免费文献传递   相关文献

Efficiency of Trichoderma longibrachiatum T6 in the control of Meloidogyne incognita and its rhizosphere colonization in cucumber.

长枝木霉T6菌株对黄瓜南方根结线虫的防治及其根际定殖作用


采用温室盆栽试验测定了不同浓度长枝木霉T6菌株孢子悬浮液对南方根结线虫的防治及在黄瓜根际的定殖作用.结果表明: 根际定殖处理10周后黄瓜根际土壤和根系中长枝木霉T6菌株菌落数量显著增加,且处理土壤和根系中菌落数量变化显著,浓度为1.5×107 CFU·mL-1处理的根际土壤和根系中菌落数量达到7.8×107和6.3×105 CFU·mL-1.温室防治试验中,不同浓度长枝木霉T6菌株孢子悬浮液对南方根结线虫不同虫态具有较强的防治效果,且防治效果随着孢子悬浮液浓度的增加而增加.长枝木霉T6菌株孢子悬浮液对被南方根结线虫侵染的黄瓜株高、根系长度和鲜质量具有显著的促生作用.表明长枝木霉T6菌株在黄瓜根际具有较强的定殖作用,对南方根结线虫具有较好的防治作用,并对黄瓜植株生长具有显著的促生作用.

Efficiency of different concentrations of Trichoderma longibrachiatum T6 against Meloidogyne incognita and its rhizosphere colonization in cucumber were determined in greenhouse experiments. The results of rhizosphere colonization experiments showed that the number of colonies in cucumber soil and root increased significantly ten weeks after inoculation with the second stage juveniles of M. incognita and different concentrations of T. longibrachiatum T6, and there was significant difference in different concentrations of T. longibrachiatum T6, e.g., the maximum numbers of colonies in soil and root were 7.8×107 and 6.3×105 CFU·mL-1 respectively after treated with the spore suspension of 1.5×107 CFU·mL-1. Greenhouse experiments results showed that different concentrations of T. longibrachiatum T6 had significant control effect on different life stages of M. incognita, and the control effect increased with the concentration of T. longibrachiatum T6. T. longibrachiatum T6 significantly increased plant height, root length, aboveground and root fresh mass of cucumber inoculated by M. incognita. T. longibrachiatum T6 could colonize in cucumber rhizosphere, had control effect on M. incognita, and significantly improved the growth of cucumber.


全 文 :长枝木霉 T6菌株对黄瓜南方根结线虫的
防治及其根际定殖作用
张树武  徐秉良∗  薛应钰  梁巧兰  刘  佳
(甘肃农业大学草业学院 /草业生态系统教育部重点实验室 /甘肃省草业工程实验室 /中⁃美草地畜牧业可持续发展研究中心,
兰州 730070)
摘  要  采用温室盆栽试验测定了不同浓度长枝木霉 T6菌株孢子悬浮液对南方根结线虫的
防治及在黄瓜根际的定殖作用.结果表明: 根际定殖处理 10周后黄瓜根际土壤和根系中长枝
木霉 T6菌株菌落数量显著增加,且处理土壤和根系中菌落数量变化显著,浓度为 1.5×107
CFU·mL-1处理的根际土壤和根系中菌落数量达到 7.8×107和 6.3×105 CFU·mL-1 .温室防治
试验中,不同浓度长枝木霉 T6 菌株孢子悬浮液对南方根结线虫不同虫态具有较强的防治效
果,且防治效果随着孢子悬浮液浓度的增加而增加.长枝木霉 T6 菌株孢子悬浮液对被南方根
结线虫侵染的黄瓜株高、根系长度和鲜质量具有显著的促生作用.表明长枝木霉 T6 菌株在黄
瓜根际具有较强的定殖作用,对南方根结线虫具有较好的防治作用,并对黄瓜植株生长具有
显著的促生作用.
关键词  木霉菌; 南方根结线虫; 防治效果; 定殖作用
Efficiency of Trichoderma longibrachiatum T6 in the control of Meloidogyne incognita and its
rhizosphere colonization in cucumber. ZHANG Shu⁃wu, XU Bing⁃liang∗, XUE Ying⁃yu,
LIANG Qiao⁃lan, LIU Jia (College of Grassland Science, Gansu Agricultural University / Key Labo⁃
ratory of Grassland Ecosystem, Ministry of Education / Gansu Province Pratacultural Engineering La⁃
boratory / Sino⁃U.S. Centers for Grazingland Ecosystem Sustainability, Lanzhou 730070, China) .
Abstract: Efficiency of different concentrations of Trichoderma longibrachiatum T6 against Meloido⁃
gyne incognita and its rhizosphere colonization in cucumber were determined in greenhouse experi⁃
ments. The results of rhizosphere colonization experiments showed that the number of colonies in cu⁃
cumber soil and root increased significantly ten weeks after inoculation with the second stage juve⁃
niles of M. incognita and different concentrations of T. longibrachiatum T6, and there was signifi⁃
cant difference in different concentrations of T. longibrachiatum T6, e.g., the maximum numbers of
colonies in soil and root were 7.8×107 and 6.3×105 CFU·mL-1 respectively after treated with the
spore suspension of 1.5×107 CFU·mL-1 . Greenhouse experiments results showed that different con⁃
centrations of T. longibrachiatum T6 had significant control effect on different life stages of M. in⁃
cognita, and the control effect increased with the concentration of T. longibrachiatum T6. T. longi⁃
brachiatum T6 significantly increased plant height, root length, above⁃ground and root fresh mass of
cucumber inoculated by M. incognita. T. longibrachiatum T6 could colonize in cucumber rhizo⁃
sphere, had control effect on M. incognita, and significantly improved the growth of cucumber.
Key words: Trichoderma spp., root⁃knot nematode, control effect, rhizosphere colonization.
本文由草业生态系统教育部省部共建重点实验室项目(CY⁃GG⁃2006⁃013)、甘肃省农牧厅生物技术专项项目(GNSW⁃2013⁃19)和甘肃省教育厅
项目(042⁃03)资助 This work was supported by the Key Laboratory of the Grassland Ecological Systems Co⁃constructed by Ministry of Education and
Gansu Province Project (CY⁃GG⁃2006⁃013), the Agriculture and Husbandry Department of Gansu Province Project (GNSW⁃2013⁃19), and the Educa⁃
tion Department of Gansu Province Project (042⁃03) .
2015⁃04⁃09 Received, 2015⁃11⁃06 Accepted.
∗通讯作者 Corresponding author. E⁃mail: xubl@ gsau.edu.cn
应 用 生 态 学 报  2016年 1月  第 27卷  第 1期                                            http: / / www.cjae.net
Chinese Journal of Applied Ecology, Jan. 2016, 27(1): 250-254                    DOI: 10.13287 / j.1001-9332.201601.030
    植物寄生线虫是土壤中重要的植物病原物之
一,据估计全世界每年由于植物寄生线虫病害造成
的经济损失达 100 亿美元[1],其中根结线虫作为世
界范围内分布最广泛的植物病原线虫之一,其侵染
许多农作物后能够形成大量根结,严重影响植物对
养分和水分等营养物质的吸收和利用[2] .黄瓜(Cuc⁃
umis sativus)在全世界大面积种植,但在长期的生产
过程中其产量受到了根结线虫的严重危害[2] .据报
道,在我国东部黄瓜种植基地经常发生的根结线虫
种类有 4种,其中南方根结线虫(Meloidogyne incog⁃
nita)作为根结线虫中一类重要寄生性线虫[3],寄生
后能够造成植物根系组织形成大量的根结[4],进而
导致植物病害的严重发生和产量降低[5] .
在长期作物生产中,曾采用一系列措施防治根
结线虫,如化学和生物类杀线剂.在大多数情况下化
学类杀线剂是有效的,但因存在产生环境污染和影
响人类健康[6]等问题而受到限制,急待开发一种可
代替化学杀线剂的生物类杀线剂.目前,在许多生物
防治措施中经常利用食线虫真菌防治植物线虫病
害,如已报道的卵寄生真菌淡紫拟青霉菌(Paecilo⁃
myces lilacinus) [7] 和厚垣普奇尼亚菌 ( Pochonia
chlamydosporia) [8]能够侵染线虫的卵和抑制幼虫的
孵化,进而减少线虫的数量,但很少有商品化生防制
剂[9],且部分菌株对人体健康存在影响[10] .
木霉菌(Trichoderma spp.)是一类在土壤中广泛
分布的寄生真菌,可用于防治植物叶部和根部病
害[11-12],其中哈茨木霉菌(T. harzianum)已被开发
为一种生防制剂用于室内和田间病害的防治,如用
于柑橘线虫的防治[13],但其田间防治效果受到许多
因素的影响或限制,如温度、湿度、土壤质地、结构和
线虫的数量等[9] .目前,有关长枝木霉 T6 菌株对植
物寄生线虫防治方面的研究较少,且我们在前期研
究中发现,在室内长枝木霉 T6菌株对南方根结线虫
2龄幼虫具有较强的寄生和致死作用[14],为了进一
步验证其对南方根结线虫的防治效果,本文通过温
室盆栽试验进一步测定其在温室中的防治效果、在
寄主植物根际的定殖作用及对寄主植物生长的影
响,旨在为进一步开发新型高效的微生物型杀线剂
提供科学依据.
1  材料与方法
1􀆰 1  供试材料
供试长枝木霉 T6 菌株由甘肃农业大学草业学
院植物病理学实验室提供.供试南方根结线虫于
2011年 6月采自甘肃省榆中县温室种植的黄瓜病
根和根际病土.
供试黄瓜品种为密刺,购买于甘肃省农业科学
院种子有限责任公司,并种植于温室中,温度为
(25.0±0.5) ℃,光照为 16 h / 8 h,相对湿度为 65%.
1􀆰 2  试验方法
1􀆰 2􀆰 1线虫接种和繁殖   参考张树武等[14]方法进
行黄瓜幼苗根部接种和活体繁殖.
1􀆰 2􀆰 2线虫分离与培养   待接种发病后,挑取黄瓜
根系根结中的卵囊,经 1% NaClO 消毒 1 min,将其
置于线虫分离器于 25 ℃孵化 13 ~ 20 d,并每隔 2 d
将孵化的 2龄幼虫收集后置于 4 ℃保存.利用无菌
水将孵化后的 2 龄幼虫配制为每 mL 100 条的 2 龄
幼虫悬浮液[15] .
1􀆰 2􀆰 3长枝木霉 T6 菌株孢子悬浮液制备   参照张
树武等[16-17]方法,并利用血球计数板计数其浓度
(1.5×107 CFU·mL-1),然后依次稀释为 1.5×106、
7􀆰 5×105、3.0×105和 1.5×105 CFU·mL-1保存备用.
1􀆰 2􀆰 4温室盆栽试验   试验连续重复 2 年,分别于
2012和 2013 年 8 月于甘肃农业大学温室中进行盆
栽试验.种植前挑选饱满且大小一致的黄瓜种子,并
利用 1%NaClO 消毒 5 min,然后种植于直径为 15
cm的塑料钵中,每钵装有 500 g 灭菌的土壤,每钵
种植 5株,共种植 42 钵(210 株).待出苗后每钵及
时接种 20 mL 不同浓度长枝木霉 T6 菌株孢子悬浮
液(1.5×105 ~ 1.5×107 CFU·mL-1),并待幼苗生长
到两叶一心期时每钵接种 1000 条南方根结线虫 2
龄幼虫于其根际土壤中,然后置于温度为 25 ℃、光
照为 16 h / 8 h、相对湿度为 65%的温室中进行培养,
适时浇灌一定量的无菌水以保持幼苗生长所需的土
壤湿度.试验以接种线虫但未接种长枝木霉 T6 菌株
作为对照,并以未接种线虫和长枝木霉 T6菌株作为
正常处理.试验中所有对照和处理均重复 6次.
1􀆰 2􀆰 5根际定殖作用测定   待接种长枝木霉 T6 菌
株和 2龄幼虫 10周后,测定黄瓜根际土壤和根系中
长枝木霉 T6菌株的菌落数量.根际土壤菌落数量测
定方法是将根际周围 2 cm土壤混合后,置于室温风
干,并过 1 mm 筛.取 1 g 土样加入 9 mL 无菌水,并
置于 25 ℃摇床、150 r·min-1振荡 2 h,使土壤中的
微生物均匀分散,静置 20 ~ 30 s 后即为 10-1土壤稀
释液,并稀释为 10-3备用.采用涂布法将 10-3土壤稀
释液接种于 TME培养基进行分离培养[18] .然后,置
于 25 ℃和 16 h / 8 h下培养,5 d 后分别记录每份土
样中的菌落数量.试验各处理和对照均为 6 个重复.
1521期                  张树武等: 长枝木霉 T6菌株对黄瓜南方根结线虫的防治及其根际定殖作用         
根系中长枝木霉 T6菌株菌落数量测定方法为:取 1
g根系置于研钵中研磨后,加入 9 mL 无菌水研磨,
并利用无菌水稀释为 10-3根系稀释液备用,具体分
离方法同根际土壤.
1􀆰 2􀆰 6温室防治效果测定  待接种 10 周后,分别随
机从各处理和对照中抽取植株和根际土样进行根系
和土壤中线虫数量测定,以及根系中根结指数测定.
土壤中线虫数量测定参考 Castillo 等[19]方法;根系
中线虫数量测定参照 Sharon等[20]方法;根结指数测
定和分级标准参照 Bird 等[1]和 Affokpon 等[21]方
法,共分为 10 级,其中 0 级为根系无根结,10 级为
所有根系含有根结.所有对照和处理均 6次重复.
1􀆰 2􀆰 7接种后对幼苗生长影响试验   待接种 10 周
后,分别测定各处理和对照植株株高、根系长度和鲜
质量.株高和根系长度采用刻度尺测量,植株鲜质量
采用电子天平称量,重复 6次.
1􀆰 3  数据处理
采用 Excel和 Word 2003 进行数据处理和表格
绘制,采用 SPSS 16.0软件进行单因素方差分析,利
用 Duncan 新复极差法进行差异显著性检验(α =
0􀆰 05).表中数据为平均值±标准误.
2  结果与分析
2􀆰 1  长枝木霉 T6菌株的根际定殖作用
从表 1可以看出,长枝木霉 T6菌株在黄瓜根际
具有较强的定殖作用.与对照和正常处理相比,接种
菌株处理的土壤和根系中长枝木霉 T6 菌株菌落数
量显著增加,并且不同接种浓度处理的菌落数量存
在显著差异,以 1.5×107 CFU·mL-1处理土壤和根
系中菌落数量最高,而 1.5×105 CFU·mL-1处理土
壤和根系中菌落数量最少.但是,与处理前接种浓度
相比,处理后土壤和根系中总菌落数量增加率最高
的为 3.0×105 CFU·mL-1处理,1.5×105 CFU·mL-1
处理次之,1.5×107 CFU·mL-1处理最少.
2􀆰 2  长枝木霉 T6菌株的温室防治效果
从表 2可以看出,长枝木霉 T6菌株对南方根结
线虫不同虫态具有较强的防治作用,且不同接种浓
度处理之间存在明显差异.接种长枝木霉 T6 菌株能
够显著降低根系中南方根结线虫幼虫、雌虫、卵囊和
根结的数量,以及根际土壤中幼虫的数量.同时,随
着长枝木霉 T6菌株接种浓度的增加,其防治效果显
著增加,对根系中雌虫的抑制率为 42% ~82%,对根
系卵囊的抑制率为 51% ~ 83%,对根系幼虫的抑制
率为 45% ~ 78%,对土壤中幼虫的抑制率为 68% ~
89%,对根系中根结指数抑制率为 33%~79%.
2􀆰 3  长枝木霉 T6对黄瓜幼苗生长的影响
与对照相比,不同浓度长枝木霉 T6菌株孢子悬
浮液对接种南方根结线虫的黄瓜植株的株高、根系
长度、地上部和根系鲜质量具有显著的促生作用
(图 1),且这种作用随着孢子悬浮液浓度的增加而
增强(表 3),尤其 1.5×107 CFU·mL-1处理的效果最
为明显.
表 1  黄瓜根际土壤和根系中长枝木霉 T6菌株菌落数量
Table 1   Trichoderma longibrachiatum T6 densities in
cucumber roots and rhizosphere soil
处理
Treatment
(CFU·mL-1)
根系
Root
(×105 CFU·g-1)
土壤
Soil
(×107 CFU·g-1)
1.5×107 6.3±0.4a 7.8±0.1a
1.5×106 5.2±0.2b 6.7±0.2b
7.5×105 4.3±0.2c 6.2±0.2c
3.0×105 3.2±0.2d 4.8±0.2d
1.5×105 1.7±0.2e 2.2±0.2e
正常 Normal 0f 0f
对照 Control 0f 0f
同列不同小写字母表示处理间差异显著(P<0.05)Different small let⁃
ters in the same column meant significant difference among different treat⁃
ments at 0.05 level. 正常表示未接种线虫和长枝木霉 T6菌株 Normal
represented seedlings neither inoculated with Meloidogyne incognita nor
with Trichoderma longibrachiatum T6; 对照表示接种线虫和未接种长
枝木霉 T6菌株 Control represented seedlings inoculated with M. incog⁃
nita but not with T. longibrachiatum T6. 下同 The same below.
表 2  不同浓度长枝木霉 T6菌株对南方根结线虫的防治效果
Table 2  Control effects Trichoderma longibrachiatum T6 with different concentrations on Meloidogyne incognita
处理
Treatment
(CFU·mL-1)
根系中雌虫
Females in root
( ind·2 g-1)
根系中卵囊
Egg capsules in root
( ind·2 g-1)
根系中幼虫
Juveniles in root
( ind·2 g-1)
土壤中幼虫
Juveniles in soil
( ind·100 g-1)
根系中根结指数
Gall index
in root
1.5×107 11±1d 21±1d 32±3e 115±3e 0.8±0.3e
1.5×106 19±1c 39±1c 48±2d 142±4de 1.2±0.2d
7.5×105 24±2c 43±2c 56±2d 198±7d 1.6±0.4c
3.0×105 31±1bc 58±2b 67±2c 236±8c 2.4±0.4bc
1.5×105 36±2b 61±3b 79±4b 329±9b 2.6±0.2b
正常 Normal 62±1a 124±2a 144±4a 1044±12a 3.9±0.7a
对照 Control 0e 0e 0f 0f 0f
252                                       应  用  生  态  学  报                                      27卷
图 1  长枝木霉 T6菌株对黄瓜植株生长的影响
Fig.1  Effects of Trichoderma longibrachiatum T6 on cucumber
plant growth.
Ⅰ: 侧面 Side; Ⅱ: 俯视 Overlook. A: 未接种线虫和长枝木霉 T6菌
株 Seedlings neither inoculated with Meloidogyne incognita nor with Tri⁃
choderma longibrachiatum T6; B: 1.5× 107 CFU·mL-1; C: 1.5× 106
CFU·mL-1; D: 7.5×105 CFU·mL-1; E: 3.0×105 CFU·mL-1; F:
1.5×105 CFU·mL-1; G: 接种线虫和未接种长枝木霉 T6菌株 Seed⁃
lings inoculated with M. incognita but not with T. longibrachiatum T6.
表 3  不同浓度长枝木霉 T6菌株对黄瓜植株生长的影响
Table 3   Effects of Trichoderma longibrachiatum T6 with
different concentrations on cucumber plant growth
浓度
Concentration
(CFU·mL-1)
株高
Plant
height
(cm)
根系长度
Root
length
(cm·plant-1)
地上部鲜质量
Aboveground
fresh mass
(g·plant-1)
根系鲜质量
Root fresh
mass
(g·plant-1)
1.5×107 28.2±2.3a 24.0±4.3a 7.1±1.2a 1.03±0.41a
1.5×106 24.9±3.1b 20.9±3.5b 4.5±0.9b 0.73±0.23b
7.5×105 17.4±2.7c 17.9±5.2c 3.9±0.7c 0.66±0.36c
3.0×105 12.0±4.6d 14.4±3.7d 3.2±1.2d 0.64±0.22c
1.5×105 11.6±4.8de 13.2±4.2de 3.1±0.6d 0.55±0.40cd
正常 Normal 11.3±3.9e 12.7±3.7e 3.0±1.3d 0.50±0.34d
对照 Control 9.7±2.1f 9.1±3.4f 1.6±0.5e 0.28±0.27e
3  讨    论
3􀆰 1  根际定殖作用效果
本研究表明,长枝木霉 T6菌株在黄瓜根际具有
较强的定殖能力,且定殖后能够显著降低南方根结
线虫数量和促进黄瓜植株生长.研究表明,棘孢木霉
(T. asperellum) T⁃1 在胡萝卜(Daucus sativus)根际
定殖后根系中的菌落数量为 8.7×104 CFU·g-1,土
壤中为 1.0×107 CFU·g-1 [20] . Sharon 等[13]发现,接
种 106 CFU·g-1哈茨木霉菌孢子悬浮液于番茄(So⁃
lanum lycopersicum)根际,3 个月后根际土壤中哈茨
木霉菌的菌落数量为 0.7×106 CFU·g-1 .与此相比,
长枝木霉 T6在黄瓜根际的定殖能力较高,其原因可
能是由于不同木霉菌株在不同植物根际具有不同的
定殖能力[21] .
3􀆰 2  温室防治效果
研究表明,棘孢木霉 T⁃16 对根系中根结线虫 2
龄幼虫的抑制率达 80%,脐孢木霉(T. brevicompac⁃
tum)T⁃3 对根结线虫卵的抑制率达 86%[22] .哈茨木
霉菌在短期内能够降低根结指数和根系中卵的数
量,但是其防治效果的持效期较短[23] .长枝木霉 T6
菌株能够显著降低黄瓜根际土壤和根系中南方根结
线虫的数量,且其对南方根结线虫的防治效果显著
高于棘孢木霉 T⁃16、脐孢木霉菌 T⁃3、淡紫拟青霉和
宽松环单顶孢(Monacrosporium lysipagum) [7,20],可
能是由于不同种类真菌对线虫的抑制作用不同,受
真菌致病性强弱、线虫种类、来源和植物种类及其对
气候的适应性等因素的影响[24] .
3􀆰 3  根际促生作用
目前,有关木霉菌促生作用的研究较多.木霉菌
是土壤中一种重要的促生菌,能够促进植物的生长
和提高产量.在黄瓜和棉花根际施入哈茨木霉菌和
绿木霉菌(T. viride),能够显著促进黄瓜和棉花植株
的生长[25-27] .小麦幼苗被禾谷胞囊线虫(Heterodera
avenae)卵侵染后,施入长枝木霉菌能够促进小麦幼
苗的生长[28] .本研究不同浓度长枝木霉 T6 菌株不
仅能够显著降低南方根结线虫的数量,而且能够显
著促进黄瓜植株的生长.表明木霉菌定殖于植物根
系后能够促进植物的生长发育、增加作物的产量、提
高植物抗胁迫能力[29] .
长枝木霉 T6菌株在线虫生物防治方面具有广
阔的应用前景,可作为有效的生物制剂用于南方根
结线虫的防治,但是还存在较多的问题需要深入研
究,如其对其他线虫的防治作用及与其他植物之间
的相互作用,以及人畜安全性等.
参考文献
[1]  Bird DM, Kaloshian I. Are roots special? Nematodes
have their say. Physiology and Molecular Plant Patholo⁃
gy, 2003, 62: 115-123
[2]  Sikora RA, Fern􀅣ndez E. Nematode parasites of vegeta⁃
bles / / Luc M, Sikora RA, Bridge J, eds. Plant Parasi⁃
tic Nematodes in Subtropical and Tropical Agriculture.
Wallingford, UK: CAB International, 2005: 319-392
[3]  Wang L, Yang B, Li C. Investigation of root⁃knot nema⁃
todes in East China. Forest Research, 2001, 14: 24-28
[4]   Wyss U, Grundler FMW, Munch A. The parasitic be⁃
havior of second stage juveniles of Meloidogyne incognita
3521期                  张树武等: 长枝木霉 T6菌株对黄瓜南方根结线虫的防治及其根际定殖作用         
in roots of Arabidopsis thaliana. Nematologica, 1992,
38: 98-111
[5]  Milligan SB, Bodeau J, Yaghoobi J, et al. The root knot
nematode resistance gene Mi from tomato is a member of
the leucine zipper, nucleotide binding, leucine⁃rich re⁃
peat family of plant genes. Plant Cell, 1998, 10:
1307-1320
[6]  El⁃Alfy AT, Schlenk D. Effect of 17 β⁃estradiol and tes⁃
tosterone on the expression of flavin⁃containing monooxy⁃
genase and the toxicity of aldicarb to Japanese Medaka,
Oryzias latipes. Toxicology Science, 2002, 68: 381-388
[7]  Khan A, Williams KL, Nevalainen HKM. Effects of
Paecilomyces lilacinus protease and chitinase on the egg⁃
shell structures and hatching of Meloidogyne javanica ju⁃
veniles. Biological Control, 2004, 31: 346-352
[8]  Tikhonov VE, Lopez⁃Llorca LV, Salinas J, et al. Purifi⁃
cation and characterization of chitinases from the nema⁃
tophagous fungi Pochonia chlamydosporia and P. suchla⁃
sporium. Fungal Genetic Biology, 2002, 35: 67-78
[9]  Kerry B. Biological control of nematodes: Prospects and
opportunities / / Maqbool MA, Kerry B, eds. Plant Nema⁃
tode Problems and Their Control in the Near East Re⁃
gion. Rome, Italy: Food and Agriculture Organization of
the United Nations: FAO Plant Production and Protec⁃
tion Paper, 1997, 144: 79-92
[10]  Hilmioglu⁃Polat S, Metin DY, Inci R, et al. Non⁃
dermatophytic molds as agents of onychomycosis in
Izmir, Turkey: A prospective study. Mycopathologia,
2005, 160: 125-128
[11]  Larralde⁃corona CP, Santiago⁃mena MR, Sifuentes⁃
rinc􀆩n AM, et al. Biocontrol potential and polyphasic
characterization of novel native Trichoderma strains
against Macrophomina phaseolina isolated from sorghum
and common bean. Applied Microbiology and Biotechno⁃
logy, 2008, 80: 167
[12]  Monga D. Effect of carbon and nitrogen sources on spore
germination, biomass production and antifungal metabo⁃
lites by species of Trichoderma and Gliocladium. Indian
Phytopathology, 2012, 54: 435-437
[13]  Sharon E, Bar⁃Eyal M, Chet I, et al. Biological control
of the root⁃knot nematode Meloidogyne javanica by Tri⁃
choderma harzianum. Phytopathology, 2001, 91: 687-
693
[14]  Zhang S⁃W (张树武), Xu B⁃L (徐秉良), Xue Y⁃Y
(薛应钰), et al. Microscopic observation the lethal and
parasitic effects of Trichoderma longibrachiatum against
Meloidogyne incognita. Plant Protection (植物保护),
2013, 39(4): 46-51 (in Chinese)
[15]  Zhang LD, Zhang JL, Christie P, et al. Effect of inocu⁃
lation with the arbuscular mycorrhizal fungus Glomus in⁃
traradices on the root⁃knot nematode Meloidogyne incog⁃
nita in cucumber. Journal of Plant Nutrition, 2009, 32:
967-979
[16]  Zhang S⁃W (张树武), Xu B⁃L (徐秉良), Xue Y⁃Y
(薛应钰), et al. Lethal effects of Trichoderma longibra⁃
chiatum on Heterodera avenae. Chinese Journal of App⁃
lied Ecology (应用生态学报), 2014, 25(7): 2093-
2098 (in Chinese)
[17]  Zhang S⁃W (张树武), Liu J (刘  佳), Xu B⁃L (徐
秉良), et al. Parasitic and lethal effects of Trichoderma
longibrachiatum on Heterodera avenae: Microscopic ob⁃
servation and bioassay. Chinese Journal of Applied Eco⁃
logy (应用生态学报), 2013, 24(10): 2955- 2960
(in Chinese)
[18]  Papavizas GC, Lumsden RD. Improved medium for iso⁃
lation of Trichoderma spp. from soil. Plant Disease,
1982, 66: 1019-1020
[19]  Castillo P, Nico AI, Azc􀆩n⁃Aguilar C, et al. Protection
of olive planting stocks against parasitism of root⁃knot
nematodes by arbuscular mycorrhizal fungi. Plant Pa⁃
thology, 2006, 55: 705-713
[20]   Sharon E, Chet I, Viterbo A, et al. Parasitism of Tri⁃
choderma on Meloidogyne javanica and role of the gelati⁃
nous matrix. European Journal of Plant Pathology,
2007, 118: 247-258
[21]  Sariah M, Choo CW, Zakaria H, et al. Quantification
and characterization of Trichoderma spp. from different
ecosystems. Mycopathologia, 2005, 159: 113-117
[22]  Affokpon A, Coyne DL, Htay CC, et al. Biocontrol po⁃
tential of native Trichoderma isolates against root⁃knot
nematodes in West African vegetable production systems.
Soil Biology & Biochemistry, 2011, 43: 600-608
[23]  Spiegel Y, Chet I. Evaluation of Trichoderma spp. as a
biocontrol agent against soilborne fungi and plant⁃
parasitic nematodes in Israel. Integrated Pest Manage⁃
ment Reviews, 1998, 3: 169-175
[24]  Harman GE. Overview of mechanisms and uses of Tri⁃
choderma spp. Phytopathology, 2006, 96: 190-194
[25]   Howell CR, Hanson LE, Stipanovic RD, et al. Induc⁃
tion of terpenoid synthesis in cotton roots and control of
Rhizoctonia solani by seed treatment with Trichoderma
virens. Phytopathology, 2000, 90: 248-252
[26]  Yedidia I, Srivastva AK, Kapulnik Y, et al. Effect of
Trichoderma harzianum on microelement concentrations
and increased growth of cucumber plants. Plant and
Soil, 2001, 235: 235-242
[27]   Shanmugaiah V, Balasubramanian N, Gomathinayagam
S, et al. Effect of single application of Trichoderma
viride and Pseudomonas fluorescens on growth promotion
in cotton plants. African Journal of Agriculture Research,
2009, 4: 1220-1225
[28]  Zhang S⁃W (张树武), Xu B⁃L (徐秉良), Gu L⁃J (古
丽君 ), et al. The mechanism, parasitic and toxic
effects of Trichoderma longibrachiatum on the eggs of
Heterodera avenae. Acta Phytophylacica Sinica (植物保
护学报), 2013, 40(4): 320-326 (in Chinese)
[29]  Harman GE, Howell CR, Viterbo A, et al. Trichoderma
species: Opportunistic avirulent plant symbionts. Nature
Reviews Microbiology, 2004, 2: 43-56
作者简介  张树武,男,1986年生,博士研究生. 主要从事作
物病害及其综合防治. E⁃mail: zhangsw704@ 126.com
责任编辑  肖  红
张树武, 徐秉良, 薛应钰, 等. 长枝木霉 T6 菌株对黄瓜南方根结线虫的防治及其根际定殖作用. 应用生态学报, 2016, 27
(1): 250-254
Zhang S⁃W, Xu B⁃L, Xue Y⁃Y, et al. Efficiency of Trichoderma longibrachiatum T6 in the control of Meloidogyne incognita and its
rhizosphere colonization in cucumber. Chinese Journal of Applied Ecology, 2016, 27(1): 250-254 (in Chinese)
452                                       应  用  生  态  学  报                                      27卷