷胱甘
肽(GSH)含量却显著增加(p<0.05)。总体上看, 5%和10% PEG6000胁迫的小麦幼苗经激光辐照3 min后抗旱性增强。
关键词 He-Ne激光 小麦 干旱胁迫 保护酶 脂质过氧化
INFLUENCE OF He-Ne LASER IRRADIATION ON PROTECTIVE ENZYME
ACTIVITIES AND LIPID PEROXIDATION IN WHEAT SEEDLINGS BY
DROUGHT STRESS DAMAGE
QIU Zong-Bo1,2, LIU Xiao1, LI Fang-Min1, TIAN Xiang-Jun1, and YUE Ming1*
1Key Laboratory of Resources Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi’an 710069, China,
and 2College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
Abstract Aims We studied protective enzyme activities and lipid peroxidation in wheat seedlings
treated with different concentration of PEG6000 to determine the effects of He-Ne laser on wheat
(Triticum aestivum) exposed to drought stress.
Method We treated 12-day-old, drought-stressed seedlings with 5%, 10% and 15% PEG6000 for 3, 6,
9, 12 and 15 days. After 3, 6, 9, 12 and 15 days of drought stress, a He-Ne laser was employed to irradi-
ate seedlings of spring wheat for 0, 1 and 3 min. Leaves were sampled for various analyses.
Important findings He-Ne laser irradiation significantly decreased malondialdehyde (MDA) content
and superoxide radical (O2
–.) production rate and notably increased peroxidase (POD) enzyme activity
and ascorbate (AsA) and glutathione (GSH) concentration in wheat seedlings exposed to moderate
drought stress. We concluded that 3 min laser irradiation enhanced anti-drought characteristics of wheat
seedlings treated with 5% or 10% PEG6000.
Key words He-Ne laser, wheat, drought stress, protective enzyme, lipid peroxidation
DOI: 10.3773/j.issn.1005-264x.2008.05.004
适当剂量的激光辐射可以提高种子的萌发
率、提高酶的活性、叶绿素含量以及植物的抗逆
性(蔡素雯等, 2000)。韩榕等(2002)报道, 用He-Ne
激光辐照小麦 (Triticum aestivum)可提高其酶活
性, 对细胞膜损伤具有修复作用, 增强抗逆性。
Qi等(2000, 2002)发现He-Ne激光辐射蚕豆(Vicia
faba)幼苗可提高SOD、POD、CAT酶活性, 改变
SOD、CAT同工酶谱从而对UV-B辐射损伤具有一
定的防护和修复作用。基于上述研究, 我们推测
适当剂量的激光对植物干旱胁迫损伤可能具有修
复作用, 这方面的工作至今在国内外尚未见有报
道。本试验用He-Ne激光(5.23 mW·mm–2)处理经
5%、10%、15% PEG6000胁迫小麦幼苗, 研究小
麦幼苗在干旱胁迫条件下激光对其保护酶活性及
脂质过氧化作用的影响, 为激光辐照应用于提高
植物抗旱性和胁迫生理生态研究提供科学依据。
邱宗波等: He-Ne激光处理与干旱胁迫对小麦幼苗
5期 保护酶活性及脂质过氧化作用的影响 DOI: 10.3773/j.issn.1005-264x.2008.05.004 1003
1 材料和方法
1.1 材料
春小麦品种为‘绵阳26号’, 由杨凌示范区
种子公司提供。
1.2 材料培养及处理
干旱胁迫试验采用水培法。每培养皿40株 ,
培养皿直径为18 cm。Hoagland营养液培养幼苗长
至 二 叶 一 心 时 , 分 别 用 5% 、 10% 、 15%
PEG6000(用Hoagland营养液配制)模拟水分胁迫
(其渗透势分别相当于–0.25、–0.50、–0.75 MPa),
开始进行干旱胁迫处理。每处理设5次重复, 随机
排列于人工气候室内 , 有效光量子密度为250
μmol·m–2·s–1, 光暗周期为12 h/12 h, 昼夜温度为
25/18 ℃, 相对湿度为70%。于处理后3、6、9、
12和15 d用He-Ne激光(5.23 mW·mm–2)分别辐照
小麦幼苗0、1、3 min, 然后进行生理生化指标的
测定。激光辐射处理安排在夜间进行, 以排除杂
光影响。
1.3 生理生化指标测定
丙二醛(Malondialdehyde, MDA)含量的测定
按林植芳等(1984)方法。O2–.产生速率的测定按王
爱国和罗广华(1990)的方法。POD活性测定按袁
朝兴和丁静(1990)的方法。谷胱甘肽(Glutathione,
GSH)含量测定按曾韶西和王以柔(1990)的方法。
抗坏血酸(Ascorbate, AsA)含量测定按张宗申等
(2001)的方法。
1.4 统计分析
对所有数据进行方差分析, 处理间的差异显
著性用新复极差(Duncan’s)检验。整个计算过程在
SPSS和EXCEL软件系统下完成。
2 实验结果
2.1 He-Ne激光对干旱胁迫小麦幼苗MDA含量
和O2–.产生速率的影响
随着胁迫时间的延长, 干旱胁迫小麦幼苗的
MDA含量与对照(CK)相比均呈升高趋势。但5%、
10% PEG6000胁迫的小麦幼苗经激光辐照后, 幼
苗MDA含量均呈下降趋势(表1)。特别是在10%
PEG6000胁迫下激光辐照3 min处理组其幼苗
MDA含量下降幅度更大(p<0.05)。15% PEG6000
胁迫的小麦幼苗经激光辐照(1和3 min)后, 其幼
苗MDA含量一般接近或比0略高, 经统计分析与
0相比无显著差异。说明干旱胁迫加剧膜脂质过氧
化, 而激光辐照使之减弱, 但干旱胁迫程度加大
时, 激光已不能修复由于干旱胁迫所造成的膜脂
质过氧化。



表1 He-Ne激光对干旱胁迫小麦幼苗MDA含量的影响
Table 1 The influence of He-Ne laser on MDA content in wheat seedlings under drought stress (μmol·g–1 FW)
PEG胁迫处理天数 Time of drought stress (d) PEG浓度
PEG content (%)
激光处理时间
Treatment time of
laser (min) 3 6 9 12 15
0 0 22.58±1.62 27.10±2.05 30.13±3.62 34.51±3.62 32.68±3.06
5 0 31.61±2.85a 49.70±2.67a 52.69±17.10a 54.76±4.52a 54.19±9.64a
5 1 30.11±2.61a 49.68±4.57a 52.73±13.79a 53.63±2.67a 53.38±2.67a
5 3 28.09±2.65a 48.71±3.89a 51.18±10.43a 53.19±7.82a 51.29±4.52a
10 0 34.62±11.37a 52.69±9.40a 52.72±11.37a 56.73±2.67a 62.76±5.21a
10 1 30.60±2.61a 49.68±4.51a 48.17±2.61a 55.27±5.25a 58.71±4.51a
10 3 23.08±2.61b 44.19±5.64b 42.15±2.67b 44.73±2.67b 49.14±2.67b
15 0 35.59±2.67a 54.63±2.67a 54.65±4.51a 58.17±2.67a 65.23±7.82a
15 1 34.59±6.89a 55.16±6.98a 54.68±7.82a 56.67±2.67a 66.20±9.41a
15 3 37.09±8.72a 54.70±6.89a 57.66±6.89a 59.68±4.57a 67.22±18.25a
表中数据为平均数±标准偏差(n=3), 相同干旱胁迫(PEG浓度及处理时间)条件下数据跟有相同字母表示在0.05水平上无显著差
异(Duncan’s 多重比较) Data are means±SD (n=3). Values followed by the same letter under the condition of the same PEG content and
treatment time are not significantly different at 0.05 level according to Duncan’s multiple range test



1004 植 物 生 态 学 报 www. plant-ecology.com 32卷
表2 He-Ne激光对干旱胁迫小麦幼苗O2–.产生速率的影响
Table 2 The influence of He-Ne laser on the production rate of O2
–. in wheat seedlings under
drought stress (nmol·min–1·g–1 FW)
PEG胁迫处理天数 Time of drought stress (d) PEG浓度
PEG content (%)
激光处理时间
Treatment time of
laser (min) 3 6 9 12 15
0 0 1.61±0.62 2.44±0.35 3.12±0.38 3.83±0.28 3.52±0.26
5 0 3.22±0.54a 3.08±0.23a 4.50±0.10a 4.68±0.09a 4.06±0.80a
5 1 2.85±1.08a 2.89±0.06a 4.26±0.50a 4.41±0.30a 3.69±0.52a
5 3 1.04±0.13b 2.61±0.31b 2.64±0.60b 3.65±0.80b 3.02±0.14b
10 0 3.45±0.27a 3.48±0.09a 4.83±0.30a 5.05±0.40a 4.85±0.40a
10 1 3.27±0.95a 3.23±0.09a 4.28±0.15a 4.89±0.08a 4.61±0.58a
10 3 3.10±0.59a 3.11±0.04a 4.22±0.41a 4.72±0.48a 4.49±0.04a
15 0 3.48±1.49a 4.21±0.21a 4.68±0.53a 5.62±0.34a 5.55±0.48a
15 1 3.13±0.54a 4.06±0.56a 4.86±0.10a 5.69±0.28a 5.60±0.52a
15 3 3.29±0.82a 4.05±0.06a 4.71±0.72a 5.49±0.62a 5.49±0.82a
表注同表1 Notes see Table 1


表3 He-Ne激光对干旱胁迫小麦幼苗POD活性的影响
Table 3 The influence of He-Ne laser on POD activity in wheat seedlings under drought stress (U·mg–1 protein)
PEG胁迫处理天数 Time of drought stress (d) PEG浓度
PEG content (%)
激光处理时间
Treatment time of
laser (min) 3 6 9 12 15
0 0 8.40±0.85 9.42±0.65 10.21±1.28 10.43±2.65 11.27±2.36
5 0 8.53±0.92b 8.13±0.58b 10.47±1.61b 11.20±1.72b 15.13±1.31b
5 1 8.93±1.36b 8.60±0.53b 10.97±1.49b 12.47±2.39b 16.20±1.89a
5 3 10.93±1.64a 12.60±1.72a 13.23±1.44a 14.33±1.98a 17.53±1.77a
10 0 10.30±1.90a 11.47±1.61a 13.57±1.63a 14.47±1.12a 24.87±1.66a
10 1 12.40±1.60a 11.40±1.59a 13.80±1.58a 16.20±1.87a 26.00±1.58a
10 3 10.53±1.64a 11.53±1.57a 13.07±1.15a 15.40±1.72a 25.07±1.67a
15 0 12.70±1.46a 12.10±1.75a 12.73±1.64a 12.40±1.02a 18.00±2.27a
15 1 12.00±1.87a 12.60±2.86a 13.73±0.95a 13.27±2.53a 18.67±1.45a
15 3 12.27±1.60a 12.80±1.58a 12.80±1.20a 13.87±1.92a 18.53±1.84a
表注同表1 Notes see Table 1


表4 He-Ne激光对干旱胁迫小麦幼苗AsA含量的影响
Table 4 The influence of He-Ne laser on AsA concentration in wheat seedlings under drought stress (μg·g–1 FW )
PEG胁迫处理天数 Time of drought stress (d) PEG浓度
PEG content (%)
激光处理时间
Treatment time of
laser (min) 3 6 9 12 15
0 0 9.02±1.02 9.36±0.87 9.92±2.31 9.26±2.05 8.93±1.86
5 0 7.18±0.40b 8.34±1.01b 8.40±2.26b 7.24±1.07b 6.21±0.49b
5 1 8.75±0.50ab 9.42±1.07ab 10.19±1.02ab 7.83±1.04ab 7.25±1.01ab
5 3 10.02±1.27a 10.39±2.11a 10.50±2.01a 9.19±0.53a 8.49±1.14a
10 0 7.84±1.02a 8.14±1.69a 8.82±1.01a 8.54±0.67a 7.68±1.01a
10 1 8.77±1.01a 8.90±1.03a 10.04±1.01a 8.50±1.25a 7.83±0.68a
10 3 8.57±1.07a 9.54±1.01a 10.16±0.58a 8.92±1.15a 8.43±0.78a
15 0 8.05±1.01a 9.51±+1.01a 10.09±0.72a 7.13±1.01a 7.12±0.71a
15 1 8.33±1.13a 9.91±1.01a 10.12±1.01a 7.21±1.04a 7.21±1.06a
15 3 8.99±1.03a 9.48±1.07a 10.27±1.11a 7.43±1.06a 7.39±1.04a
表注同表1 Notes see Table 1
邱宗波等: He-Ne激光处理与干旱胁迫对小麦幼苗
5期 保护酶活性及脂质过氧化作用的影响 DOI: 10.3773/j.issn.1005-264x.2008.05.004 1005
表5 He-Ne激光对干旱胁迫小麦幼苗GSH含量的影响
Table 5 The influence of He-Ne laser on GSH concentration in wheat seedlings under drought stress (μg·g–1 FW )
PEG胁迫处理天数 Time of drought stress (d) PEG浓度
PEG content (%)
激光处理时间
Treatment time of
laser (min) 3 6 9 12 15
0 0 2.17±0.16 2.68±0.36 2.78±0.28 2.18±0.19 2.34±.0.17
5 0 0.69±0.08a 0.93±0.14a 1.27±0.13a 0.84±0.09a 0.11±0.01a
5 1 0.73±0.04a 1.24±0.21a 1.32±0.09a 0.95±0.07a 0.12±0.01a
5 3 0.73±0.03a 1.15±0.18a 1.35±0.31a 0.98±0.15a 0.11±0.01a
10 0 0.69±0.03a 1.21±0.25a 1.35±0.27a 0.84±0.08a 0.10±0.01a
10 1 0.62±0.04a 1.33±0.14a 1.36±0.16a 0.88±0.13a 0.15±0.04a
10 3 0.66±0.06a 1.40±0.12a 1.42±0.13a 0.89±0.08a 0.18±0.06a
15 0 1.01±0.15b 1.19±0.18b 1.49±0.12b 1.05±0.01b 0.14±0.03a
15 1 1.20±0.14b 1.63±0.21a 1.64±0.24ab 1.21±0.06ab 0.12±0.06a
15 3 1.62±0.14a 1.67±0.35a 1.72±0.26a 1.30±0.02a 0.14±0.07a
表注同表1 Notes see Table 1


随着胁迫时间的延长, 干旱胁迫的小麦幼苗
其O2–.产生速率与对照(CK)相比均呈上升趋势。较
高强度干旱胁迫 (10%和15% PEG6000)下的小
麦幼苗经激光辐照后, 其幼苗O2–.产生速率与0相
比无显著变化(表2)。但是5% PEG6000胁迫下3
min激光处理组其幼苗O2–.产生速率显著下降
(p<0.05)。说明激光辐照适度干旱胁迫的小麦幼苗
3 min, 可使其幼苗O2–.产生速率降低, 相应地降
低H2O2和OH·的生成, 从而减轻膜伤害。但当干
旱胁迫程度加大时, 激光已不能修复由于干旱胁
迫所造成的活性氧自由基对膜脂质过氧化的伤
害。
2.2 He-Ne激光对干旱胁迫小麦幼苗抗氧化酶活
性和抗氧化物质含量的影响
从表3可以看出, 5% PEG6000胁迫的小麦幼
苗经激光辐照3 min后, 幼苗POD酶活与0相比差
异显著(p<0.05)。但对10%、15% PEG6000胁迫小
麦幼苗的POD酶活无显著作用。说明适度干旱胁
迫的小麦幼苗经激光辐照3 min后 , 幼苗POD酶
活增高, 有利于增强植物体清除活性氧的能力。
干旱胁迫的小麦幼苗AsA和GSH含量与对照
(CK)相比均呈下降趋势 (表4、表5)。从表4、表5
可以看出, 5% PEG6000胁迫小麦幼苗经激光辐照
3 min其AsA含量与0相比差异显著(p<0.05)。对于
GSH含量是15% PEG6000胁迫下3 min处理组
GSH含量与0相比差异显著(p<0.05)。说明激光辐
照干旱胁迫的小麦幼苗可使幼苗AsA和GSH含量
升高, 有利于增强植物体清除活性氧的能力。
参 考 文 献
Cai SW (蔡素雯), Qi Z (齐智), Ma XL (马小来) (2000).
Effect of He-Ne laser irradiation on soluble protein
synthesis of corn seedlings. Chinese Journal of Lasers
(中国激光), 27, 284–288. (in Chinese with English
abstract)
Han R (韩榕), Wang XL (王勋陵), Yue M (岳明) (2002).
Influence of He-Ne laser irradiation on the damage and
repair of wheat seedling by enhanced UV-B radiation.
Chinese Journal of Lasers (中国激光), 29, 859–863.
(in Chinese with English abstract)
Lin ZF (林植芳), Li SS (李双顺), Lin GZ (林桂珠) (1984).
Relationship between superoxide dismutase as well as
lipid peroxidation and the senescence in rice leaves.
Acta Botanica Sinica (植物学报), 26, 605–615. (in
Chinese with English abstract)
Qi Z, Yue M, Han R (2002). The damage repair role of
He-Ne laser in plant exposed to different intensities of
ultraviolet-B irradiation. Photochemistry and Photo-
biology, 75, 680–687.
Qi Zi, Yue M, Wang XL (2000). Laser pretreatment protects
cells of broad bean from UV-B radiation damage.
Journal of Photochemistry and Photobiology B: Biol-
ogy, 59, 33–37.
Wang AG (王爱国), Luo GH (罗广华) (1990). Quantitative
relation between the reaction of hydroxylamine and

1006 植 物 生 态 学 报 www. plant-ecology.com 32卷
superoxide anion radicals in plants. Plant Physiology
Communications (植物生理学通讯 ), 6, 55–57. (in
Chinese with English abstract)
Yuan ZX (袁朝兴), Ding J (丁静) (1990). Effect of water
stress on IAA, IAA-POD and POD activity in cotton
leaves. Acta Phytophysiologia Sinica (植物生理学报),
16, 37–42. (in Chinese with English abstract)
Zeng SX (曾韶西), Wang YR (王以柔) (1990). Effects of
chilling stress on the activity of ascorbic acid peroxi-
dase and glutathione content in cotyledons of cucum-
ber seedlings. Acta Phytophysiologia Sinica (植物生理
学报), 16, 37–42. (in Chinese with English abstract)
Zhang ZS (张宗申), Li RQ (利容千), Wang JB (王建波)
(2001). Effects of Ca2+ pretreatment on plasma lemma
permeability, GSH and contents, and calcium distribu-
tion in pepper mesophyll cells under heat stress. Acta
Phytoecologica Sinica (植物生态学报), 25, 230–234.
(in Chinese with English abstract)


责任编委: 李凤民 责任编辑: 李 敏