免费文献传递   相关文献

石榴叶片发育期安石榴苷及其合成相关物质含量的变化



全 文 :DOI:10.13925/j.cnki.gsxb.20150401
石榴叶片发育期安石榴苷及其合成
相关物质含量的变化
冯立娟 1,2,尹燕雷 2,苑兆和 3,方炎明 1,招雪晴 2
(1南京林业大学南方现代林业创新中心·南京林业大学生物与环境学院,南京210037;
2山东省果树研究所,山东泰安 271000;3南京林业大学林学院,南京210037)
摘 要:【目的】探究石榴叶片发育期安石榴苷及其合成相关物质没食子酸、鞣花酸、五没食子酰葡萄糖、莽草酸和3-
脱氢莽草酸等含量的变化及相关关系。【方法】以‘泰山红’石榴为试材,利用高效液相色谱法(High Performance Liquid
Chromatography,HPLC)和紫外分光光度法等对其发育期叶片中安石榴苷及其合成相关物质含量进行测定。【结果】建
立优化了HPLC法测定石榴叶片中安石榴苷、没食子酸、鞣花酸、五没食子酰葡萄糖、莽草酸和3-脱氢莽草酸的方法。
‘泰山红’石榴叶长和叶宽随叶片发育逐渐增加,50 d左右时逐渐发育成功能叶。叶片发育期没食子酸、莽草酸、总酚
和DPPH自由基清除率均呈先降低后升高的变化趋势,在4月25日和7月24日出现峰值。安石榴苷和花青苷含量随
叶片发育逐渐降低,4月25日含量最高,分别为0.553 mg·g-1和0.339 mg·g-1。五没食子酰葡萄糖和3-脱氢莽草酸含量
先升高后降低,在6月24日出现峰值,分别为5.62 mg·g-1和6.442 mg·g-1。随叶片发育时间的增加,鞣花酸含量呈降→
升→降→升的变化趋势,总黄酮含量呈降→升→降的变化趋势。相关性分析表明,叶长与叶宽呈极显著正相关。没食
子酸与安石榴苷、莽草酸呈极显著正相关,与五没食子酰葡萄糖、3-脱氢莽草酸呈显著负相关。安石榴苷与花青苷、总
酚、莽草酸和DPPH自由基清除率呈显著正相关,与鞣花酸呈显著负相关。五没食子酰葡萄糖与3-脱氢莽草酸呈极显
著正相关,与DPPH自由基清除率、莽草酸呈显著负相关。花青苷、总黄酮、总酚和DPPH自由基清除率均呈显著正相
关。莽草酸与3-脱氢莽草酸呈极显著负相关。【结论】石榴发育期叶片中安石榴苷及其合成相关物质存在含量差异性
和不同的相关性,莽草酸和3-脱氢莽草酸与没食子酸合成密切相关,没食子酸代谢生成五没食子酰葡萄糖,五没食子
酰葡萄糖可能是安石榴苷合成的前体物质,鞣花酸是安石榴苷的降解产物。叶片中安石榴苷、花青苷、总黄酮、总酚含
量高低均与其抗氧化能力密切相关。
关键词:石榴;安石榴苷;没食子酸;五没食子酰葡萄糖;鞣花酸
中国分类号:S665.4 文献标志码:A 文章编号:1009-9980(2016)03-0314-10
收稿日期:2015-09-25 接受日期:2015-11-02
基金项目:江苏高校优势学科建设工程资助项目(RAPD);南京林业大学2013年度优秀博士学位论文创新基金项目;山东省自然科学基金
(ZR2014YL022);山东省果树研究所所长基金(2013KY04)
作者简介:冯立娟,女,助理研究员,在读博士研究生,主要从事果树遗传资源与育种研究。Tel:0538-8334070,E-mail:flj_19820227@163.
com
*通信作者Author for correspondence. Tel:025-85427428,E-mail:jwu4@njfu.edu.cn
果树学报 2016,33(3):314-323
Journal of Fruit Science
Studies on the contents changes of punicalagin and its synthetic related
substance in pomegranate leaf during development
FENG Lijuan 1, 2, YIN Yanlei 2, YUAN Zhaohe 3, FANG Yanming 1*, ZHAO Xueqing 2
(1Co-Innovation Center for Sustainable Forestry in Southern China·College of Biology and the Environment, Nanjing Forestry University,
Nanjing 210037, Jiangsu, China; 2 Shandong Institute of Pomology, Tai’an 271000, Shandong, China; 3 College of Forestry, Nanjing Forest⁃
ry University, Nanjing 210037, Jiangsu, China)
Abstract:【Objective】This study was to determine the content changes of punicalagin and its synthetic re⁃
lated substance shuch as gallic acid, ellagic acid, pentagalloylglucose, shikimic acid, 3-dehydroshikimic
,等:相关物质含量的变化第3期
acid in pomegranate leaf during leaf development, and explore the correlation relationship between puni⁃
calagin and its synthetic related substance. The content changes and correlation relationship between leaf
length and width, total flavonoids, total anthocyanin and DPPH radical scavenging capacity were deter⁃
mined. The correlations of all above indexes also were analyzed.【Methods】The developing leaves of
‘Taishanhong’pomegranate from April 25th to July 24th were as the experiment materials. The length and
width of leaves were measured with vernier caliper. The content of total flavonoids was determined with Al⁃
Cl3 colorimetry. Pomegranate leaves (0.1 g) were extracted with 10 mL mixture solutions of 1.5 mol·L- 1
HCl and 95% ethanol (V/V=15∶85), then total anthocyanin was determined by colorimetric analysis at 535
nm. The content of punicalagin, gallic acid and ellagic acid were determined with high-performance liq⁃
uid chromatography (HPLC) method with absorption wavelength at 280 nm. The mobile phase was consist⁃
ed of acetonitrile and 2% acetic acid solution with proportion 20:80 under isocratic elution conditions.
The Folin-Ciocalteu method was used for total polyphenol concentration determination. 2.0 mL of extract
sample of pomegranate leaves was mixed with 2.0 mL of DPPH-ethanolic solution. 2.0 mL of diluted ex⁃
tract sample was mixed with 2.0 mL of ethanolic solution. An ethanol solution was used as the blank. Ab⁃
sorbance at 517 nm was used to determine DPPH radical scavenging capacity. The contents of shikimic
acid, 3-dehydroshikimic acid and pentagalloylglucose were determined with HPLC method. The mobile
phase was methanol and 1% phosphoric acid (V/V=5∶95) under isocratic elution conditions, and the maxi⁃
mum absorption wavelength for both was at 214 nm. The mobile phase for pentagalloylglucose detemina⁃
tion was acetonitrile and 0.5% phosphoric acid (V/V=20∶80) under isocratic elution conditions, and the
maximum absorption wavelength was at 275 nm. The determination of punicalagin, gallic acid, ellagic ac⁃
id, shikimic acid, 3- dehydroshikimic acid and pentagalloylglucose were done by Agilent 1260 series
high-performance liquid chromatography (HPLC) system equipped with an autosampler and diode array
detector (DAD). Separations were performed on a Zorbax SB-C18 column (150 mm×4.6 mm ID, 5 μm).
Column temperature was set at 30 ℃. The mobile phase flowed at a speed of 0.8 mL·min-1. The injection
volume of standard or sample solution was 10 μL.【Results】The optimized HPLC determination method of
punicalagin, gallic acid, ellagic acid, pentagalloylglucose, shikimic acid and 3-dehydroshikimic acid was
established. The retention time of α-punicalagin, β-punicalagin, gallic acid, ellagic acid, shikimic acid,
3-dehydroshikimic acid and pentagalloylglucose was 2.768 min, 2.926 min, 2.453 min, 4.325 min, 3.045
min, 3.971 min and 5.594 min, respectively. The separation effective and peak shape of above substances
were well. According to the standard curve, the content of above seven components was calculated. The
pomegranate leaves took about fifty days into functional leaves. The length and width of functional leaves
respectively were 10.2 cm and 2.99 cm in July 24th. The contents of gallic acid, shikimic acid, total phe⁃
nols and DPPH radical scavenging activity decreased first and then increased during pomegranate leaf de⁃
velopment with peak value in April 25th and July 24th. The highest content of gallic acid, shikimic acid, to⁃
tal phenols and DPPH radical scavenging activity was 3.624 mg·g-1, 3.388 mg·g-1, 171.238 mg·g-1 and
91.033% respectively in April 25th. The lowest content of gallic acid, total phenols and DPPH radical scav⁃
enging activity was 0.709 mg·g-1, 38.039 mg·g-1 and 35.983% in June 24th. The lowest content of shikimic
acid was 0.826 mg·g-1 in June 14th. The contents of punicalagin and anthocyanin decreased gradually with
the leaf development, and reached the highest 0.553 mg·g-1 and 0.339 mg·g-1 respectively in April 25th
and the lowest 0.167 mg·g-1 and 0.161 mg·g-1 in July 24th. The contents of pentagalloylglucose and 3-de⁃
hydroshikimic acid increased first and then decreased with the highest 5.62 mg·g-1 and 6.442 mg·g-1 re⁃
spectively in June 24th, and had significant differences between development stages. The lowest content of
冯立娟,等:石榴叶片发育期安石榴苷及其合成相关物质含量的变化 315
果 树 学 报 第33卷
石榴(Punica granatum L.)属石榴科(Punicace⁃
ae)石榴属(Punica L.)落叶灌木或小乔木,原产伊
朗、阿富汗和高加索等中亚地区,也有专家认为中国
也是石榴原产地之一[1]。石榴是一种功能性水果,具
有抗氧化、预防心脑血管疾病、抗癌抗菌等诸多营养
价值与保健功能,发展前景广阔[2]。目前已从石榴中
分离鉴定出酚类物质、木脂素、类固醇和生物碱等
300余种植物化学物质[3],与其营养保健功能密切相
关。安石榴苷是石榴特有的酚类物质,含量高,在果
皮中含量约占总酚的 65.75%[4],果汁中含量约为
1 500~1 900 mg·L-1[5]。安石榴苷是已知分子量最大
的酚类物质,每个分子内有 16个酚式羟基,其他酚
类物质只有 3~4个,抗氧化性最强。安石榴苷使石
榴具有预防和治疗前列腺癌 [6]、脂肪肝 [7]和皮肤病 [8]
等多种保健功能,已在临床医学上广泛应用。
石榴叶片富含可溶性酚类物质,具有较强的保
健功能,加工成的系列石榴茶产品越来越受到消费
者喜爱。安石榴苷在石榴叶片保健中起哪种重要作
用、果实中安石榴苷代谢的机制及相关关系至今尚
不清楚。研究表明,安石榴苷生物合成与莽草
酸 [9-11]、3-脱氢莽草酸[9-11]、没食子酸[12]、五没食子酰葡
萄糖 [13-14]和鞣花酸 [14-15]密切相关。石榴果实中安
石榴苷、没食子酸和鞣花酸分离鉴定、含量测定
等 [4,16-17]方面的研究已有相关报道,但叶片中安石榴
苷与其合成相关物质的关系未见报道,叶片中安石
榴苷代谢方面的研究尚未进行深入探索。因此,本
研究以山东主栽石榴品种‘泰山红’为试材,研究其
叶片发育期安石榴苷与其合成相关物质含量的差异
及相关关系,为揭示石榴叶片和果实中安石榴苷代
谢的库源关系、石榴茶系列加工产品的研发奠定理
pentagalloylglucose and 3-dehydroshikimic acid was 3.14 mg·g-1 and 1.914 mg·g-1 in April 25th , respec⁃
tively. The change trend of ellagic acid was down up down up during leaf development, with peak
value in April 25th, June 14th and July 24th respectively, and the contents were 0.394 mg·g-1, 0.357 mg·g-1
and 0.622 mg·g- 1 respectively. The lowest content of ellagic acid was 0.132 mg·g- 1 in May 25th. The
change trend of total flavonoids was down up down with peak value 3.792 mg·g- 1 in April 25th and
2.552 mg·g-1 in June 24th, and was significant different from other development stages. The lowest content
of total flavonoids was 1.264 mg·g-1 in May 15th. Correlation analysis indicated that leaf length was signifi⁃
cant positive correlated with leaf width. Both leaf length and width was significant positive correlated with
3-dehydroshikimic acid, significant negative correlated with shikimic acid, gallic acid, punicalagin, antho⁃
cyanin, total flavonoids, total phenols and DPPH radical scavenging activity, respectively. Gallic acid was
significant positive correlated with shikimic acid, punicalagin, anthocyanin, total phenols and DPPH radi⁃
cal scavenging activity respectively, and significant negative correlated with pentagalloylglucose and 3-
dehydroshikimic acid. There was significant positive correlation between punicalagin and anthocyanin, to⁃
tal phenols, shikimic acid, DPPH radical scavenging activity, and significant negative correlation between
punicalagin and ellagic acid. Pentagalloylglucose had significant positive correlated with 3-dehydroshi⁃
kimic acid, and significant negative correlated with DPPH radical scavenging activity and shikimic acid.
The relationships beyween anthocyanin, total flavonoids, total phenols and DPPH radical scavenging activ⁃
ity were significant and positive. The correlation of shikimic acid and 3-dehydroshikimic acid were signifi⁃
cantly negative.【Conclusions】There were differences in the content and correlation relationship between
punicalagin and its synthetic related substance during leaf development. Shikimic acid and 3-dehydroshi⁃
kimic acid were closely related to the synthesis of gallic acid. The metabolism of gallic acid could produce
pentagalloylglucose. Pentagalloylglucose might be the precursor substance in the synthesis of punicalagin.
Ellagic acid was the degradation product of punicalagin. The contents of punicalagin, anthocyanin, total
flavonoids and total phenols were closely related to the antioxidant capacity of pomegranate leaf.
Key words: Pomegranate; Punicalagin; Gallic acid; Pentagalloylglucose; Ellagic acid
→ → →
→ →
316
,等:相关物质含量的变化第3期
论基础。
1 材料和方法
1.1 材料
试验于2014年4—10月在山东省果树研究所进
行。材料为山东主栽石榴品种‘泰山红’,定植于山
东省果树研究所万吉山试验基地石榴种质资源圃
内,该基地属温带大陆性半湿润季风气候区,年平均
降水量 697 mm,降水主要集中在 7—8月;土质为砂
壤土,微酸性,土层薄,土壤肥力一般。选取植株生
长健壮,长势一致的8 a生树10株,常规管理。
1.2 方法
4月25日叶片发芽时采样,每隔10 d采1次,直
至 7月 24日发育成功能叶时为止。每次选取 1 a生
枝上部 5~6节处、大小均匀、叶色一致、无伤病的叶
片,测定发育期叶片中酚类物质组分含量和DPPH
自由基清除率等生理指标,每个测定指标 3次重
复。集中于上午 9时左右采样,采后立即用冰壶带
回实验室。迅速将叶片擦拭干净,置于液氮中冷冻
处理后,-80 ℃超低温冰箱保存。
每次采样时,利用游标卡尺(精确度 0.1 mm)测
定叶片长度和宽度。叶片总类黄酮含量测定利用
AlCl3比色法[18]。花青苷测定利用比色法,称取 0.1 g
叶片,用1.5 mol·L-1HCl与95%乙醇比为15∶85(V/V)
混合液 10 mL,在黑暗条件下浸提 24 h,后用Ultro⁃
spec 2100 pro型紫外可见分光光度计(美国 GE公
司)检测535 nm波长的光密度值,参照胡位荣等[19]的
方法计算花青苷含量。
1.2.1 安石榴苷、没食子酸和鞣花酸测定 参考
Schieber等[20]的方法并改进,取1.0 g叶片加入10 mL
超纯水,用 l mol·L-1 NaOH调 pH至 7.0,加入 10 mL
乙酸乙酯,摇床上摇动 15 min,4 ℃ 5 000 r·min-1离
心15 min,分离出酯相和水相(上层为酯相),水相再
用上述方法萃取 2次,合并酯相,此为中性酚(安石
榴苷)。水相用6 mol·L-1 HCl调pH至2.0,再分别用
10 mL乙酸乙酯萃取3次,合并酯相,此为酸性酚(没
食子酸和鞣花酸)。将中性酚和酸性酚合并后真空
浓缩至干,残渣溶于4.0 mL的甲醇中,经0.22 μm微
孔过滤膜过滤后,放入-20 ℃冰箱中保存,用 Agi⁃
lent1260型HPLC测定。
标准品:安石榴苷标准品(P0023,美国Sigma公
司,纯度≥98%),鞣花酸标准品(E2250,美国 Sigma
公司,纯度≥98%),没食子酸标准品(27645,美国
Sigma公司,纯度≥99%)。色谱条件:色谱柱为Agi⁃
lent Zorbax XDB-C18(4.6 mm×150 mm,5 μm),柱温
30 ℃,流速为 0.8 mL·min-1,进样量 10 μL,波长 280
nm,流动相为乙腈与 2%冰乙酸水(V/V)溶液比为
20∶80,等度洗脱。
1.2.2 总酚含量测定 参考韩玲玲 [21]的方法,分别
取 1.2.1方法制备的样品提取液 0.1 mL定容至 10
mL,取 1.0 mL稀释样品转移到试管中,依次分别加
入1.0 mL蒸馏水、1.0 mL福林酚试剂,充分震荡后静
置 4 min,最后分别加入 2.0 mL 10% Na2CO3溶液摇
匀,30 ℃下恒温水浴1 h。以不加标准液的溶液为空
白对照,在 765 nm下测定吸光值,按照标准曲线方
程计算溶液中总酚含量。按照下列公式计算:
样品中总多酚含量/(mg·g-1)=(X1×V1×V2)/ W
X1:根据标准曲线算得样品浓度值(g·L-1);V1:
提取液稀释倍数;V2:提取液总体积(mL);W:原料
干质量(g)。
1.2.3 DPPH自由基清除率测定 参考韩玲玲[21]的
方法,分别取1.2.1方法制备的样品提取液0.1 mL定
容至 10 mL,利用稀释后的多酚溶液进行测定。取
相应的溶剂2.0 mL,再加入0.8 mmol·L-1 DPPH试剂
2.0 mL,强烈振荡后静置 30 min,以无水乙醇为空
白,于517 nm处测定反应液的吸光度值。按下式计
算清除率:
DPPH清除率/%=[l-(Ai-Aj)/Ao]×100
Ai:提取液与DPPH试剂混合液的吸光值;Aj:提
取液与无水乙醇混合液的吸光值;A0:DPPH试剂与
无水乙醇混合液的吸光值。
1.2.4 莽草酸和3-脱氢莽草酸测定 参考周浓等[22]
的方法并改进,称取叶片0.1 g,置具塞锥形瓶中,加
重蒸水 40 mL,超声处理(功率 200 W,频率 33 kHz)
90 min,过滤,定容至 50 mL,以 0.22 μm微孔滤膜过
滤,放入-20 ℃冰箱中保存,用于HPLC测定。
标准品:莽草酸标准品(S5375,美国 Sigma公
司,纯度≥98%),3-脱氢莽草酸标准品(05616,美国
Sigma公司,纯度≥98%)。色谱条件:色谱柱为Agi⁃
lent Zorbax XDB-C18(4.6 mm×150 mm,5 μm),流动
相为甲醇与 1%磷酸水溶液(V/V)比为 5∶95,等度洗
脱,柱温 30 ℃,流速 0.8 mL·min-1,进样量 10 μL,检
测波长214 nm。
1.2.5 五没食子酰葡萄糖测定 参考谢剑琳等[23]的
冯立娟,等:石榴叶片发育期安石榴苷及其合成相关物质含量的变化 317
果 树 学 报 第33卷
五没食子酰葡萄糖
Pentagalloylglucose
mAU1 4001 2001 0008006004002000
1 2 3 4 5 6 7 min


Vol
tage
/mA
U
莽草酸
Shikimic acid
3-脱氢莽草酸
3-dehydroshikimic acid
mAU
2 000
1 500
1 000
500
0 1 2 3 4 5 6 min


Vol
tage
/mA
U
没食子酸
Gallic acid α-安石榴苷α-punicalagin
β-安石榴苷
β-punicalagin
鞣花酸Ellagic acid
mAU
350
300
250
200
150
100
50
0
1 2 3 4 5 min


Vol
tage
/mA
U
方法并进行改进,称取叶片 0.5 g,置 100 mL锥形瓶
中,加甲醇 40 mL,超声(功率 300 W,频率 25 kHz)
处理 30 min,过滤,甲醇定容至 50 mL容量瓶中,
0.22 μm微孔滤膜过滤,用于HPLC测定。
标准品:五没食子酰葡萄糖标准品(G7548,美
国 Sigma公司,纯度≥96%)。色谱条件:色谱柱为
Agilent Zorbax XDB-C18(4.6 mm×150 mm,5 μm),流
动相为乙腈与0.5%磷酸溶液(V/V)比为20∶80,等度
洗脱,柱温 30 ℃,流速 0.8 mL·min-1,进样量 10 μL,
检测波长275 nm。
利用Microsoft Excel软件作图,SPSS13.0软件进
行相关数据分析。
2 结果与分析
2.1 HPLC标准品和样品的测定
在确定的色谱条件下,取 10 μL标准品混合液
进样分析,得到其标准溶液的HPLC分离色谱图(图
1)。没食子酸、α-安石榴苷、β-安石榴苷和鞣花酸
的保留时间分别为2.453、2.768、2.926、4.325 min,莽
草酸、3-脱氢莽草酸和五没食子酰葡萄糖的保留时
间分别为3.045、3.971和5.594 min,各标准品的分离
效果和峰形均较好。
分别配制不同梯度浓度的没食子酸、安石榴苷、
鞣花酸、莽草酸、3-脱氢莽草酸和五没食子酰葡萄
保留时间 Retention time/min
图1 标样HPLC色谱分析
Fig. 1 HPLC chromatogram of standard substance
318
,等:相关物质含量的变化第3期
0
1.2
2.4
3.6
4.8
6
7.2
8.4
9.6
10.8
4.25 5.5 5.15 5.25 6.4 6.14 6.24 7.4 7.14 7.24
日期 Date



L
e
a
f

l
e
n
g
t
h

/
c
m
0
0.6
1.2
1.8
2.4
3
3.6
4.2
4.8



L
e
a
f

w
i
d
t
h

/
c
m
叶宽Leaf width 叶长Leaf length
0
2
4
6
8
10
12
14
16
4.25 5.5 5.15 5.25 6.4 6.14 6.24 7.4 7.14 7.24
日期 Date
0
1
2
3
4
5
6
7
莽草酸Shikimic acid 3-脱氢莽草酸3-dehydroshikimic acid
注:*表示显著性差异在P<0.05水平,**表示极显著性差异在P<0.01水平,下同。
Note: *indicates significant difference at P<0.05,**indicates extremely significant difference at P<0.01,the same below.
图2 ‘泰山红’石榴发育期叶长和叶宽的变化
Fig. 2 Changes of leaf length and width of‘Taishanhong’pomegranate during leaf development
04-25 05-05 05-15 05-25 06-04 06-14 06-24 07-04 07-14 07-24
红’功能叶长度和宽度分别为10.20 cm和2.99 cm。
2.3 石榴叶片发育期莽草酸和 3-脱氢莽草酸含量
的变化
如图 3所示,‘泰山红’石榴发育期叶片中莽草
酸和 3-脱氢莽草酸呈现不同的变化趋势。叶片中
莽草酸含量随着发育时间的增加先降低后升高,在
4月25日和7月24日出现峰值,分别为3.388 mg·g-1
和1.599 mg·g-1,6月14日含量最低,为0.826 mg·g-1。
ω(


酸)
The
con
tent
ofs
hiki
mic
acid
/(m
g·g
-1 )
图3 ‘泰山红’石榴发育期叶片中莽草酸和3-脱氢莽草酸含量的变化
Fig. 3 Content changes of shikimic acid and 3-dehydroshikimic acid in‘Taishanhong’pomegranate during leaf development
ω(
3-脱



酸)
The
con
tent
of
3-d
ehy
dros
hiki
mic
acid
/(m
g·g
-1 )
0 -25 0 -05 0 -15 0 -25 0 -04 0 - 4 0 - 4 07-04 0 -14 07-24
日期 Date
** **
**
**
**
**
**
**
** **
*
* * **
糖标准品溶液,在已确定的色谱条件下进样,分别进
行高效液相色谱分析,以峰面积为纵坐标(Y),以质
量浓度为横坐标(X),绘制曲线进行线性回归,得到
各指标的回归方程和相关系数。没食子酸的标准曲
线为 Y=5.48×104X-3.5×103(R2=0.999 2),安石榴苷
(α+β)的标准曲线为 Y=2.87×104X-1.08×103(R2=
0.996 8),鞣花酸的标准曲线为 Y=1.05×104X-1.38×
103(R2=0.998 4)。莽草酸和 3-脱氢莽草酸的标准
曲线为 Y=5.89×104X-22.30(R2=0.998 2)和 Y=3.95×
104X-50.55(R2=0.998 8),五没食子酰葡萄糖的标准
曲线为Y=3.43×104X-95.66(R2=0.999 1)。
在确定的色谱条件下,分别取‘泰山红’叶片没
食子酸、安石榴苷、鞣花酸、莽草酸、3-脱氢莽草酸
和五没食子酰葡萄糖提取液 10 μL进样,得到叶片
各组分HPLC色谱图(未列出),将得到的色谱图与
图 1比较,根据保留时间确定叶片中上述组分的峰
面积。根据得到的标准曲线,计算各组分的含量。
2.2 石榴发育期叶片长度和宽度的变化
‘泰山红’石榴叶长和叶宽随着发育时间的增加
均呈逐渐升高的变化趋势(图 2)。4月 25日—5月
15日,叶长和叶宽增加幅度较大,与其他时期差异
极显著。5月 25日—6月 14日,叶长和叶宽变化幅
度较小,6月14日(发育期50 d左右)后,叶长和叶宽
增幅趋于平稳,逐渐发育成功能叶。7月24日‘泰山
6.0
Leaf lengthLeaf width
.0
3-dehydrosh kimic acidShikimic acid
冯立娟,等:石榴叶片发育期安石榴苷及其合成相关物质含量的变化 319
果 树 学 报 第33卷
0
0.4
0.8
1.2
1.6
2
2.4
2.8
3.2
3.6
4
4.25 5.5 5.15 5.25 6.4 6.14 6.24 7.4 7.14 7.24
日期Date






T
h
e

c
o
n
t
e
n
t

o
f
g
a
l
l
i
c

a
c
i
d
(
m
g
·
g
-
1
)
0
0.4
0.8
1.2
1.6
2
2.4





T
h
e

c
o
n
t
e
n
t

o
f
e
l
l
a
g
i
c

a
c
i
d
(
m
g
·
g
-
1
)
鞣花酸Elagic acid 没食子酸Galic acid
04-25 0 -05 05-15 0 -25 06-04 0 -14 0 -24 07-04 07- 4 07-
日期 Date
0
0.4
0.8
1.2
1.6
2
4.25 5.5 5.15 5.25 6.4 6.14 6.24 7.4 7.14 7.24
0
2
4
6
8安石榴苷Punicalagin 五没食子酰葡萄糖Pentagaloylglucose
04-25 05-05 0 -15 05- 06-04 06- 4 06-24 07-04 0 -14 07-24
日期 Date
ω(



苷)
The
con
tent
ofp
unic
alag
in/
(m
g·g
-1 )
ω(







糖)
The
con
tent
of
pen
taga
lloy
lglu
cose
/
(m
g·g
-1 )
图4 ‘泰山红’石榴发育期叶片中没食子酸、鞣花酸、安石榴苷和五没食子酰葡萄糖含量的变化
Fig. 4 Content changes of gallic acid, ellagic acid, punicalagin and pentagalloylglucose in
‘Taishanhong’pomegranate during leaf development
ω(



酸)
The
con
tent
ofg
allic
acid
/
(m
g·g
-1 )
ω(


酸)
The
con
tent
ofe
llag
ica
cid/
(m
g·g
-1 )
A
B
*
**
** **
* * * *
*
* * *
** ** **
** ****
****
叶片发育期 3-脱氢莽草酸含量呈先升高后降低的
变化趋势,在6月24日出现峰值,为6.442 mg·g-1,与
其他时期的含量的差异极显著。
2.4 石榴发育期叶片中没食子酸、鞣花酸、安石榴
苷和五没食子酰葡萄糖含量的变化
‘泰山红’石榴发育期叶片中没食子酸和鞣花酸
含量呈现不同的变化趋势(图4-A)。随着发育时间
的增加,叶片中没食子酸含量呈先降低后升高的变
化趋势,在4月25日和7月24日出现峰值,含量分别
为3.624 mg·g-1和1.657 mg·g-1,6月24日含量最低为
0.709 mg·g-1,与其他时期的含量差异均显著。叶片
发育期鞣花酸含量呈降→升→降→升的变化趋势,
在4月25日、6月14日和7月24日出现峰值,含量分
别为 0.394 mg·g-1、0.357 mg·g-1和 0.622 mg·g-1,5月
25日含量最低为0.132 mg·g-1。
‘泰山红’石榴叶片中安石榴苷含量随着发育
时间的增加逐渐降低,4 月 25 日含量最高为
0.553 mg·g-1,7月 24日含量最低为 0.167 mg·g-1,均
与其他时期的含量差异显著(图4-B)。叶片发育期
五没食子酰葡萄糖含量呈先升高后降低的变化趋
势,在6月24日出现峰值,为5.620 mg·g-1,与其他时
期的含量差异极显著。
2.5 石榴发育期叶片中花青苷、总黄酮、总酚含量
和DPPH自由基清除率的变化
‘泰山红’石榴叶片发育过程中花青苷和总黄酮
含量的变化趋势如图5-A所示。随着发育时间的增
加,叶片中花青苷含量呈逐渐降低的变化趋势。4
月 25日叶片发育初期时,‘泰山红’嫩叶呈红色,花
青苷含量最高为0.339 mg·g-1,与其他时期的含量差
异极显著。随着叶片发育,叶片颜色变为绿色,花青
苷含量逐渐降低,7月 24日最低为 0.161 mg·g-1,与
其他时期的含量差异极显著。‘泰山红’叶片发育过
程中总黄酮含量呈降→升→降的变化趋势,在 4月
25日和6月14日出现峰值,含量分别为3.792 mg·g-1
和2.552 mg·g-1,与其他时期的含量差异均极显著。
‘泰山红’石榴叶片中总酚含量和DPPH自由基
清除率随着发育时间的增加均呈先降低后升高的变
化趋势,均在4月25日和7月24日出现峰值,6月24
日最低(图 5-B)。4月 25日,叶片中总酚含量和
DPPH自由基清除率最高,分别为 171.238 mg·g-1和
91.033%,均与其他时期的含量差异极显著。6月24
日叶片中总酚含量和DPPH自由基清除率最低,分
别为38.039 mg·g-1和35.983%,DPPH自由基清除率
与其他时期的含量差异极显著,总酚含量差异不显
著。
2.6 相关性分析
‘泰山红’石榴叶片中各生理指标相关性分析如
表1所示,叶长与叶宽呈极显著正相关。叶长、叶宽
4.0
2.0
2.0
.0
320
,等:相关物质含量的变化第3期
0
1
2
3
4
5
6
4.25 5.5 5.15 5.25 6.4 6.14 6.24 7.4 7.14 7.24
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35总黄酮Total flavonoids 花青苷Anthocyanin
04-25 05-05 05-15 05-25 06-04 06-14 06-24 07-04 07-14 07-24
日期 Date
ω(


苷)
The
con
tent
oft
otal
anth
ocya
nin/(
mg·
g-1 )
ω(


酮)
The
con
tent
off
lavo
noid
s/
(m
g·g
-1 )
0
20
40
60
80
100
120
140
160
180
200
220
4.25 5.5 5.15 5.25 6.4 6.14 6.24 7.4 7.14 7.24
0
10
20
30
40
50
60
70
80
90
100
总酚Toltal phenols DPPH自由基清除率DPPH radical scavenging activity
ω(

酚)
The
con
tent
oft
otal
phe
nols
/(m
g·g
-1 )
DPP
H自





DPP
Hr
adic
als
cave
ngin
ga
ctiv
ity/%
04- 0 -05 0 -15 05- 06-04 06- 0 -24 07-0 07- 07-
日期 Date
图5 ‘泰山红’石榴发育期叶片中花青苷、总黄酮、总酚含量和DPPH自由基清除率的变化
Fig. 5 Content changes of anthocyanin, total flavonoids, total phenols and DPPH radical scavenging activity in‘Taishanhong’
pomegranate during leaf development
** **
****
**
******
**
**
** ** ** ** ***
******
**
**
A
B
冯立娟,等:石榴叶片发育期安石榴苷及其合成相关物质含量的变化
表1 ‘泰山红’石榴发育期叶片各生理指标相关性分析
Table 1 Correlation analysis of different physiological indices in‘Taishanhong’pomegranate during leaf development
指标Indices
叶长Leaf length
叶宽Leaf width
莽草酸Shikimic acid
3-脱氢莽草酸3-dehydroshikimicacid
没食子酸Gallic acid
鞣花酸Ellagic acid
安石榴苷Punicalagin
五没食子酰葡萄糖Pentagalloylglucose
花青苷Anthocyanin
总黄酮Total flavonoids
总酚Total phenols
DPPH自由基
清除率DPPH radicalscavenging activity
叶长Leaflength
1
0.991**
-0.864**
0.646*
-0.839**
0.162
-0.760*
0.562
-0.975**
-0.784**
-0.982**
-0.930**
叶宽Leafwidth
1
-0.884**
660*
-0.855**
0.198
-0.763*
0.575
-0.967**
-0.780**
-0.958**
-0.955**
莽草酸Shikimicacid
1
-0.794**
0.933**
-0.304
0.749*
-0.728*
0.878**
0.415
0.810**
0.961**
3-脱氢
莽草酸3-dehyd-roshikimicacid
1
-0.710*
-0.210
-0.274
0.967**
-0.586
-0.247
-0.635*
-0.760*
没食
子酸Gallicacid
1
-0.315
0.820**
-0.654*
0.867**
0.466
0.826**
0.949**
鞣花酸Ellagicacid
1
-0.701*
-0.297
-0.349
-0.006
-0.066
-0.281
安石
榴苷Puni-calagin
1
-0.174
0.868**
0.521
0.713*
0.792**
五没食子
酰葡萄糖Pentagall-oylglucose
1
-0.498
-0.144
-0.567
-0.680*
花青苷Anthoc-yanin
1
0.716*
0.946**
0.934**
总黄酮Totalflavon-oids
1
0.777**
0.615
总酚Totalphenols
1
0.885**
DPPH
自由基
清除率DPPHradicalscaven-gingactivity
1
321
果 树 学 报 第33卷
均与 3-脱氢莽草酸呈显著正相关,与没食子酸、花
青苷、总黄酮、总酚、DPPH自由基清除率、莽草酸呈
极显著负相关,与安石榴苷呈显著负相关。没食子
酸与安石榴苷、花青苷、总酚、DPPH自由基清除率、
莽草酸呈极显著正相关,与五没食子酰葡萄糖、3-
脱氢莽草酸呈显著负相关。鞣花酸与安石榴苷呈显
著负相关。安石榴苷与花青苷、DPPH自由基清除
率呈极显著正相关,与总酚、莽草酸呈显著正相关。
五没食子酰葡萄糖与 3-脱氢莽草酸呈极显著正相
关,与DPPH自由基清除率、莽草酸呈显著负相关。
花青苷与总酚、DPPH自由基清除率、莽草酸呈极显
著正相关,与总黄酮呈显著正相关。总黄酮与总酚
呈极显著正相关。总酚与DPPH自由基清除率呈极
显著正相关,与 3-脱氢莽草酸呈显著负相关。
DPPH自由基清除率与莽草酸呈极显著正相关。莽
草酸与3-脱氢莽草酸呈极显著负相关。
3 讨 论
没食子酸和鞣花酸是石榴中重要的酚类物质,
生物学效应广泛,与石榴保健功能密切相关。本研
究表明,随着发育时间的增加,‘泰山红’石榴叶片中
没食子酸含量先降低后升高,鞣花酸含量呈降→升
→降→升的变化趋势,而在果实发育过程中,‘泰山
红’石榴果皮、果汁和种子中没食子酸和鞣花酸含量
随果实发育均逐渐降低[21],这种差异可能与叶片和
果实发育机制不同有关。
五没食子酰葡萄糖是鞣花单宁合成的前体物
质 [24]。本研究中,叶片发育期安石榴苷含量逐渐降
低,五没食子酰葡萄糖含量先升高后降低,相关性分
析表明,安石榴苷与五没食子酰葡萄糖含量呈负相
关,但不显著,这说明五没食子酰葡萄糖有可能是安
石榴苷合成的前体物质,具体机制还有待于深入研
究。本研究中,没食子酸与安石榴苷含量呈极显著
正相关,与五没食子酰葡萄糖含量呈显著负相关,这
说明没食子酸是五没食子酰葡萄糖合成的前体物
质 [12]。鞣花酸与安石榴苷含量呈显著负相关,这与
鞣花酸是安石榴苷降解产物[15]的结论一致。
DPPH自由基与植物组织的抗氧化活性关系紧
密,能在一定程度上反映植物组织的总抗氧化能
力 [25]。本研究中,叶片发育期花青苷、总黄酮含量呈
现不同的变化趋势,总酚含量和DPPH自由基清除
率变化趋势一致,4者均为正相关关系,这说明花青
苷、总黄酮、总酚含量高低均与其抗氧化能力密切相
关。
莽草酸、3-脱氢莽草酸与没食子酸代谢密切相
关。本研究表明,叶片发育期莽草酸和3-脱氢莽草
酸含量呈现不同的变化趋势,莽草酸与没食子酸含
量变化趋势一致。相关性分析表明,没食子酸与莽
草酸、3-脱氢莽草酸含量均呈显著负相关,莽草酸
与3-脱氢莽草酸含量呈极显著负相关,这与莽草酸
代谢生成3-脱氢莽草酸,3-脱氢莽草酸代谢生成没
食子酸[10-11]的结论一致。
本研究中,‘泰山红’叶片中安石榴苷含量为
0.167~0.553mg·g-1,低于没食子酸(0.709~3.624mg·g-1)
和五没食子酰葡萄糖(3.14~5.62 mg·g-1),而在果皮
中安石榴苷含量高达524.865 9 mg·g-1[4],约是叶片中
的949.125倍。这说明,安石榴苷在石榴叶片中的含
量较低,不是叶片中主要的酚类物质,主要分布在果
实部位[3]。本研究中叶片发育期安石榴苷及其合成
相关物质含量的变化主要是营养生长期,生殖生长
期果实与叶片中安石榴苷及其合成相关物质含量的
变化差异及相关关系尚不清楚,因此有必要对此进
行深入研究,从而为揭示叶片和果实库源关系及科
学调控果实功能品质提供理论依据。
4 结 论
‘泰山红’石榴发育期叶片中安石榴苷及其合成
相关物质存在含量差异性和不同的相关性。莽草
酸、3-脱氢莽草酸与没食子酸合成密切相关,没食
子酸代谢生成五没食子酰葡萄糖,五没食子酰葡萄
糖可能是安石榴苷合成的前体物质,鞣花酸是安石
榴苷的降解产物。叶片中安石榴苷、花青苷、总黄
酮、总酚含量高低均与其抗氧化能力密切相关。
参考文献References:
[1] 曹尚银,侯乐峰 .中国果树志·石榴卷[M].北京:中国林业出版
社,2013.
CAO Shangyin,HOU Lefeng. Monograph of Chinese fruit trees ·
pomegranate volume[M]. Beijing:China Forestry Publishing,
2013.
[2] 冯立娟,尹燕雷,招雪晴,王长君 .石榴没食子酸代谢与保健功
能研究进展[J].果树学报,2014,31(4):710-716.
FENG Lijuan,YIN Yanlei,ZHAO Xueqing,WANG Changjun.
Research progress on metabolism and health function of gallic ac⁃
id in pomegranate[J]. Journal of Fruit Science,2014,31(4):710-
716.
[3] 苑兆和 .中国果树科学与实践石榴[M].杨凌:陕西出版传媒
322
,等:相关物质含量的变化第3期
集团,2015.
YUAN Zhaohe. Science and practice of Chinese fruits-pomegran⁃
ate[M]. Yangling:Shaanxi Publication Medium Group,2015.
[4] 李建科,李国秀,赵艳红,余朝舟 .石榴皮多酚组成分析及其抗
氧化活性[J].中国农业科学,2009,42(11):4035-4041.
LI Jianke,LI Guoxiu,ZHAO Yanhong,YU Chaozhou. Composi⁃
tion of pomegranate peel polyphenols and its antioxidant activities
[J]. Scientia Agricultura Sinica,2009,42(11):4035-4041.
[5] GIL M I,TOMAS-BARBERAN F A,HESS-PIERCE B,HOL⁃
CROFT D M,KADER A A. Antioxidant activity of pomegranate
juice and its relationship with phenolic composition and processing
[J]. Journal of Agricultural and Food Chemistry,2000,48(10):
4581-4589.
[6] CHRUBASIK- HAUSMANN S,VLACHOJANNIS C,ZIMMER⁃
MANN B. Pomegranate juice and prostate cancer:importance of
the characterisation of the active principle[J]. Phytotherapy Re⁃
search,2014,28(11):1676-1678.
[7] ZOU X,YAN C,SHI Y,CAO K,XU J,WANG X,CHEN C,LUO
C,LI Y,GAO J,PANG W,ZHAO J,ZHAO F,LI H,ZHENG A,
LONG J,SZETO I M Y,ZHAO Y,DONG Z,ZHANG P,WANG J,
LU W,ZHANG Y,LIU J,FENG Z. Mitochondrial dysfunction in
obesity-associated nonalcoholic fatty liver disease:the protective
effects of pomegranate with its active component punicalagin[J].
Antioxidants & Redox Signaling,2014,21(11):1557-1570.
[8] FOSS S R,NAKAMURA C V,UEDA-NAKAMURA T,CORTEZ
D A,ENDO E H,DIAS FILHO B P. Antifungal activity of pome⁃
granate peel extract and isolated compound punicalagin against
dermatophytes[J]. Annals of Clinical Microbiology and Antimicro⁃
bials,2014,13(1):32-37.
[9] MICHEL G,ROSZAK AW,SAUVE V,MACLEAN J,MATTE A,
COGGINS J R,CYGLER M,LAPTHORN A J. Structures of shiki⁃
mate dehydrogenase AroE and its paralog YdiB-a common struc⁃
tural framework for different activities[J]. Journal of Biological
Chemistry,2003,278(21):19463-19472.
[10] MUIR R M,IBANEZ A M,URATSU S L,INGHAM E S,LESLIE
C A,MCGRANAHAN G H,BATRA N,GOYAL S,JOSEPH J,
JEMMIS E D,DANDEKAR A M. Mechanism of gallic acid biosyn⁃
thesis in bacteria(Escherichia coli)and walnut(Juglans regia)[J].
Plant Molecular Biology,2011,75(6):555-565.
[11] OSSIPOV V,SALMINEN J P,OSSIPOVA S,HAUKIOJA E,PIH⁃
LAJA K. Gallic acid and hydrolysable tannins are formed in birch
leaves from an intermediate compound of the shikimate pathway
[J]. Biochemical Systematics and Ecology,2003,31(1):3-16.
[12] GRUNDHOFER P,NIEMETZ R,SCHILLING G,GROSS G G.
Biosynthesis and subcellular distribution of hydrolyzable tannins
[J]. Phytochemistry,2001,57(6):915-927.
[13] NIEMETZ R,GROSS G G. Oxidation of pentagalloylglucose to
the ellagitannin,tellimagrandin II,by a phenol oxidase from Telli⁃
ma grandiflora leaves[J]. Phytochemistry,2003,62(3):301-306.
[14] DEWICK P M. Medicinal natural products:a biosynthetic ap⁃
proach[M]. 3rd Edition. UK:JoneWiley&Sons,Ltd,2009:138-150.
[15] LARROSA M,TOMAS-BARBERAN F A,ESPIN J C. The di⁃
etary hydrolysable tannin punicalagin releases ellagic acid that in⁃
duces apoptosis in human colon adenocarcinoma Caco-2 cells by
using the mitochondrial pathway[J]. Journal of Nutritional Bio⁃
chemistry,2006,17(9):611-625.
[16] LU J J,DING K,YUAN Q P. Determination of punicalagin iso⁃
mers in pomegranate husk[J]. Chromatographia,2008,68(3/4):
303-306
[17] 罗玉琴,李洋,热依木古丽·阿布都拉,刘力,阿吉艾克拜尔·艾
萨 . RP-HPLC法同时测定石榴皮提取物阴道泡腾片中安石榴
苷和鞣花酸[J].中草药,2011,42(10):2011-2013.
LUO Yuqin,LI Yang,ABDULLA Rahimagul,LIU Li,AISA Haji⁃
akber. Determination of punicalagin and ellagic acid in vaginal ef⁃
fervescent tablets of Punica granatum peel extracts by RP-HPLC
[J]. Chinese Traditional and Herbal Drugs,2011,42(10):2011-
2013.
[18] 周建华,刘松艳,巩发永 .两种分光光度法测定苦荞中黄酮含
量的比较[J].江苏农业科学,2008(5):247-251.
ZHOU Jianhua,LIU Songyan,GONG Fayong. Comparison on the
content measurement of flavonoids in Fagopyrum tataricum with
two spectrophotometer method[J]. Jiangsu Agricultural Sciences,
2008(5):247-251.
[19] 胡位荣,张昭其,季作梁,刘顺枝 .酸处理对采后荔枝果皮色泽
与生理活性的影响[J].食品科学,2004,25(7):176-180.
HU Weirong,ZHANG Zhaoqi,JI Zuoliang,LIU Shunzhi. Study
on acid treatment effects on pericarp color and physiological char⁃
acteristics of litchi fruit[J]. Food Science,2004,25(7):176-180.
[20] SCHIEBER A,KELLER P,CARLE R. Determination of phenolic
acids and flavonoids of apple and pear by high-performance liq⁃
uid chromatography[J]. Journal of Chromatography A,2001,910
(2):265-273.
[21] 韩玲玲 .石榴果实发育过程中多酚组分及含量变化比较[D].泰
安:山东农业大学,2013.
HAN Lingling. Comparison of the polyphenols composition and
contents change during fruit development in pomegranate[D]. Tai’
an:Shandong Agricultural University,2013.
[22] 周浓,夏从龙,张海珠,张烨,刘光明 .高效液相色谱法测定华
山松中莽草酸的含量[J].大理学院学报,2010,9(2):14-15.
ZHOU Nong,XIA Conglong,ZHANG Haizhu,ZHANG Ye,LIU
Guangming. Determination of shikimie acid in Pinus armandi by
HPLC[J]. Journal of Dali University,2010,9(2):14-15.
[23] 谢剑琳,张振秋,梁朔,杨超,尤春雪,李妍 . HPLC波长切换法
同时测定大黄、牡丹皮药对提取物中11个成分的含量[J].药物
分析杂志,2013,33(1):103-107.
XIE Jianlin,ZHANG Zhenqiu,LIANG Shuo,YANG Chao,YOU
Chunxue,LI Yan. Simultaneous determination of the 11 contents
in the combination extracts of Rhei Radix et Rhizoma and Moutan
Cortex by HPLC wavelength switching method[J]. Chinese Journal
of Pharmaceutical Analysis,2013,33(1):103-107.
[24] HEMINGWAY R W,LAKS P E,BRANHAM S J. Plant polyphe⁃
nols:synthesis,properties and significance[M]. NewYork:Ple⁃
num Press,1992,59:43-60.
[25] KANG H M,SALTVEIT M E. Antioxidant capacity of lettuce leaf
tissue increases after wounding[J]. Journal of Agricultural and
Food Chemistry,2002,50(26):7536-7541.
冯立娟,等:石榴叶片发育期安石榴苷及其合成相关物质含量的变化 323