全 文 :中国农学通报 2016,32(1):113-117
Chinese Agricultural Science Bulletin
蝴蝶兰叶片生长曲线与环境积温的关系研究
张京伟,孙纪霞,郭文姣,张英杰,刘学庆
(烟台市农业科学研究院,山东烟台 265500)
摘 要:为研究蝴蝶兰生长发育与环境积温之间的关系,运用纸片法、校正系数计算和线性回归分析法
对蝴蝶兰叶面积计算公式进行优化,进而建立蝴蝶兰叶片生长速率曲线,并对曲线进行拟合和分析。研
究结果表明,蝴蝶兰营养生长期间叶片总面积 S与积温 T呈二次函数关系,数学模型为 S=0.043T2+
21.36T+215.60。生长模型能较好地反映蝴蝶兰叶片营养生长期内的生长动态变化。运用生长模型对
蝴蝶兰叶片生长量进行生长曲线的拟合和分析是可行的。
关键词:蝴蝶兰;叶面积;生长曲线;积温;模型
中图分类号:S682.31 文献标志码:A 论文编号:casb15070054
Study on the Relationship Between Leaf Growth Curve and
Accumulated Temperature of Phalaenopsis
Zhang Jingwei, Sun Jixia, Guo Wenjiao, Zhang Yingjie, Liu Xueqing
(Yantai Agricultural Science and Technology Institute, Yantai Shandong 265500)
Abstract: In order to study the relationship between the growth rules and the accumulated temperature of
Phalaenopsis, paper disk method, correction factor calculation and linear regression analysis were applied to
optimize the method of Phalaenopsis leaf area estimation, then the growth rate curve established was analyzed
and fitted. Based on that, the relationship between the growth curve and the accumulated temperature of
Phalaenopsis was analyzed. The result showed that the growth model between the leaf area (S) and the
accumulated temperature (T) was a quadratic functional relationship, S=0.043T2+21.36T+215.60. The growth
curves were appropriately fitted with the growth dynamic change during Phalaenopsis vegetative growth period.
It is feasible to analyze and fit the growth curve of the Phalaenopsis using the growth models.
Key words: Phalaenopsis; leaf area; growth curve; accumulated temperature; model
0 引言
叶面积作为衡量植物光合作用的基础参数之一,
直接反映植物生长量大小[1-2]。蝴蝶兰生长缓慢,株高、
叶幅等生长指标短期内变化较小,且叶片数量少而稳
定,难以通过常规的株高、叶片数量指标加以衡量。而
干物质的测定又会折损植株,无法连续测定同株蝴蝶
兰的生长变化,因此,生产上多采用叶面积作为蝴蝶兰
营养生长的分析指标。通过叶面积的测定直观地表现
生长发育速率,进而建立生长曲线模型,根据拟合度
(R2)评价生长模型的准确性。
由于特定的植物品种在完成某一生育阶段所需的
生理发育时间与积温基本恒定,因此以生理发育时间为
尺度,预测植物发育时期在小麦、水稻等大田作物方面
已有研究,但在温室园艺作物方面国内外少见报道[3-4]。
积温作为影响生理发育时间与生长量的重要因子,可
以将生理发育时间作为中间因子明确积温与生长量的
基金项目:山东省良种产业化项目“玉簪、蝴蝶兰等种质资源保存、创新利用及繁育技术体系研究”。
第一作者简介:张京伟,男,1983年出生,山东文登人,农艺师,硕士,研究方向为花卉栽培与品种选育。
通信地址:265500山东省烟台市福山区港城西大街26号烟台市农业科学研究院,Tel:0535-6352061,E-mail:jingweizhang.000@163.com。
通讯作者:刘学庆,男,1969年出生,山东招远人,研究员,博士,研究方向为花卉栽培与品种选育。通信地址:265500山东省烟台市福山区港城西大
街26号烟台市农业科学研究院,E-mail:lxqflower@163.com。
收稿日期:2015-07-09,修回日期:2015-09-17。
中国农学通报 http://www.casb.org.cn
函数关系,进而建立特定生育期内的生长曲线模型。
理想的生长曲线模型在指导花卉栽培生产中具有重要
作用,既可以掌握花卉生长发育的基本规律,也可以与
环境条件数据相结合,对生长状况进行分析,对生长趋
势作出预测,便于控制生长速率并调控花期。
目前,畜禽生长方面的曲线研究较为深入,3种常
用的畜禽生长曲线模型分别是 Logistic、Gompertz和
von Bertalanffy[5-6]。但这一生长曲线的研究与应用在
园艺作物方面则相对较少,蝴蝶兰叶面积的测定及相
关生长曲线的研究更是少有报道。台湾的李哖[7]对不
同叶龄的叶片进行了测定并研究了不同温度条件对叶
片生长速率的影响,认为叶面积常数 k值介于 0.74~
0.85之间,日温30℃、夜温25℃的环境条件蝴蝶兰生长
速度最快。但没有对整个生长周期的生长速率及生长
积温进行跟踪测定,没有建立完善的生长曲线,无法有
效阐明环境积温对蝴蝶兰生长发育的影响。
1 材料与方法
1.1 试验材料
供试材料为自主选育的 50株蝴蝶兰品种‘晓霞’
(Doritaenopsis‘Xiaoxia’),瓶苗定植于口径 5 cm的透
明塑料营养钵,栽培基质为智利进口水苔,在烟台农科
院连栋温室内培育。营养生长期间 (2012.5.1—
2013.8.2)昼夜温度控制在 28~30℃/20~22℃,空气湿度
为60%~80%,光照强度360~450 μmol/(m2· s)。期间换
盆2次,换盆时均以国产水苔作为栽培基质。
1.2 试验方法
1.2.1 蝴蝶兰叶面积的估算 以15天为一个调查周期,
分别测定不同生长期内蝴蝶兰叶片的长、宽数据,分析
两者间的函数关系。叶面积的计算采用倪纪恒[8]的纸
片称重法进行估算,进而计算叶面积常数 k。运用式
(1)计算,L为叶片长度,W为叶片宽度。一段时间内的
叶面积变化即为生长速率。
S=kLW ………………………………………… (1)
1.2.2 温室温度数据的测定 由于温室温度远高于蝴蝶
兰生物学下限温度 (12~15℃ ),因此记录每天 2:00、
8:00、14:00、20:00 4个时间点的温室温度,得到日平均
气温,以15天为1个计算周期,以消除个别极端条件的
误差影响。
1.3 统计分析
对原始数据进行标准化或归一化处理。分析蝴蝶
兰叶片长宽数据间的函数关系,确定长宽比例系数。
用纸片法对叶面积进行测定,计算叶面积常数。建立
生长速率与温度变化曲线,以时间关联计算积温与叶
面积间的函数关系,建立蝴蝶兰生长发育模型。
2 结果与分析
2.1 蝴蝶兰叶面积的估算
叶面积系数法是依据植物叶片的长宽数据进行计
算[9]。不同的植物在不同生长期、不同地理位置甚至
不同的叶位,k值也不完全相等。经测定分析后,蝴蝶
兰叶片长宽数据呈线性正态分布,即长宽数据呈线性
关系,L=2.1000W-0.8025,拟合度R2为0.9446。消除部
分新生叶片(长宽比接近 1:1)对整个数据的影响并简
化计算程序,将蝴蝶兰叶片长宽比确定为2.1。以纸片
法测定蝴蝶兰叶面积与长宽数据乘积之间的比例系数
k=0.786。因此蝴蝶兰叶片计算公式S=kLW=0.375L2。
2.2 蝴蝶兰生长速率与日平均温度的关系
对温室温度的变化与植株生长量进行调查并分析
研究两者的关系。如图 2所示,本次温度跟踪测定的
结果表明,蝴蝶兰营养生长期内高温时人工降温,低温
时人工加温,因此,温室温度较为平稳,一般控制在白
天 28~30℃,晚上 20~22℃,日平均温度维持在23~26℃
之间。每年4月底—5月初,温室停止供暖,20时、2时
的温度相对较低导致测定温度数据偏低。7月中旬—
8月下旬的 14时气温较高,降温困难导致此时间段记
录的平均温度数据较高。
与测定温度的高低变化不大一致的是,蝴蝶兰营
养生长速率有快有慢,调查期内出现多个生长高峰。
其中4月下旬、7月中旬(2次)、10月中旬共出现4次生
长高峰。而6月上旬与9月上旬分别出现生长速率由
高降低的过程。产生这一现象的原因是自身发育节律
与环境条件(温度、光照等)共同作用的结果。其中,由
于日平均温度上升及后期光线强度的增加日照时间的
延长,叶片生长开始加快,4月底的生长速率由上年11
月底的 73.6 mm2/d逐步加快达到 127.0 mm2/d。之后
y=2.1000x-0.8025R2=0.9446
0
5
10
15
20
25
30
0 5 10 15
叶片宽度/cm
叶
片
长
度
/cm
图1 蝴蝶兰叶片长度、宽度的函数比例关系
·· 114
停止供暖,夜温降低,形成短时间的逆境胁迫不利于叶
片生长,6月上旬生长速率下降至114.0 mm2/d。6月中
下旬,随着气温的不断上升,叶片生长速率加快,至 7
月中旬再次出现生长高峰,生长速率达到最高的
227.0 mm2/d。随着苗龄的逐渐成熟,8月上中旬会给
予一定时期的高温阶段以利于后期(8月底左右)的低
温催花,因此温室温度一般较高。高温胁迫及光线强
度的增加导致叶片气孔关闭,光合速率下降,呼吸速率
增加,生长速率亦呈现快速下降趋势。
2.3 蝴蝶兰叶片生长量与生长积温的关系
生长曲线广泛应用于描述动植物的生长过程,运
用生长模型对生长曲线进行拟合,利用生长曲线提供
的信息可较好地预测机体的生长发育情况从而进行饲
养种植管理[10]。由图3可知,蝴蝶兰营养生长过程中,
温室内温度控制较为稳定,每 15天的积温较为一致。
积温与时间成正相关,函数方程为T=354.9x-381.05,x
为以15天为1个时间间隔单位,则积温与时间(每天)
的函数方程为 T=23.66x- 25.40,T为总积温量,单位
为℃· d,拟合度R2为0.9999。营养生长期内蝴蝶兰生长
量与时间的函数关系为S=24.047x2+454.54x+1700.7,单
位为mm2,拟合度R2为0.9981。
通过对生长量数据与时间的函数关系、积温数据
与时间的函数关系进行计算,分析生长量与积温之间
的相关性,最终建立蝴蝶兰营养生长期间生长量与积
温之间的数学模型,如式(2),S为生长量(叶片总面
积),T为积温。
S=0.043T2+21.36T+215.60 …………………… (2)
3 结论与讨论
3.1 蝴蝶兰生长速率的测定与生长曲线的建立
叶片是植物光合作用的主要器官,是植物生长发
育、产量品质形成的基础[11]。目前叶面积的测量方法
主要有称重法、方格法、系数法、叶面积仪法、图形分解
法、图像处理法、等腰三角形法等,但各种方法各有优
劣[12-16]。郁进元等[17]认为长宽法计算玉米、水稻等作物
0
50
100
150
200
250
5月4日5月19日6月4日6月19日7月4日7月19日8月3日8月17日8月31日9月14日9月28日10月11
日
10月25
日11月9日11月23
日12月6日12月20
日1月3日1月17日2月1日2月15日3月1日3月15日3月29日4月12日4月26日5月10日5月24日6月7日6月21日7月5日7月19日 8月
2
日生长速率(mm2) 日平均积温(℃*d)
图2 蝴蝶兰营养生长期间的日均生长速率与平均温度变化
y=354.9x-381.05R2=0.9999
y=24.047x2+454.54x+1700.7R2=0.9981
-5000.00.0
5000.010000.0
15000.020000.0
25000.030000.0
35000.040000.0
45000.0
5月4日5月19日6月4日6月19日7月4日7月19日8月3日8月17日8月31日9月14日9月28日10月11
日
10月25
日11月9日11月23
日12月6日12月20
日1月3日1月17日2月1日2月15日3月1日3月15日3月29日4月12日4月26日5月10日5月24日6月7日6月21日7月5日7月19日8月
2
总积温/℃
叶片总面积/mm2
线性 (总积温/℃)
多项式 (叶片总面积/mm2)
图3 蝴蝶兰‘晓霞’营养生长期积温对生长量的影响
/ 2 / ·
2
( 2)
8月
2日
8
2日
张京伟等:蝴蝶兰叶片生长曲线与环境积温的关系研究 ·· 115
中国农学通报 http://www.casb.org.cn
的叶面积与叶面积仪测定法具有较好的一致性。刘洪
波等[18]计算了叶面积仪和剪纸称重法测量值间的相关
系数,认为库尔勒香梨叶面积与叶长宽乘积的相关系
数最高。周开兵等[19]用矫正系数计算和线性回归分析
法推导了叶面积估算公式,对人心果叶面积进行了测
定,并认为样本容量不低于30时能得到理想的估算结
果。本研究中蝴蝶兰叶片形状规则,适合采用叶片长
宽法计算叶面积。在测定特定样本下的蝴蝶兰叶片长
宽的基础上,消除部分新生叶片对实验数据的影响,从
而计算出了叶片长宽比为 2.1。以纸片称重法计算了
叶面积与长宽乘积之间的比例系数k=0.786,从而得出
叶面积的计算公式S=kLW=0.375L2。根据这一公式及
测定的叶片长度可以直观估算不同生长期内的蝴蝶兰
叶面积。这一方法与高祥斌等[20]通过测定叶片宽度即
可估算叶片面积的计算方法较为一致,且更加简单实
用,方便操作,对植物叶片没有任何机械损伤且计算准
确率极高。
一定时间段内蝴蝶兰叶面积的变化即为这一阶段
蝴蝶兰生长速率。根据测定结果可知,在营养生长期
内,随着植株的发育,蝴蝶兰叶片生长速率在 15.4~
227.0 mm2/d之间进行波动,出现多个生长速率的波
峰、波谷。产生这一现象的原因是自身发育节律(总体
上逐渐加快,但也与根系生长、换盆缓苗等因素有关)
与环境条件(温度、光照等)共同作用的结果。生长量
总体上呈现稳步上升的趋势,生长量与时间之间呈二
次函数关系,S=24.047x2 + 454.54x + 1700.7,单位为
mm2,而两者之间的拟合度维持在较高水平,R2为
0.9981。
利用有效积温理论预测作物生育期的研究已有一
些报道[21]。但由于有效积温理论的预测是假定发育速
率与气温在发育的上下限温度之间遵循同一线性关
系,没有考虑高温、低温等极限生物学温度对发育的迟
滞作用[22]。因此,本研究为消除个别极端天气对整个
积温测定的影响,以15天为1个测定单位测定一定时
间段的积温数据。总体上看,每个阶段的积温数据较
为平稳,积温数据与时间呈线性关系。正是基于积温
与时间成一次函数关系,生长量与时间呈二次函数关
系,因此可根据时间关系计算得出积温与生长量间的
函数关系,S=0.043T2+21.36T+215.60。
3.2 蝴蝶兰生长曲线及模型建立的局限性
蝴蝶兰生长发育模型的建立及相关函数关系式的
计算,为蝴蝶兰生长发育的监控及花期调控提供了条
件,但也存在一定的局限性。
首先,由于蝴蝶兰叶片长宽比的计算是基于较大
样本的分析统计数据,其中涵盖了不同生长期、不同长
宽比例的叶片,这一长宽比数据的确定是对蝴蝶兰叶
片整体的记录与分析。而不同品种的蝴蝶兰叶片长宽
比不一,叶面积比例系数存在差异,因此这一计算公式
及生长曲线不适于个别品种、个别生长期叶片的分析
比较。
其次,对不同营养生长期内的蝴蝶兰生长速率的
函数关系进行单独分析,可以发现生长变化函数差异
较大,有线性关系、二次函数关系、指数关系等。以生
长周期的前3个阶段的生长速率为例,第1阶段为定植~
2.5个月,生长速率 Y=9.99.4e0.2785x,R2=0.9234(x为时间
尺度,以15天为1个单位,下同)。第2阶段为2.5~4个
月,Y=66.392-4.1633x,R2=0.9838。第3阶段为4~5.5个
月,Y=38.424e0.2599x,R2=0.9973。因此蝴蝶兰生长函数
关系的确定是基于长时间的测定与分析,是对蝴蝶兰
整个营养生长阶段的总体把握。
再次,作物生长模拟系统的建立是基于系统的观
点,将作物生产看成一个由作物、环境、技术等要素构
成的整体系统,描述作物生长发育、器官建成和产量品
质形成等与环境之间的数学关系[23]。需要对作物C平
衡、植株形态发育、干物质积累与分配进行分析 [24-25]。
因此,本研究中生长曲线及模型的建立除了对植物生
长最为关键的温度因子进行计算模拟外,还需要加强
对其他环境因子及器官发育、数量、干物质积累和分配
等过程的分析。
参考文献
[1] 陈国庆,朱艳,曹卫星.冬小麦叶片生长特征的动态模拟[J].作物学
报,2005,31(11):1524-1527.
[2] 石春林,朱艳,曹卫星.水稻叶片几何参数的模拟分析[J].中国农业
科学,2006,39(5):910-915.
[3] 张立祯,曹卫星,张思平,等.基于生理发育时间的棉花生育期模拟
模型[J].棉花学报,2003,15(2):97-103.
[4] 孟亚利,曹卫星,周治国,等.基于生长过程的水稻阶段发育与物候
期模拟模型[J].中国农业科学,2003,36(11):1362-1367.
[5] 杨海明,徐琪,戴国俊.禽类三种常用生长曲线浅析[J].中国家禽,
2004,8(Z1):164-166.
[6] 朱志明,强巴央宗,朱猛进,等.藏鸡生长曲线拟合和分析的比较研
究[J].中国农业科学,2005,39(10):2159-2162.
[7] 林菁敏,李哖.蝴蝶兰叶面积之估算与温度对叶片生长之影响[C].
台北:台湾花卉发展协会,2002.
[8] 倪纪恒.温室番茄生长发育模拟模型研究[D].南京:南京农业大学,
2005.
[9] 郭孝玉,孙玉军,王轶夫,等.基于改进人工神经网络的植物叶面积
测定[J].农业机械学报,2013,44(2):200-204,199.
[10] 仉劲.金银花生长发育和加工过程中的成分变化研究[D].泰安:山
东农业大学,2014.
·· 116
[11] 胡林.植物叶面积系数法改进研究[J].中国农学通报,2015,31(5):
228-233.
[12] 赵增.常用农业科学实验法[M].北京:农业出版社,1986.
[13] 杨劲峰,陈清,韩晓日,等.数字图像处理技术在蔬菜叶面积测量中
的应用[J].农业工程学报,2002,18(4):155-158.
[14] 李宝光,黄芳.植物叶片面积的测定方法[J].山东理工大学学报:自
然科学版,2004,18(4):94-96.
[15] 荣海,范海兰,李茜,等.两种姜科药用植物叶面积测定方法比较[J].
时珍国医国药,2011,22(1):236-238.
[16] 龚建华,向军.黄瓜群体叶面积无破坏性速测方法研究[J].中国蔬
菜,2001(4):7-9.
[17] 郁进元,何岩,赵忠福,等.长宽法测定作物叶面积的校正系数研究
[J].江苏农业科学,2007(2):37-39.
[18] 刘洪波,张江辉,白云岗,等.香梨叶面积测定方法对比研究[J].新疆
农业科学,2013,50(3):453-459.
[19] 周开兵,陈志霞.人心果叶片面积测定方法[J].实验科学与技术,
2008,6(1):43-45.
[20] 高祥斌,张秀省,蔡连捷.观赏植物叶面积测定及相关分析[J].福建
林业科技,2009,36(2):231-234,251.
[21] Ibarra L, Flores J, Carlos J. Growth and yield of muskmelon in
response to plastic mulch and row covers[J]. Scientia Horticulturae,
2001,87(1):139-145.
[22] 袁昌梅,罗卫红,张生飞,等.温室网纹甜瓜发育模拟模型研究[J].园
艺学报,2005,32:262-267.
[23] 王向东,张建平,马海莲,等.作模拟模型的研究概况及展望[J].河北
农业大学学报,2003,26(Z1):20-23.
[24] 孙忠富,陈人杰.温室番茄生长发育动态模型与计算机模拟系统初
探[J].中国生态农业学报,2003,11(2):84-88.
[25] 张晓艳,刘锋,王风云,等.温室蝴蝶兰生长动态模型设计与实现[J].
中国农学通报,2007,23(11):398-402.
张京伟等:蝴蝶兰叶片生长曲线与环境积温的关系研究 ·· 117