免费文献传递   相关文献

卷柏化学成分及细胞毒活性研究(英文)



全 文 :天然产物研究与开发 Nat Prod Res Dev 2012,24:150-154
文章编号:1001-6880(2012)02-0150-05
Received April 29,2010;Accepted August 2
* Corresponding author Tel:86-25-86529291;E-mail:caosci @ yahoo.
com. cn
卷柏化学成分及细胞毒活性研究
曹 园1* ,吴永平2,温晓舟1,翁 燕1,王 强3
1江苏省中医院中药制剂实验室,江苏省中医院肿瘤临床研究中心,南京 210036;
2江苏省药物研究所;3 中国药科大学中药分析教研室,南京 210009
摘 要:从卷柏(Selaginella tamariscina (Beauv.)Spring)中分离得到 10 个化合物,运用波谱手段分别鉴定为 se-
laginellin(1)、selaginellin A(2)、selaginellin B(3)、穗花杉双黄酮(4)、sequoiaflavone(5)、去甲银杏双黄酮(6)、银
杏双黄酮(7)、异银杏双黄酮(8)、扁柏双黄酮(9)、异柳杉双黄酮(10)。其中化合物 1、5 和 8 为首次从该植物
中分离得到。化合物 1,4,7,8 和 9 显示出选择性的细胞毒活性。
关键词:卷柏;化学成分;selaginellins;双黄酮;细胞毒活性
中图分类号:R284. 1;Q946. 91 文献标识码:A
Cytotoxic Constituents from Selaginella tamariscina
CAO Yuan1* ,WU Yong-ping2,WEN Xiao-zhou1,WENG Yan1,WANG Qiang3
1Laboratory of Chinese Materia Medica Preparation,Center for Clinical Research in Oncology Speciality,Jiangsu Provincial
Hospital of Traditional Chinese Medicine,Affiliated Hospital of Nanjing University of Traditional Chinese Medicine;
2Jiangsu Provincial Institute of Materia Medica,Nanjing 210009,China;3Department of Chinese Materia
Medica Analysis,China Pharmaceutical University,Nanjing 210009,China
Abstract:Three selaginellins and seven biflavones were isolated from the whole plant of Selaginella tamariscina. Their
structures were identified as selaginellin (1) ,selaginellin A (2) ,selaginellin B (3) ,amentoflavone (4) ,sequoiaflavone
(5) ,bilobetin (6) ,ginkgetin (7) ,isoginkgetin (8) ,hinokiflavone (9) ,and isocryptomerin (10). Among them,com-
pounds 1,5,and 8 were isolated from this plant for the first time. Additionally,selected compounds were evaluated for
their cytotoxic activity against tested human cell lines,and compounds 1,4,7,8 and 9 showed selective cytotoxic activi-
ty.
Key words:Selaginella tamariscina;chemical constituents;selaginellins;biflavones;cytotoxic activity
Introduction
Selaginella tamariscina (Beauv.)Spring (Selaginel-
laceae) ,a perennial herb widely distributed in China,
is one of the two qualified species listed in Chinese
Pharmacopoeia[1]. In traditional Chinese medicine,it is
used to promote blood circulation,to stimulate menstru-
al discharge,and to deal with several forms of canc-
er[1,2]. Previous phytochemical investigation on S. tam-
ariscina revealed that it is a rich source of biflavonoids;
other compounds such as phenylpropanones and lig-
nans[3-7] were also reported from this plant. Our re-
search for cytotoxic metabolites from S. tamariscina
herb led to the isolation of three selaginellins and seven
biflavones. Among them,compounds 1,5,and 8 were
obtained from this plant for the first time. Additionally,
selected compounds were evaluated for their cytotoxic
activity against the non-small cell lung cancer
(A549) ,stomach adenocarcinoma (BGC-823) and
liver cancer (BEL-7402)human cell lines. As a re-
sult,compounds 1,4,7,8 and 9 showed selective cyto-
toxic activity.
Experimental
General
Silica gel (200-300 mesh,Qingdao Marine Chemical
Inc.;Qingdao,China) ,poly- amide (100-200 mesh,
Sinopharm Chemical Reagent Co.,Ltds;Shanghai,Chi-
na) ,and Sephadex LH-20 (Amersham Bioscience,
Sweden)were used for column chromatography (CC).
UV spectra were carried out on a Shimadzu UV 2401-
PC spectrophotometer,λmax in nm. IR spectra were
measured on a Bruker Tensor 27 FT-IR spectrometer
with KBr pellets,in cm-1 . Melting points (m. p.)were
determined on a Yanaco MP-S3 micro-melting point ap-
paratus;uncorrected. MS data were obtained on a VG-
Autospec-3000 mass spectrometer. NMR spectra were
recorded on Bruker AV-500 (1H /13 C,500 MHz /125
MHz)spectrometers and chemical shifts were given in
δ. All solvents used were of analytical grade.
Plant materials
The herb of S. tamariscina was collected from Yunnan
Province,China,in October 2009 and identified by Dr.
Pro. Qiang Wang,Department of Pharmacognosy,China
Pharmaceutical University. A voucher specimen (2009-
10-003)was deposited in Jiangsu Provincial Hospital
of Traditional Chinese Medicine.
Extraction and isolation
The air-dried plants (5 kg)were extracted with 95%
ethanol (50 L × 3)under reflux. The ethanolic ex-
tracts were combined and concentrated in vacuo to yield
a brown residue (250 g)which was defatted with pe-
troleum ether (PE,60-90 ℃;10 L × 3)and then ex-
tracted with EtOAc (10 L × 3)and n-BuOH (10 L
× 3)respectively. Part of the EtOAc fraction (38 g)
was subjected to column chromatography over silica gel
eluted gradiently with CHCl3-MeOH (1 ∶ 0→1 ∶ 1)to
give five subfractions (Fr.). Fr. 2 (15 g)was further
submitted to silica gel with CHCl3-MeOH (19∶ 1→1∶ 1)
and then over polyamide column (100-200 mesh)to
afford compounds 2 (5 mg) ,3 (8 mg) ,7 (20 mg) ,8
(15 mg) ,and 10 (10 mg). Fr. 3 (8. 7 g)was sepa-
rated by repeated polyamide (CHCl3-MeOH 19∶ 1→1∶ 1)
followed by Sephadex LH-20 column to yield com-
pounds 5 (12 mg) ,6 (8. 1 mg) ,and 9 (15 mg).
Compounds 1 (27. 1 mg) ,and 4 (17. 8 mg)were ob-
tained from Fr. 4 (10. 5 g)by repeated chromatogra-
phy over silica gel column (200-300 mesh).
Cytotoxicity test (sulforhodamin B assay)
Due to insufficient material,seven compounds 1-4,7-9
isolated from S. tamariscina were tested for their cyto-
toxic activity against A549,BGC-823 and BEL-7402
human cell lines by the sulfurhodamine B (SRB)assay
with paclitaxel as positive control [8,9]. The cancer cells
were cultured in RPMI-1640 containing 10% fetal bo-
vine serum and antibiotics (100 U /mL of penicillin
and 100 μg /mL of streptomycin). Inhibition data were
expressed as IC50 values and the results were summa-
rized in Table 1.
Table 1 Cytotoxicity of selected compounds against cancer cell lines
Cell lines
IC50(μg /mL)a
1 2 3 4 7 8 9 Paclitaxelc
A549 NAb NA NA NA 1. 000 NA NA 0. 075
BEL-7402 NA NA NA NA 5. 001 6. 076 1. 406 0. 58
BGC-823 1. 857 NA NA 1. 888 NA NA 1. 024 0. 001
a IC50:The IC50 values are means of three experiments. bNA:not active. c positive control.
Identification
Selaginellin (1) C34 H24 O5,red needles (metha-
nol) ,ESI-MS m/z 513. 1[M + H]+,511. 4[M –
H]–;1H NMR(DMSO-d6,500 MHz)δH:6. 48(4H,
brs,H-2,6,9,11) ,7. 07(4H,brs,H-3,5,8,12) ,7. 70
(1H,d,J = 8. 0 Hz,H-16) ,7. 36(1H,d,J = 8. 0 Hz,
H-17) ,6. 80(2H,d,J = 8. 5 Hz,H-20 /24) ,6. 56
151Vol. 24 CAO Yuan,et al:Cytotoxic Constituents from Selaginella tamariscina
(2H,d,J = 8. 5 Hz,H-21 /23) ,6. 99(2H,d,J = 8. 6
Hz,H-28 /32) ,6. 67(2H,d,J = 8. 6 Hz,H-29 /31) ,
4. 81(2H,d,J = 6. 5 Hz,H-34) ,10. 01(1H,brs,OH-
10) ,9. 91(1H,brs,OH-30) ,9. 39(1H,brs,OH-22) ,
5. 44(1H,d,J = 6. 5 Hz,OH-34) ;13 C NMR(DMSO-
d6,125 MHz)δC:188. 6(C-1) ,115. 6(C-2) ,135. 0
(C-3) ,129. 5(C-4) ,135. 0(C-5) ,115. 6(C-6) ,
155. 2(C-7) ,129. 8(C-8) ,115. 0(C-9) ,159. 4(C-
10) ,115. 0(C-11) ,129. 8(C-12) ,142. 4(C-13) ,
121. 2(C-14) ,142. 6(C-15) ,127. 2(C-16) ,129. 7
(C-17) ,140. 6(C-18) ,140. 4(C-19) ,129. 7(C-20 /
24) ,114. 9(C-21 /23) ,156. 6(C-22) ,130. 8(C-25) ,
84. 0(C-26) ,98. 8(C-27) ,132. 9(C-28 /32) ,115. 8
(C-29 /31) ,158. 3(C-30) ,112. 4(C-33) ,61. 5(C-
34). These data were consistent with those reported
[10].
Selaginellin A (2) C33 H22 O4,red powder;ESI-MS
m/z 505[M + Na]+;1H NMR(acetone-d6,500 MHz)
δH:6. 34(1H,d,J = 10. 0 Hz,H-2) ,7. 52(1H,d,J =
10. 0 Hz,H-3) ,7. 32(1H,d,J = 10. 0 Hz,H-5) ,6. 32
(1H,d,J = 10. 0 Hz,H-6) ,6. 80(2H,d,J = 8. 5 Hz,
H-8,12) ,6. 68(2H,d,J = 8. 5 Hz,H-9,11) ,7. 64
(1H,d,J = 8. 0 Hz,H-15) ,7. 54(1H,t,J = 8. 0 Hz,
H-16) ,7. 34(1H,d,J = 8. 0 Hz,H-17) ,6. 86(2H,d,
J = 8. 5 Hz,H-20 /24) ,6. 63(2H,d,J = 8. 5 Hz,H-
21 /23) ,7. 06(2H,d,J = 8. 5 Hz,H-28 /32) ,6. 72
(2H,d,J = 8. 5 Hz,H-29 /31) ,8. 90(1H,brs) ,8. 82
(1H,brs) ,8. 44(1H,brs) ;13 C NMR(acetone-d6,125
MHz)δ:185. 0(C-1) ,116. 1(C-2) ,138. 5(C-3) ,
129. 8(C-4) ,138. 5(C-5) ,116. 1(C-6) ,149. 0(C-
7) ,136. 7(C-8) ,115. 9(C-9) ,159. 4(C-10) ,115. 9
(C-11) ,136. 7(C-12) ,133. 2(C-13) ,125. 5(C-14) ,
130. 9(C-15) ,129. 9(C-16) ,130. 7(C-17) ,143. 9
(C-18) ,141. 8(C-19) ,130. 5(C-20 /24) ,115. 6(C-
21 /23) ,157. 9(C-22) ,132. 0(C-25) ,87. 2(C-26) ,
94. 5(C-27) ,133. 8(C-28 /32) ,116. 3(C-29 /31) ,
159. 3(C-30) ,113. 8(C-33). These data were consist-
ent with those reported [11].
Selaginellin B (3) C34 H24 O4,red powder;ESI-MS
m/z 519[M + Na]+;1H NMR(acetone-d6,500 MHz)
δH:6. 33(2H,brs,H-2,6) ,7. 20(1H,d,J = 10. 0 Hz,
H-3) ,6. 93(1H,d,J = 10. 0 Hz,H-5) ,6. 76(2H,d,J
= 8. 5 Hz,H-8,12) ,6. 68(2H,d,J = 8. 5 Hz,H-9,
11) ,7. 45(1H,d,J = 8. 0 Hz,H-16) ,7. 23(1H,d,J
= 8. 0 Hz,H-17) ,6. 83(2H,d,J = 8. 5 Hz,H-20 /
24) ,6. 62(2H,d,J = 8. 5 Hz,H-21 /23) ,7. 07(2H,
d,J = 8. 5 Hz,H-28 /32) ,6. 72(2H,d,J = 8. 5 Hz,H-
29 /31) ,2. 60(CH3) ,10. 70(1H,brs) ,8. 87(1H,
brs) ,8. 43 (1H,brs) ;13 C NMR (acetone-d6,125
MHz)δC:185. 0(C-1) ,116. 0(C-2) ,138. 1(C-3) ,
129. 8(C-4) ,138. 1(C-5) ,116. 0(C-6) ,149. 2(C-
7) ,136. 3(C-8) ,115. 9(C-9) ,159. 7(C-10) ,115. 9
(C-11) ,136. 3(C-12) ,133. 0(C-13) ,125. 0(C-14) ,
139. 3(C-15) ,130. 9(C-16) ,134. 3(C-17) ,142. 0
(C-18) ,141. 1(C-19) ,130. 7(C-20 / 24) ,115. 5(C-
21 /23) ,157. 5(C-22) ,132. 0(C-25) ,86. 1(C-26) ,
99. 1(C-27) ,133. 8(C-28 /32) ,116. 3(C-29 /31) ,
158. 9(C-30) ,114. 5(C-33) ,21. 1(C-34). These data
were consistent with those reported [11].
Amentoflavone (4) C30 H18 O10,yellow powder,mp
> 300 ℃;ESI-MS m/z 537[M – H]–;1H NMR
(DMSO-d6,500 MHz) δH:12. 97 (1H,s,OH-5) ,
13. 10(1H,s,OH-5) ,10. 77(1H,s,OH-7) ,10. 55
(2H,br. s. ,OH-7,4) ,10. 23(1H,s,OH-4) ,
6. 19(1H,d,J = 1. 9 Hz,H-6) ,6. 46(1H,d,J = 1. 9
Hz,H-8) ,6. 40(1H,s,H-6) ,6. 78(1H,s,H-3) ,
6. 83(1H,s,H-3) ,6. 72(2H,d,J = 8. 7 Hz,H-3,
5) ,7. 57(2H,d,J = 8. 7 Hz,H-2,6) ,7. 15
(1H,d,J = 8. 8 Hz,H-5) ,8. 00(1H,d,J = 2. 2 Hz,
H-2) ,8. 01(1H,dd,J = 2. 2,8. 8 Hz,H-6) ;13 C
NMR(DMSO-d6,125 MHz)δC:163. 8(C-2) ,163. 6
(C-2) ,102. 9(C-3) ,102. 5(C-3) ,181. 6(C-4) ,
182. 0(C-4) ,161. 8(C-5) ,160. 9(C-5) ,98. 8(C-
6) ,98. 6(C-6) ,164. 0(C-7) ,161. 4(C-7) ,93. 9
(C-8) ,103. 9(C-8) ,157. 3(C-9) ,154. 4(C-9) ,
103. 6(C-10) ,103. 7(C-10) ,119. 9(C-1) ,127. 7
(C-2) ,121. 4(C-3) ,159. 5(C-4) ,116. 1(C-5) ,
131. 3(C-6) ,120. 9(C-1) ,115. 7(C-3,5) ,
128. 1(C-2,6) ,160. 5(C-4). These data were
consistent with those reported [12,13].
Sequoiaflavone (5) C31 H20 O10,yellow powder,mp
> 300 ℃;ESI-MS m/z 551[M – H]–;1H NMR
(DMSO,500 MHz)δH:6. 36(1H,d,J = 2. 0Hz,H-
6) ,6. 77(1H,d,J = 2. 0Hz,H-8) ,6. 41(1H,s,H-
6) ,6. 79(1H,s,H-3 or 3) ,6. 90(1H,s,H-3 or
3) ,8. 05(1H,dd,J = 2. 0,8. 5Hz,H-6) ,8. 03
251 Nat Prod Res Dev Vol. 24
(1H,d,J = 2. 0Hz,H-2) ,7. 15(1H,d,J = 8. 8Hz,H-
5) ,δH 7. 56(2H,d,J = 9. 0Hz,H-2 /6) ,6. 72
(2H,d,J = 9. 0Hz,H-3 /5) ,12. 95(1H,brs,OH-
5) ,13. 09(1H,brs,OH-5) ,10. 76(2H,brs,OH-4,
4) ,10. 23(1H,brs,OH-7) ,3. 83(3H,s,OCH3)
. These data were consistent with those reported [14].
Bilobetin (6) C31 H20 O10,yellow powder,mp > 300
℃;ESI-MS m/z 551[M– H]–;1H NMR(DMSO-d6,
500 MHz)δH:12. 92(1H,s,OH-5) ,13. 09(1H,s,
OH-5) ,6. 19(1H,d,J = 1. 9 Hz,H-6) ,6. 39(1H,s,
H-6) ,6. 48(1H,d,J = 1. 9 Hz,H-8) ,6,79(1H,s,
H-3) ,6. 91(1H,s,H-3) ,6. 71(2H,d,J = 8. 8 Hz,
H-3,5) ,7. 50(2H,d,J = 8. 8 Hz,H-2,6) ,
7. 35(1H,d,J = 8. 8 Hz,H-5) ,8. 06(1H,d,J = 2. 3
Hz,H-2) ,8. 18(1H,dd,J = 2. 3,8. 8 Hz,H-6) ,
3. 78(OCH3-4). These data were consistent with those
reported [15].
Ginkgetin (7) C32H22 O10,yellow powder,mp > 300
℃;ESI-MS m/z 565[M– H]–;1H NMR(DMSO-d6,
500 MHz)δH:12. 92(1H,s,OH-5) ,13. 09(1H,s,
OH-5) ,10. 80(1H,s,OH-7) ,10. 26(1H,s,OH-
4) ,6. 37(1H,d,J = 2. 2 Hz,H-6) ,6. 77(1H,d,J
= 2. 2 Hz,H-8) ,6. 41(1H,s,H-6) ,6. 79(1H,s,H-
3) ,7. 01(1H,s,H-3) ,6. 72(2H,d,J = 8. 9 Hz,H-
3,5) ,7. 50(2H,d,J = 8. 9 Hz,H-2,6) ,
7. 37(1H,d,J = 8. 8 Hz,H-5) ,8. 10(1H,d,J = 2. 4
Hz,H-2) ,8. 23(1H,dd,J = 2. 4,8. 8 Hz,H-6) ,
3. 82(3H,s,OCH3-7) ,3. 79(3H,s,OCH3-4) ;
13 C
NMR(DMSO-d6,125 MHz)δC:163. 5(C-2) ,163. 6
(C-2) ,103. 5(C-3) ,102. 5(C-3) ,181. 9(C-4) ,
182. 0(C-4) ,161. 1(C-5) ,160. 6(C-5) ,98. 1(C-
6) ,98. 5(C-6) ,165. 1(C-7) ,161. 6(C-7) ,92. 7
(C-8) ,103. 8(C-8) ,157. 3(C-9) ,154. 3(C-9) ,
104. 7(C-10) ,103. 6(C-10) ,122. 3(C-1) ,121. 2
(C-1) ,128. 2(C-2) ,111. 7(C-5) ,130. 8(C-6) ,
115. 7(C-3,5) ,127. 9(C-2,6) ,56. 0,55. 9
(2 × OCH3). These data were consistent with those re-
ported [13,16].
Isoginkgetin (8) C32 H22 O10,yellow powder,mp >
300 ℃;ESI-MS m/z 565[M – H]–;1H NMR(DM-
SO-d6,500 MHz)δH:12. 92(1H,s,OH-5) ,13. 05
(1H,s,OH-5) ,10. 80 (2H,s,OH-7,7) ,6. 20
(1H,d,J = 2. 0 Hz,H-6) ,6. 48(1H,d,J = 2. 0 Hz,H-
8) ,6. 42(1H,s,H-6) ,6. 90(1H,s,H-3) ,6. 92
(1H,s,H-3) ,6. 93(2H,d,J = 9. 0 Hz,H-3,
5) ,7. 62(2H,d,J = 9. 0 Hz,H-2,6) ,7. 36
(1H,d,J = 8. 8 Hz,H-5) ,8. 06(1H,d,J = 2. 4 Hz,
H-2) ,8. 19(1H,dd,J = 2. 4,8. 8 Hz,H-6) ,3. 79
(3H,s,OCH3-4) ,3. 76(3H,s,OCH3-4) ;
13C NMR
(DMSO-d6,125 MHz)δC:163. 3(C-2) ,164. 1(C-
2) ,103. 6 (C-3) ,103. 2 (C-3) ,181. 7 (C-4) ,
182. 0(C-4) ,160. 6(C-5) ,161. 7(C-5) ,98. 6(C-
6) ,98. 8(C-6) ,163. 0(C-7) ,161. 4(C-7) ,94. 0
(C-8) ,103. 8(C-8) ,157. 3(C-9) ,154. 3(C-9) ,
103. 7(C-10,10) ,122. 5 (C-1) ,128. 1 (C-2) ,
121. 5(C-3) ,160. 4(C-4) ,111. 7(C-5) ,130. 8(C-
6) ,122. 8(C-1) ,114. 5(C-3,5) ,127. 7(C-
2,6) ,55. 8,55. 4(2 × OCH3). These data were
consistent with those reported [16].
Hinokiflavone (9) C30H18O10,yellow powder,mp >
300 ℃;ESI-MS m/z 537[M – H]–;1H NMR(DM-
SO-d6,500 MHz)δH:12. 97(1H,s,OH-5) ,13. 10
(1H,s,OH-5) ,10. 77(1H,s,OH-7) ,10. 55(2H,
br. s,OH-7,4) ,10. 23(1H,s,OH-4) ,6. 19(1H,
d,J = 1. 9 Hz,H-6) ,6. 46(1H,d,J = 1. 9 Hz,H-8) ,
6. 40(1H,s,H-6) ,6. 78(1H,s,H-3) ,6. 83(1H,s,
H-3) ,6. 72(2H,d,J = 8. 7 Hz,H-3 / 5) ,7. 57
(2H,d,J = 8. 7 Hz,H-2 / 6) ,7. 15(1H,d,J =
8. 8 Hz,H-5) ,8. 00(1H,d,J = 2. 2 Hz,H-2) ,8. 01
(1H,dd,J = 2. 2,8. 8 Hz,H-6) ;13 C NMR(DMSO-
d6,125 MHz)δC:163. 8(C-2) ,163. 6(C-2) ,102. 9
(C-3) ,102. 5(C-3) ,181. 6(C-4) ,182. 0(C-4) ,
161. 8(C-5) ,160. 9(C-5) ,98. 8(C-6) ,98. 6(C-
6) ,164. 0(C-7) ,161. 4(C-7) ,93. 9(C-8) ,103. 9
(C-8) ,157. 3(C-9) ,154. 4(C-9) ,103. 6(C-10) ,
103. 7(C-10) ,119. 9(C-1) ,127. 7(C-2) ,121. 4
(C-3) ,159. 5(C-4) ,116. 1(C-5) ,131. 3(C-6) ,
120. 9(C-1) ,115. 7(C-3,5) ,128. 1(C-2,
6) ,160. 5(C-4). These data were consistent with
those reported [13,17].
Isocryptomerin (10) C31H20O10,yellow powder,mp
> 300 ℃;ESI-MS m/z 551[M – H]–;1H NMR
(DMSO-d6,500 MHz)δH:6. 20(1H,d,J = 2. 0 Hz,
H-6) ,6. 49(1H,d,J = 2. 0 Hz,H-8) ,7. 12(1H,s,H-
8) ,6. 85(1H,s,H-3 or 3) ,6. 93(1H,s,H-3 or
351Vol. 24 CAO Yuan,et al:Cytotoxic Constituents from Selaginella tamariscina
3) ,8. 02(2H,d,J = 8. 8 Hz,H-2 /6) ,7. 04(2H,d,
J = 8. 8 Hz,H-3 /5) ,8. 01(2H,d,J = 8. 8 Hz,H-
2 /6) ,6. 97(2H,d,J = 8. 8 Hz,H-3 /5) ,
3. 90(3H,s,OCH3) ,12. 87(1H,brs,OH-5) ,13. 10
(1H,brs,OH-5). These data were consistent with
those reported [13,18].
Acknowledgments We are grateful to Mr Chen Dong-
jun (Analysis and Testing Center,China Pharmaceuti-
cal University)for his professional measurements of the
NMR spectra. We are also indebted to Mr Lai Mao-
xiang (Guangxi Academy of Chinese Medicine and
Pharmaceutical Science)for helping us with collecting
the plant material.
References
1 Chinese Pharmacopoeia Commission. Pharmacopoeia of the
People’s Republic of China. Vol. I.,Beijing:People’s Med-
ical Publishing House,2010. 210-211.
2 Jiangsu New Medical College. Zhong Yao Da Ci Dian. Shang-
hai:Shanghai Science and Technology Press,2004. 1472-
1473.
3 Yuan Y,Wang BQ,Chen LJ,et al. How to realize the linear
scale-up process for rapid purification using high-perform-
ance counter-current chromatography. J Chromatogr A,2008,
1194:192-198.
4 Zheng XK,Shi SP,Bi YF,et al. Flavonoids from Selaginella
tamariscina. Chin Tradit Herb Drugs,2004,35:742-743.
5 Bi YF,Zheng XK,F WS,et al. Isolation and structural identi-
fication of chemical constituents from Selaginella tamariscina
(Beauv.)Spring. Acta Pharm Sin,2004,39:41-45.
6 Zheng XK,Shi SP,Bi YF,et al. The isolation and identifica-
tion of a new lignanoside from Selaginella tamariscina
(Beauv.)Spring. Acta Pharm Sin,2004,39:719-721.
7 Zheng XK,Bi YF,F WS,et al. Study on the chemical constit-
uents of Selaginella tamariscina (Beauv.) Spring. Acta
Pharm Sin,2004,39:266-268.
8 Skehan P,Storeng R,Scudiero D,et al. New colorimetric cy-
totoxicity assay for anticancer drug screening. J Natl Cancer
Inst,1990,82:1107-1112.
9 Huang HQ,Tan NH,Zeng GZ,et al. New cytotoxic thymol
derivatives from Inula helianthus-aquatica(Compositae). Ac-
ta Bot Yunnan,2009,31:190-192.
10 Zhang LP,Liang YM,Wei XC,et al. A new unusual natural
pigment from Selaginella sinensis and its noticeable physico-
chemical properties. J Org Chem,2007,72:3921-3924.
11 Cheng XL,Ma SC,Yu JD,et al. Selaginellin A and B,Two
novel natural pigments isolated from Selaginella tamariscina.
Chem Pharm Bull,2008,56:982-984.
12 Sun CM,Syu WJ,Huang YT,et al. Selective cytotoxicity of
ginkgetin from Selaginella moellendorffii. J Nat Prod,1997,
60:382-384.
13 Markham KR,Sheppard C,Geiger H,et al. 13 C NMR studies
of some natural occurring amentoflavone and hinokiflavone
biflavonoids. Phytochemistry,1987,26:3335-3337.
14 Markham KR,Franke A,Molloy BPJ,et al. Flavonoid profiles
of New Zealand Libocedrus and related genera. Phytochemis-
try,1990,29:501-507.
15 Sun PY,Xu Y,Wen Y,et al. Constituents of Epimedium Ko-
reanum Nakai(Ⅰ)Chin J Med Chem,1998,8:122-126.
16 Tang YP,Lou FC,Wang JH,et al. Studies on the constitu-
entes of flavonoids from Ginkgo biloba leaves. Chin Pharm J,
2001,36:231-233.
17 Swamy RC,Kunert O,Schühly W,et al. Structurally unique
biflavonoids from Selaginella chrysocaulos and Selaginella
bryopteris. Chem Biodiver,2006,3:405-413.
18 Silva GL,Chai H,Gupta MP,et al. Cytotoxic biflavonoids
from Selaginella willdenowii. Phytochemistry,1995,40:129-
134.
451 Nat Prod Res Dev Vol. 24