免费文献传递   相关文献

Influence of drought on leaf photosynthetic capacity and root growth of soybeans at grain filling stage.

干旱胁迫对大豆鼓粒期叶片光合能力和根系生长的影响


以晋大70(抗旱型)和晋豆26(敏感型)2个大豆品种为材料,采用盆栽方法,在鼓粒期设置充分供水、轻度干旱和重度干旱3种水分处理,研究了干旱胁迫对大豆鼓粒期叶片光合能力和根系生长的影响.结果表明: 随着干旱程度加剧,2个品种的叶面积、叶绿素含量、净光合速率、叶片气孔导度、蒸腾速率、胞间CO2浓度、株质量、株高、籽粒产量和收获指数均降低;根长和根质量在轻度干旱胁迫下增加,在重度干旱胁迫下减少;根冠比随干旱程度加剧而升高.重度干旱胁迫下,抗旱型品种晋大70根冠比的增幅达到135.7%,大于敏感型品种晋豆26根冠比的增幅(116.7%),晋大70的叶面积和叶绿素含量分别为对照的69.3%和85.5%,均优于晋豆26,晋大70的气孔导度和净光合速率分别下降了67.9%和77.9%,降幅均小于晋豆26,晋大70的收获指数的降幅为43.8%,小于晋豆26 (78.8%).不同干旱处理下,2个品种的叶面积、叶绿素含量、净光合速率、气孔导度、蒸腾速率、胞间CO2浓度两两之间均呈显著正相关;株质量、株高、根长、根质量、籽粒产量、收获指数两两之间均呈显著正相关;根冠比与根质量呈显著正相关,而与其他5个指标呈显著负相关.
 

A droughtresistant soybean cultivar Jinda 70 and a droughtsensitive soybean cultivar Jindou 26 were taken as test materials. At the grain filling stage, the cultivars were subject to three water treatments including sufficient water supply, light drought stress, and severe drought stress by using pot experiments for research on influence of drought on leaf photosynthetic capacity and root growth of soybeans. The results showed that as the degree of drought stress was aggravated, all of the indices including leaf area, chlorophyll content, net photosynthetic rates (Pn), stomatal conductance (gs), transpiration rate (Tr), intercellular CO2 concentration (Ci), plant mass, plant height, seed yield, and harvest index in the two cultivars declined. The root length and root mass increased under light drought stress, and decreased under severe drought stress. Rootshoot ratio ascended as the degree of drought stress was aggravated. Under severe drought stress, the increase of rootshoot ratio of the droughtresistant soybean cultivar Jinda 70 was up to 135.7%, which was higher than the that (116.7%) of the droughtsensitive soybean cultivar Jindou 26. Simultaneously, leaf area and chlorophyll content in Jinda 70 were respectively 69.3% and 85.5% of those in the control, which were better than those of Jindou 26. gs and Pn  of Jinda 70 respectively declined 67.9% and 77.9%, but still lower than those of Jindou 26. Therefore, the decline range of harvest index of Jinda 70 was 43.8%, which was lower than the range of 78.8% of Jindou 26. The Biplot revealed that under different dry treatments, there were significant positive correlations among the six indexes including leaf area, chlorophyll content, Pn, gs, Tr, and Ci of the two cultivars. There were also significant positive correlations among the six indices including plant mass, plant height, root length, root mass, seed yield, and harvest index. Rootshoot ratio only had significant positive correlation with root mass and had significant negative correlations with other five indices.


全 文 :干旱胁迫对大豆鼓粒期叶片光合能力和
根系生长的影响∗
郭数进1  杨凯敏1  霍  瑾1  周永航1  王燕平2  李贵全1∗∗
( 1山西农业大学农学院, 山西太谷 030801; 2黑龙江省农业科学院牡丹江分院, 黑龙江牡丹江 157041)
摘  要  以晋大 70(抗旱型)和晋豆 26(敏感型)2个大豆品种为材料,采用盆栽方法,在鼓粒
期设置充分供水、轻度干旱和重度干旱 3 种水分处理,研究了干旱胁迫对大豆鼓粒期叶片光
合能力和根系生长的影响.结果表明: 随着干旱程度加剧,2 个品种的叶面积、叶绿素含量、净
光合速率、叶片气孔导度、蒸腾速率、胞间 CO2浓度、株质量、株高、籽粒产量和收获指数均降
低;根长和根质量在轻度干旱胁迫下增加,在重度干旱胁迫下减少;根冠比随干旱程度加剧而
升高.重度干旱胁迫下,抗旱型品种晋大 70 根冠比的增幅达到 135.7%,大于敏感型品种晋豆
26根冠比的增幅(116.7%),晋大 70的叶面积和叶绿素含量分别为对照的 69.3%和 85.5%,均
优于晋豆 26,晋大 70的气孔导度和净光合速率分别下降了 67.9%和 77.9%,降幅均小于晋豆
26,晋大 70的收获指数的降幅为 43.8%,小于晋豆 26 (78.8%) .不同干旱处理下,2 个品种的
叶面积、叶绿素含量、净光合速率、气孔导度、蒸腾速率、胞间 CO2浓度两两之间均呈显著正相
关;株质量、株高、根长、根质量、籽粒产量、收获指数两两之间均呈显著正相关;根冠比与根质
量呈显著正相关,而与其他 5个指标呈显著负相关.
关键词  大豆; 鼓粒期; 干旱胁迫; 光合能力; 根系生长
∗山西省科技攻关项目(20120311005⁃3)、山西省农业科技成果转化资金项目和山西农业大学科技创新基金项目(育种基金)(2006057)资助.
∗∗通讯作者. E⁃mail: li⁃gui⁃quan@ 126.com
2014⁃11⁃03收稿,2015⁃03⁃08接受.
文章编号  1001-9332(2015)05-1419-07  中图分类号  S332.4, S565.1  文献标识码  A
Influence of drought on leaf photosynthetic capacity and root growth of soybeans at grain
filling stage. GUO Shu⁃jin1, YANG Kai⁃min1, HUO Jin1, ZHOU Yong⁃hang1, WANG Yan⁃ping2,
LI Gui⁃quan1 ( 1College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, Chi⁃
na; 2Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157041,
Heilongjiang, China) . ⁃Chin. J. Appl. Ecol., 2015, 26(5): 1419-1425.
Abstract: A drought⁃resistant soybean cultivar Jinda 70 and a drought⁃sensitive soybean cultivar
Jindou 26 were taken as test materials. At the grain filling stage, the cultivars were subject to three
water treatments including sufficient water supply, light drought stress, and severe drought stress by
using pot experiments for research on influence of drought on leaf photosynthetic capacity and root
growth of soybeans. The results showed that as the degree of drought stress was aggravated, all of
the indices including leaf area, chlorophyll content, net photosynthetic rates (Pn), stomatal con⁃
ductance (gs), transpiration rate (Tr), intercellular CO2 concentration (C i), plant mass, plant
height, seed yield, and harvest index in the two cultivars declined. The root length and root mass
increased under light drought stress, and decreased under severe drought stress. Root⁃shoot ratio
ascended as the degree of drought stress was aggravated. Under severe drought stress, the increase
of root⁃shoot ratio of the drought⁃resistant soybean cultivar Jinda 70 was up to 135.7%, which was
higher than the that (116.7%) of the drought⁃sensitive soybean cultivar Jindou 26. Simultaneously,
leaf area and chlorophyll content in Jinda 70 were respectively 69.3% and 85.5% of those in the
control, which were better than those of Jindou 26. gs and Pn of Jinda 70 respectively declined
67.9% and 77.9%, but still lower than those of Jindou 26. Therefore, the decline range of harvest
index of Jinda 70 was 43.8%, which was lower than the range of 78.8% of Jindou 26. The Biplot re⁃
vealed that under different dry treatments, there were significant positive correlations among the six
应 用 生 态 学 报  2015年 5月  第 26卷  第 5期                                                         
Chinese Journal of Applied Ecology, May 2015, 26(5): 1419-1425
indexes including leaf area, chlorophyll content, Pn, gs, Tr, and C i of the two cultivars. There
were also significant positive correlations among the six indices including plant mass, plant height,
root length, root mass, seed yield, and harvest index. Root⁃shoot ratio only had significant positive
correlation with root mass and had significant negative correlations with other five indices.
Key words: soybean; grain filling stage; drought stress; photosynthetic capacity; root growth.
    大豆(Glycine max)富含优质的植物性蛋白、不
饱和脂肪酸,且不含胆固醇,是一种重要的粮、油、饲
兼用作物和工业原料[1] .大豆对水分极其敏感,干旱
是制约大豆生长发育的主要生态因子[2-3] .水分亏缺
是一种常见现象,大豆在生育期各阶段都有可能受
到干旱胁迫[4],而鼓粒期干旱对大豆的影响尤为
明显[5] .我国干旱半干旱地区占全国土地面积的
52􀆰 5%,其中半干旱地区占 21.7%,是我国旱地农业
的主要实施区域,这一区域中大豆在鼓粒期极易遭
受干旱的危害[4] .研究干旱胁迫对大豆鼓粒期叶片
光合能力和根系生长的影响,有助于明确大豆对特
定生育阶段干旱的反应方式,也可揭示大豆根系与
叶片对干旱胁迫的协同应答机制,对丰富大豆抗旱
指标体系、筛选抗旱种质、选育抗旱品种具有重要
意义.
干旱胁迫下,作物会启动多种生理、代谢机制以
应对水分亏缺[6-9] .庞艳梅[10]研究表明,干旱胁迫
下,大豆叶片生长受到抑制,叶面积减小,叶片变小,
叶绿素含量下降;Ghosh 等[11]研究表明,气孔关闭
是叶片对土壤水分亏缺最初始的反应,继而影响了
其他光合指标,导致叶片的光合能力降低;王磊
等[12]研究发现,干旱胁迫下大豆叶片在气孔导度下
降的同时,净光合速率会急剧下降;Fenta 等[13]认
为,根是感知土壤干旱并对其做出反应的第一个器
官;因此,叶片形态、光合能力在干旱胁迫下发生变
化,正是由于接受了来自根系的信号[11];干旱条件
下,较长的根系有利于作物向更深的土壤寻求水分,
从而更好地适应干旱胁迫[14-16] .然而,这些研究未
将大豆叶片研究与根系研究相结合,也少有报道涉
及鼓粒期干旱胁迫下大豆叶片与根系对干旱的协同
应答及产量性状的变化.因此,本文采用盆栽试验,
在大豆鼓粒期设置 3 种不同干旱处理,研究不同抗
旱型大豆品种叶片、根系对不同程度干旱胁迫的应
答,并分析鼓粒期干旱条件下,根系生长与叶片光合
能力及产量的关系,以及各指标间的相关性,为鉴
定、筛选抗旱种质和大豆抗旱生态育种提供科学
依据.
1  材料与方法
1􀆰 1  供试材料与试验设计
本试验选取山西农业大学大豆育种室选育的大
豆品种晋大 70(国审豆 2003006,抗旱型)和晋豆 26
(晋审豆 S355,敏感型)为材料,于 2012 和 2013 年
在山西农业大学农学院温室内进行盆栽试验.土壤
取自农学院试验田,田间最大持水量(FC)为 25%,
有机质含量 65.3 g·kg-1,速效氮 70.3 mg·kg-1,速
效磷 48.9 mg·kg-1,速效钾 266.6 mg·kg-1 .土壤晾
晒后,用 5 mm筛分选.所用容器为口径 20 cm、深 50
cm的正圆柱形无纺布定制桶,每桶装土 9.6 kg 左
右.选择饱满、整齐籽粒,用 0.1‰高锰酸钾溶液消毒
5 min,用蒸馏水洗净,经蒸馏水浸种 24 h,挑选出芽
度相同的种子播种,播深 3 ~ 5 cm ,每穴 2 粒,每桶
6 穴,出苗后 24 d[四节期(V4 期)] [17]进行间苗,每
桶定苗 3株.栽培管理依常规方法[4]进行.
用称量法进行控水试验,从鼓粒期(R6 期) [17]
开始控水处理,设置 3个处理:1)充分供水,作为对
照(CK),土壤含水量保持在田间持水量( FC)的
85%左右;2)轻度干旱(LD),土壤含水量保持在 FC
的 70%左右;3)重度干旱(SD),土壤含水量保持在
FC的 40%左右.每处理 3次重复,2个试验材料共计
18桶,所有数据均取 2年的平均值.
95%以上豆荚转为成熟颜色后 [完熟期 ( R8
期)] [17],收获桶内全部植株.从子叶节处将地上部
剪下,测量株高;将茎秆、荚皮和籽粒分装,105 ℃下
杀青 20 min,80 ℃下烘干至恒量,称量籽粒产量及
地上部分干物质量.将根系分离后清洗,测量根长,
并于 105 ℃下杀青 20 min,80 ℃下烘干称量.
1􀆰 2  测定项目与方法
1􀆰 2􀆰 1叶面积测定  测定主茎第 6 节着生叶片的面
积,取平均值.叶面积=叶长×叶宽×校正系数(K).其
中,卵圆形叶 K为 0.6899,披针形叶 K为 0.7013[18] .
1􀆰 2􀆰 2叶绿素含量   叶绿素含量以 SPAD502 叶绿
素含量测定仪测定.
1􀆰 2􀆰 3光合指标测定  用 CI⁃340超轻型便携式光合
系统于 R6期[17]测定净光合速率(Pn)、叶片气孔导
0241 应  用  生  态  学  报                                      26卷
度(gs)、蒸腾速率(Tr)、胞间 CO2浓度(C i).于晴天
9:00—17:00进行测定,以自然日光为光源,每 2 h
一次,连续测定 3 个晴天,每指标重复 3 次,取 3 d
的平均值.
1􀆰 2􀆰 4产量性状测定  分别测定不同处理下各品种
的株质量、株高和籽粒产量[19-20] .
1􀆰 2􀆰 5收获指数  收获指数(HI)=籽粒产量 / (茎秆
干物质量+荚皮干物质量+籽粒产量)
1􀆰 2􀆰 6株质量和根冠比   株质量 =地上部分干质
量+根干质量;根冠比=根干质量 /地上部分干质量.
1􀆰 3  数据处理
采用 SPSS 16.0 软件进行数据统计分析,将原
始数据进行开平方转化,利用 Explore分析原始数据
与转化数据的正态性,若符合正态性利用单因素方
差分析法(one⁃way ANOVA)进行显著性分析,运用
Tukey 检验进行不同干旱处理间的差异性比较,若
原始数据与转化后的数据均不符合正态性,则进行
Kruskal⁃Wallis非参数法检验.显著性水平设为 α =
0􀆰 05.采用 GGE biplot 软件[21]作 GGE 双标图,分析
不同干旱处理下品种各性状之间的关系.
2  结果与分析
2􀆰 1  干旱胁迫对叶面积和叶绿素含量的影响
由表 1可以看出,在轻度干旱胁迫下,2 个大豆
品种叶面积下降,晋大 70 叶面积为对照的 91.2%,
晋豆 26叶面积为对照的 87.4%.各品种叶面积随干
旱程度增加而逐渐减小.在重度干旱胁迫下,2 个品
种叶面积均降至最小,晋大 70 叶面积为对照的
69􀆰 3%,但与对照差异不显著,晋豆 26 的叶面积则
显著低于对照,为对照的 59.7%.干旱胁迫下,晋豆
26叶面积的下降幅度均明显大于抗旱型品种晋大
70.可见,晋大 70 在干旱处理下均保持了较大的叶
面积.
干旱胁迫下,2 个大豆品种的叶绿素含量均呈
下降趋势,且随干旱胁迫程度加剧而递减.轻度干旱
胁迫下,晋大 70 叶绿素含量为对照的 95.3%,晋豆
26叶绿素含量为对照的 94.3%.在重度干旱胁迫下,
晋大 70叶绿素含量为对照的 85.5%,晋豆 26 叶绿
素含量为对照的 85.4%.各干旱处理间的差异不显
著,这与鼓粒期叶绿素的稳定性有关[22-24] .抗旱型
品种晋大 70在轻度干旱和重度干旱胁迫下叶绿素
含量均略高于敏感型品种晋豆 26.
2􀆰 2  干旱胁迫对光合指标的影响
由表 2可以看出,在轻度干旱胁迫下,2 个大豆
品种的净光合速率显著低于对照,晋大 70 下降
68􀆰 5%,晋豆 26下降 66.7%;在重度干旱胁迫下,净
光合速率值均降到最低,晋大 70 下降 77.9%,晋豆
26下降 91.1%,均显著低于对照.2 个品种的叶片气
孔导度值在轻度干旱胁迫时下降,晋大 70 下降
65􀆰 4%,晋豆 26下降 77.8%;在重度干旱胁迫下,气
孔导度值降到最低,晋大 70下降 67.9%,晋豆 26 下
降 90.3%.各品种的蒸腾速率和胞间 CO2浓度均随
干旱胁迫程度的加剧而显著降低.可见,2 个大豆品
种的 4个光合指标值全部受到干旱胁迫的显著影
响,抗旱型品种晋大 70各指标值的降幅均小于敏感
型品种晋豆 26.
表 1  不同干旱处理下大豆叶面积和叶绿素含量
Table 1   Leaf areas and chlorophyll contents of soybeans
under different drought treatments
品种
Cultivar
处理
Treatment
叶面积
Leaf area
(cm2)
叶绿素含量
Chlorophyll
content
晋大 70 CK 11.51±1.48a 42.43±12.73a
Jinda 70 LD 10.50±0.22a 40.43±3.40a
SD 7.98±1.86a 36.27±3.98a
晋豆 26 CK 15.01±1.68b 42.40±0.61a
Jindou 26 LD 13.12±2.53b 39.97±4.26a
SD 8.96±2.35a 36.20±6.38a
CK: 对照 Control; LD: 轻度干旱胁迫 Light drought stress; SD: 重度
干旱胁迫 Severe drought stress. 不同小写字母表示同一品种不同干旱
处理间差异显著(P<0.05) Different small letters indicated significant
difference among different drought treatments in the same cultivar at 0.05
level. 下同 The same below.
表 2  不同干旱处理下大豆光合指标
Table 2  Photosynthetic indexes of soybeans under different drought treatments
品种
Cultivar
处理
Treatment
净光合速率
Pn (μmol·m-2·s-1)
气孔导度
gs (mmol·m-2·s-1)
蒸腾速率
Tr (mmol·m-2·s-1)
胞间 CO2浓度
Ci (μmol·mol-1)
晋大 70 CK 10.63±2.19b 91.81±20.87a 1.58±0.14b 411.33±27.66a
Jinda 70 LD 3.35±0.52a 31.75±5.28a 0.67±0.18a 212.17±82.02a
SD 2.35±0.33a 29.50±8.38a 0.48±0.05a 202.73±10.66a
晋豆 26 CK 6.15±1.23b 36.82±14.59a 0.91±0.13a 693.93±238.57b
Jindou 26 LD 2.05±1.28ab 8.16±0.81b 0.15±0.01b 461.47±125.56a
SD 0.55±0.27a 3.57±0.34c 0.10±0.01b 340.97±5.63a
12415期                      郭数进等: 干旱胁迫对大豆鼓粒期叶片光合能力和根系生长的影响           
表 3  不同干旱处理下大豆产量性状和根系生长指标
Table 3  Yield traits and root growth indices of soybeans under different drought treatments
品种
Cultivar
处理
Treatment
株质量
Plant mass
(g)
株高
Plant height
(cm)
根长
Root length
(cm)
根质量
Root mass
(g)
籽粒产量
Seed yield
(g)
根冠比
Root / shoot
收获指数
Harvest
index
晋大 70 CK 6.06±0.94b 31.67±2.60b 25.33±5.36a 0.85±0.06a 1.89±0.22c 0.14±0.03a 0.32±0.05a
Jinda 70 LD 4.99±0.56b 29.87±1.68b 32.63±0.52a 1.66±0.62b 1.05±0.01b 0.32±0.10a 0.22±0.03a
SD 1.85±0.60a 19.20±1.91a 14.50±1.89a 0.60±0.18a 0.32±0.10a 0.33±0.13a 0.18±0.02a
晋豆 26 CK 6.66±0.62b 37.43±1.37a 25.17±1.59b 0.87±0.20ab 1.33±0.25c 0.18±0.04a 0.33±0.10a
Jindou 26 LD 5.72±0.98b 33.37±0.83a 29.00±2.31b 1.68±0.39b 0.45±0.35b 0.34±0.12a 0.25±0.07a
SD 1.46±0.34a 32.83±3.77a 14.83±0.44a 0.60±0.07a 0.44±0.12a 0.39±0.10a 0.07±0.01a
2􀆰 3  干旱胁迫对产量性状和根系生长的影响
由表 3可以看出,轻度干旱胁迫下,2 个品种的
株质量下降均不显著,而重度干旱胁迫下,2 个品种
的株质量均显著低于对照.重度干旱胁迫下,晋大 70
株高显著低于对照,降低 39.4%,而晋豆 26 在各干
旱胁迫下株高下降均不显著.
在轻度干旱胁迫下,晋大 70的根长和根质量分
别比对照增加 28.8%和 95.3%,但差异均不显著,晋
豆 26的根长和根质量分别比对照显著增加 15.2%
和 93.1%;而在重度干旱胁迫下,晋豆 26 的根长和
根质量分别显著低于对照 41.1%和 31.0%,晋大 70
的根长、根质量分别低于对照 42.8%和 29.4%,但差
异不显著,这表明干旱对敏感型品种晋豆 26 根长、
根质量的影响显著高于抗旱型品种晋大 70.轻度和
重度干旱胁迫下,晋大 70 籽粒产量分别显著降低
44.4%和 83. 1%,晋豆 26 籽粒产量分别显著降低
66􀆰 2%和 66.9%,表明干旱胁迫对 2 个品种的干物
质积累及产量形成都产生了影响.各干旱胁迫处理
对 2个大豆品种根冠比和收获指数的影响均不显
著,但根冠比随胁迫程度加剧而逐渐增加,收获指数
则逐渐递减.
表 2和表 3表明,抗旱型品种晋大 70在重度干
旱胁迫下,根冠比增幅达到 135.7%,大于敏感型晋
豆 26 根冠比的增幅(116.7%),其气孔导度和净光
合速率降幅分别为 67.9%和 77.9%,而晋豆 26 气孔
导度和净光合速率降幅分别高达 90.3%和 91.1%,
因此,晋大 70的光合作用受干旱影响较小,其收获
指数的降幅为 43.8%,小于晋豆 26收获指数的降幅
(78.8%);晋大 70 的株质量降低 69.5%,小于晋豆
26株质量的降幅(78.1%).
2􀆰 4  干旱胁迫下各性状之间的相关性
由图 1 和图 2 可以看出,将坐标原点与每个指
标点连接,此连线即可作为指标向量, 从某一指标
向量开始, 顺时针旋转, 其他任一指标向量与此指
标向量夹角的余弦值即表示这 2 个指标的相关系
数,当 2个指标间夹角<90°时,夹角越小,正相关性
越显著;当 2个指标间夹角>90°时,夹角越大,负相
关性越显著[25] .
应用 GGE双标图,综合分析发现:3 种干旱处
理下晋大 70和晋豆 26的叶面积(LA)、叶绿素含量
( CC)、净光合速率(Pn)、气孔导度(gs)、蒸腾速率
图 1  不同大豆品种叶面积、叶绿素含量及光合指标间的相
关性
Fig.1   Correlations among leaf area, chlorophyll content and
photosynthetic indices of leaves of the soybean cultivars.
a) 晋大 70 Jinda 70; b) 晋豆 26 Jindou 26. 下同 The same below. LA:
叶面积 Leaf area; CC:叶绿素含量 Chlorophyll content; Pn:净光合速
率 Net photosynthetic rate; gs: 气孔导度 Stomatal conductance; Tr: 蒸
腾速率 Transpiration rate; Ci: 胞间 CO2浓度 Intercellular CO2 concen⁃
tration.
2241 应  用  生  态  学  报                                      26卷
图 2  不同大豆品种根系生长指标与产量性状间的相关性
Fig.2  Correlations among root growth indices and yield traits of
leaves of the soybean cultivars.
PM: 株质量 Plant mass; PH: 株高 Plant height; RL: 根长 Root
length; RM: 根质量 Root mass; SY: 籽粒产量 Seed yield; RSR: 根冠
比 Root⁃shoot ratio; HI: 收获指数 Harvest index.
(Tr)、胞间 CO2浓度(C i)6 个指标两两间的夹角均
<90°,表明 2个大豆品种的 6 个指标间均呈显著正
相关.不同品种各指标间的相关程度不同,晋大 70
的 3组相关性较大的指标分别为:叶面积与叶绿素
含量、蒸腾速率与净光合速率、胞间 CO2浓度与气孔
导度;而晋豆 26 中 3 组相关性较大的指标分别为:
叶面积与叶绿素含量、胞间 CO2浓度与净光合速率、
气孔导度与蒸腾速率.
晋大 70和晋豆 26的株质量(PM)、株高(PH)、
根长(RL)、根质量(RM)、籽粒产量(SY)、收获指数
(HI)6个指标两两间的夹角均<90°,表示这些指标
间均呈显著正相关.2 个品种中,根冠比(RSR)均只
与根质量(RM)的夹角略<90°,呈显著正相关,而与
其他 5个指标间的夹角均>90°,呈显著负相关.2 个
品种各指标间的相关程度不同,晋大 70中 3组相关
性较大的指标分别为:收获指数与籽粒产量、株质量
与株高、根长与根质量;晋豆 26 中 3 组相关性较大
的指标分别为:籽粒产量与株高、收获指数与株质
量、根长与根质量.
不同性状间的相关分析表明,大豆对不同程度
干旱胁迫的应答表现在叶片延展、叶绿素含量、气孔
导度、根系生长、干物质积累和产量形成等方面.这
些性状间存在显著的相关性,可以作为抗旱生态育
种中亲本选配、后代筛选和优化的综合评价指标.
3  讨    论
鼓粒期是大豆产量形成的关键时期,此时干旱
会导致籽粒变小,百粒重下降,最终造成减产[4] .大
豆品种通过根系与叶片对鼓粒期干旱胁迫进行协同
应答,从而在叶片形态和光合能力、根系形态及产量
形成等多个方面表现出变化,综合形成了品种特有
的抗旱性.本研究中,2 个大豆品种的叶面积在 2 个
干旱胁迫处理下均低于对照,这一现象表明 2 个品
种对干旱胁迫产生了适应性[26] .干旱对敏感型品种
晋豆 26的叶面积影响显著,而对抗旱型品种晋大
70不显著(表 1).2个大豆品种的叶面积、叶绿素含
量均随干旱胁迫程度加剧而逐渐降低(表 1),且叶
面积与叶绿素含量呈显著正相关(图 1),这与庞艳
梅[10]对干旱导致大豆叶面积与叶绿素含量同时下
降的研究结论一致.抗旱型品种晋大 70 在轻度干旱
和重度干旱胁迫下均保持了较高的叶面积和叶绿素
含量(表 1).这主要是由于其叶片能适当调节水势,
有利于水分吸收、细胞分化和体积扩展,同时保持了
较高的叶绿素合成酶活性,叶绿素合成受干旱影响
较小[22] .本研究中, 2个大豆品种的 Pn和 gs下降,C i
也下降(表 2),且 C i与其他光合指标均呈显著正相
关(图 1),表明在 2种干旱胁迫下,气孔都是制约大
豆叶片光合作用的主要因子[27],这与丁红等[28]对
影响作物光合作用因子的研究结论一致.C i值的下
降,是由于干旱胁迫诱导气孔关闭[29],而气孔关闭
则会抑制 CO2向叶片内的扩散,继而减少了叶片内
细胞间 CO2扩散量[30] .本研究也表明,不同程度干旱
胁迫下,2 个大豆品种的净光合速率均随气孔关闭
而显著降低(表 2),这可能是由于核酮糖⁃1,5⁃二磷
酸羧化酶 /加氧酶的活性受到抑制所致[22] .
大豆叶面积、叶绿素含量和光合能力的变化是
叶片与根系对干旱胁迫协同应答的结果,良好的根
系生长对叶片适应干旱有重要的作用[31] .本研究表
明,2 个大豆品种在轻度干旱胁迫下根长和根质量
均高于对照(表 3),作物在干旱胁迫下会尽可能增
加根生物量以保证细胞吸水量,同时减少地上部分
生长[32],因此 2个品种的株质量与株高均低于对照
(表 3).本研究中,随着干旱胁迫程度加剧,在重度
32415期                      郭数进等: 干旱胁迫对大豆鼓粒期叶片光合能力和根系生长的影响           
干旱胁迫下 2个品种的株质量与株高降低,而根长
与根质量也低于对照(表 3),这是因为相比于轻度
水分亏缺,严重干旱会导致干物质合成受阻,直接影
响作物根系及地上部分的形态建成[33] .2 个品种的
根冠比随着干旱胁迫程度的加剧均逐渐增大(表
3).根冠比的变化是由于干旱对地上部分生长的影
响大于对根系生长的影响[34],GGE双标图(图 2)直
观体现出这种关系,即根冠比仅与根质量略呈正相
关,而与其他指标均呈显著负相关.
干旱胁迫下根系的生长与叶片光合能力有密切
关系,抗旱型品种晋大 70 在不同程度干旱胁迫下,
根冠比增幅均大于敏感型品种晋豆 26,其根系生长
也均优于晋豆 26(表 3), 因此其叶片气孔导度和净
光合速率降低程度均整体低于晋豆 26(表 2).晋大
70在根系生长、叶片光合能力上表现出这种优势的
原因可能是:干旱胁迫下虽然根系向叶片传导的水
压变小,导致叶片气孔导度降低、细胞水分利用能力
下降、光合能力减弱[35],但是抗旱型品种能保持较
高的根冠比和较强的根系吸水能力,从而将叶片光
合能力维持在相对较高的水平.本研究中,由于晋大
70保持了较高的净光合速率,其干物质积累受干旱
影响较小,所以尽管 2 个品种的籽粒产量均随胁迫
程度加剧而显著下降,但晋大 70收获指数的降幅小
于晋豆 26(表 3);其株质量的降幅也小于晋豆 26
(表 3),这与 Serraj等[36]的研究结果基本相同.
综上所述,在鼓粒期水分亏缺时,大豆根系与叶
片会对不同程度的干旱胁迫表现出协同应答:轻度
干旱时大豆的根长和根质量增加,重度干旱时根长
和根质量降低,而根冠比始终呈增加趋势;根系通过
对干旱的反应,将信号传导到叶片,造成叶片气孔导
度、净光合速率和其他光合指标值下降,导致光合能
力降低、干物质积累受阻.根系与叶片对干旱的这种
协同应答表现在产量性状上,株质量、株高、籽粒产
量和收获指数下降.在同等干旱条件下,抗旱型品种
具有较高的根冠比、根系吸水能力和叶片光合速率,
所以能保持较高的干物质积累水平,因此收获指数
降幅较小,有利于在干旱胁迫下保持稳产.根系与叶
片对干旱的协同应答能力,是大豆抗旱性与稳产性
的重要表现,在大豆抗旱生态育种中,应结合根系信
号转导[37]和分子生物学技术,从生理机制、代谢过
程、基因表达等不同水平[38],综合鉴定这种应答能
力,以丰富抗旱指标体系,选育抗旱、稳产的品种.
参考文献
[1]  Goli M, Pande M, Bellaloui N. Effects of chelating
agents on protein, oil, fatty acids, and minerals in
soybean seed. Agricultural Sciences, 2012, 3: 517-523
[2]   Arumingtyas E, Savitri E, Purwoningrahayu R, et al.
Protein profiles and dehydrin accumulation in some soy⁃
bean varieties (Glycine max L. Merr) in drought stress
conditions. American Journal of Plant Sciences, 2014,
5: 1889-1906
[3]  Thao N, Tran L. Potentials toward genetic engineering of
drought⁃tolerant soybean. Critical Reviews in Biotechnolo⁃
gy, 2012, 32: 349-362
[4]  Lin H⁃M (林汉明), Chang R⁃Z (常汝镇), Shao G⁃H
(邵桂花), et al. Research on Tolerance to Stress in
Chinese Soybean. Beijing: China Agriculture Press,
2009 (in Chinese)
[5]  Getachew M. Influence of soil water deficit and phos⁃
phorus application on phosphorus uptake and yield of
soybean (Glycine max L.) at Dejen, North⁃West Ethio⁃
pia. American Journal of Plant Sciences, 2014, 5:
1889-1906
[6]   Nishiyama R, Watanabe Y, Leyva⁃Gonzalez M, et al.
Arabidopsis AHP2, AHP3, and AHP5 histidine phos⁃
photransfer proteins function as redundant negative regu⁃
lators of drought stress response. Proceedings of the Na⁃
tional Academy of Sciences of the United States of Ameri⁃
ca, 2013, 110: 4840-4845
[7]  Manavalan LP, Guttikonda SK, Nguyen VT, et al.
Evaluation of diverse soybean germplasm for root growth
and architecture. Plant and Soil, 2010, 330: 503-514
[8]   Trachsel S, Kaeppler SM, Brown KM, et al. Shovelo⁃
mics: High throughput phenotyping of maize root archi⁃
tecture in the field. Plant and Soil, 2011, 341: 75-87
[9]  Suji KK, Prince K, Mankhar PS, et al. Evaluation of
rice near iso⁃genic lines with root QTLs for plant produc⁃
tion and root traits in rainfed target populations of envi⁃
ronment. Field Crops Research, 2012, 137: 89-96
[10]  Pang Y⁃M (庞艳梅). Effect of Water Stress on Growth
and Development, Physiological Characteristics and Nu⁃
trient Distribution of Soybean. PhD Thesis. Beijing: Chi⁃
nese Academy of Agricultural Sciences, 2008 ( in Chi⁃
nese)
[11]  Ghosh A, Ishijiki K, Toyota M, et al. Water potential,
stomatal dimension and leaf gas exchange in soybean
plants under long⁃term moisture deficit. Japanese Journal
of Tropic Agriculture, 2000, 44: 30-37
[12]  Wang L (王  磊), Zhang T (张  彤), Ding S⁃Y (丁
圣彦). Effect of drought and rewatering on photosynthet⁃
ic physioecological characteristics of soybean. Acta Eco⁃
logica Sinica (生态学报), 2007, 26(7): 2073-2078
(in Chinese)
[13]  Fenta B, Beebe S, Kunert K, et al. Field phenotyping
of soybean roots for drought stress tolerance. Agronomy,
2014, 4: 418-435
[14]  Gowda VR, Henry A, Yamauchi A, et al. Root biology
and genetic improvement for drought avoidance in rice.
Field Crops Research, 2011, 122: 1-13
[15]   Abd Allah A, Shimaa A, Zayed B, et al. The role of
root system traits in the drought tolerance of rice (Oryza
4241 应  用  生  态  学  报                                      26卷
sativa L.). International Journal of Agricultural Sci⁃
ences, 2010, 1: 83-87
[16]  Manavalan LP, Guttikonda SK, Tran LSP, et al. Physi⁃
ological and molecular approaches to improve drought re⁃
sistance in soybean. Plant and Cell Physiology, 2009,
50: 1260-1276
[17]  Fehr WR, Caviness CE. Stages of Soybean Development.
Iowa State University Cooperative Extension Service Spe⁃
cial Report, Ames, IW, 1977: 80
[18]  Su Z⁃S (苏正淑). Experimental Guide of Research on
Physiology of Crops. Shenyang: Crops ’ Cultivation
Laboratory in Shenyang Agronomy College, 1984 ( in
Chinese)
[19]  Board JE, Kang MS, Bodrero ML. Yield components as
indirect selection criteria for late⁃planted soybean culti⁃
vars. Agronomy Journal, 2003, 95: 420-429
[20]   Zhao J (赵   晶). Genetic Analysis to Yield Related
Traits in Jinda 52×Jinda 57 Cross Offspring Population.
Master Thesis. Taigu: Shanxi Agricultural University,
2009 (in Chinese)
[21]  Yan WK. GGEbiplot: A windows application for graph⁃
ical analysis of multienvironment trial data and other
types of two⁃way data. Agronomy Journal, 2001, 93:
1111-1118
[22]  Rahbarian R, Khavari⁃Nejad R, Ganjeal A, et al.
Drought stress effect on photosynthesis, chlorophyll fluo⁃
rescence and water relations in tolerance and susceptible
chickpea (Cicer arietinum L.) genotypes. Acta Biologica
Cracoviensia Series Botanica, 2011, 53: 47-56
[23]  Cerezini P, Pípolo A, Hungria M, et al. Gas exchanges
and biological nitrogen fixation in soybean under water
restriction. American Journal of Plant Sciences, 2014,
5: 4011-4017
[24]  Bunnag S, Pongthai P. Selection of rice (Oryza sativa
L.) cultivars tolerant to drought stress at the vegetative
stage under field conditions. American Journal of Plant
Science, 2013, 4: 1701-1708
[25]  Yan W, Rajcan I. Biplot analysis of test sites and trait
relations of soybean in Ontario. Crop Science, 2002, 42:
11-20
[26]  Blum A. Drought resistance, water⁃use efficiency, and
yield potential: Are they compatible, dissonant, or
mutually exclusive? Australian Journal of Agricultural
Research, 2005, 56: 1159-1168
[27]  Han YF, Lu XS, Li J. Photosynthetic properties of dif⁃
ferent drought resistant chicory strains and their response
to drought stress. Journal of Animal and Veterinary
Advances, 2012, 11: 3898-3907
[28]   Ding H (丁   红), Dai L⁃X (戴良香), Song W⁃W
(宋文武), et al. Effects of different growth stage irriga⁃
tions on small⁃grain peanut leaf photosynthetic character⁃
istics. Chinese Journal of Eco⁃Agriculture (中国生态农
业学报), 2012, 20(9): 1149-1157 (in Chinese)
[29]  Flexas J, Bota J, Galmes J, et al. Keepping a positive
carbon balance under adverse conditions: Responses of
photosynthesis and respiration to water stress. Physiolo⁃
gia Plantarum, 2006, 127: 343-352
[30]   Cornic G. Drought stress inhibits photosynthesis by de⁃
creasing stomata aperture not by affecting ATP synthesis.
Trends in Plant Science, 2000, 5: 187-188
[31]  Lopes MS, Araus JL, van Heerden PDR, et al. Enhan⁃
cing drought tolerance in C4 crops. Journal of Experimen⁃
tal Botany, 2011, 62: 3135-3153
[32]  Arumingtyas EL, Widoretno W, Indriyani S. Somaclonal
variations of soybeans (Glycine max L. Merr) stimulated
by drought stress based on random amplified polymor⁃
phic DNAs (RAPDs). American Journal of Molecular
Biology, 2012, 2: 85-91
[33]   Alizadeh O, Parsaeimehr A. A study on the inoculated
root of Sorghum vulgare by mycorrhiza under the water
stress condition. ELBA Bioflux, 2011, 3: 83-88
[34]  Benjamin JG, Nielsen DC, Vigil MF, et al. Water deficit
stress effects on corn (Zea mays L.) root: shoot ratio.
Open Journal of Soil Science, 2014, 4: 151-160
[35]  Bhargava S, Sawant K. Drought stress adaptation: Meta⁃
bolic adjustment and regulation of gene expression. Plant
Breeding, 2013, 132: 21-32
[36]  Serraj R, McNally KL, Slamet⁃Loedin I, et al. Drought
resistance improvement in rice: An integrated genetic
and resource management strategy. Plant Production
Science, 2011, 14: 1-14
[37]  Yang S⁃J (杨慎骄), Xu B⁃C (徐炳成), Fang Y (方
燕), et al. Comparison of non⁃hydraulic root⁃sourced
signaling and grain yield satiability under drought stress
in two soybean [Glycine max ( L.) Merr. ] cultivars.
Scientia Agricultura Sinica (中国农业科学), 2010, 43
(3): 480-488 (in Chinese)
[38]  Thao N, Thu N, Hoang X, et al. Differential expression
analysis of a subset of drought⁃responsive GmNAC genes
in two soybean cultivars differing in drought tolerance.
International Journal of Molecular Sciences, 2013, 14:
23828-23841
作者简介  郭数进,男,1979年生,博士. 主要从事大豆抗旱
生态育种研究. E⁃mail: williamletter@ 163.com
责任编辑  孙  菊
52415期                      郭数进等: 干旱胁迫对大豆鼓粒期叶片光合能力和根系生长的影响