Five-year-old ‘Fuji’3/M26/M. hupehensis Rehd. seedlings were treated by 15N tracer to study the effects of fertilization depth (0, 20 and 40 cm) on 15Nurea absorption, distribution, utilization and loss in soil. The results showed that the plant leaf area, chlorophyll content and total N of apple leaves in 20 cm treatment were obviously higher than 0 cm and 40 cm treatments. The 15N derived from fertilizer (Ndff) in different organs of apple plant under different depths were significantly different, and the Ndff was the highest in roots at the fullbloom stage, and then in perennial branches. During the shoot rapidgrowing and flower bud differentiation stage, the Ndff of new organs higher than that of the storage organs, and the Ndff of different organs were high level at fruit rapidexpanding stage, and the Ndff of fruit was the highest. The distribution ratio of 15N at fruit maturity stage was significantly different under fertilization depths, and that of the vegetative and reproductive organs of 20 cm treatment were obviously higher than 0 cm and 40 cm treatments, but that of the storage organs of 20 cm treatment was lower than 0 cm and 40 cm treatments. At fruit maturity stage, 15N utilization rate of apple plant of 20 cm treatment was 24.0%, which was obviously higher than 0 cm (14.1%) and 40 cm (7.6%) treatments, and 15N loss rate was 54.0%, which was obviously lower than 0 cm (67.8%) and 40 cm (63.5%) treatments. With the increase of fertilization depths, the N residue in soil increased sharply.
全 文 :施肥深度对矮化苹果15N⁃尿素吸收、
利用及损失的影响∗
丁 宁1 陈 倩2 许海港1 季萌萌1 姜 翰1 姜远茂1∗∗
( 1山东农业大学园艺科学与工程学院 /作物生物学国家重点实验室, 山东泰安 271018; 2青州市果树站, 山东青州 262500)
摘 要 以 5年生烟富 3 / M26 /平邑甜茶为试材,采用15N同位素示踪技术,研究表层(0 cm)、
上层(20 cm)和中层(40 cm)3个施肥深度对矮化苹果15N⁃尿素吸收、分配及利用特性的影响.
结果表明: 20 cm施肥处理的叶面积、叶绿素含量和叶片全氮含量显著高于 0 和 40 cm 施肥
处理.不同施肥处理各器官从肥料中吸收分配到的15N量对该器官全氮量的贡献率(Ndff)存在
显著差异,盛花期均以根的 Ndff 最高,多年生枝次之;新梢旺长期和花芽分化期根部吸收的
15N优先向新生营养器官转运;果实膨大期各器官 Ndff均达到较高水平;果实成熟期均以果实
中的 Ndff最高.果实成熟期不同施肥处理的15N分配率存在显著差异,20 cm 施肥处理生殖器
官和营养器官的15N分配率显著高于 0和 40 cm施肥处理,而贮藏器官的15N分配率显著低于
0和 40 cm施肥处理.在果实成熟期,20 cm施肥处理15N肥料利用率为 24.0%,显著高于 0 cm
(14.1%)和 40 cm施肥处理(7.6%),而15N损失率为 54.0%,显著低于 0 cm(67.8%)和 40 cm
施肥处理(63.5%) .不同施肥深度土壤15N残留量随施肥深度的增加而显著增加.
关键词 苹果; 施肥深度; 15N⁃尿素; 吸收; 分配; 利用; 损失
文章编号 1001-9332(2015)03-0755-06 中图分类号 S156.6, S661.1 文献标识码 A
Effect of fertilization depth on15N⁃urea absorption, utilization and loss in dwarf apple trees.
DING Ning1, CHEN Qian2, XU Hai⁃gang1, JI Meng⁃meng1, JIANG Han1, JIANG Yuan⁃mao1
( 1College of Horticulture Science and Engineering, Shandong Agricultural University / State Key Labo⁃
ratory of Crop Biology, Tai’an 271018, Shandong, China; 2Qingzhou City Fruit Stand, Qingzhou
262500, Shandong, China) . ⁃Chin. J. Appl. Ecol., 2015, 26(3): 755-760.
Abstract: Five⁃year⁃old ‘Fuji’3 / M26 / M. hupehensis Rehd. seedlings were treated by 15N tracer to
study the effects of fertilization depth (0, 20 and 40 cm) on 15N⁃urea absorption, distribution, uti⁃
lization and loss in soil. The results showed that the plant leaf area, chlorophyll content and total N
of apple leaves in 20 cm treatment were obviously higher than 0 cm and 40 cm treatments. The 15N
derived from fertilizer (Ndff) in different organs of apple plant under different depths were signifi⁃
cantly different, and the Ndff was the highest in roots at the full⁃bloom stage, and then in perennial
branches. During the shoot rapid⁃growing and flower bud differentiation stage, the Ndff of new or⁃
gans higher than that of the storage organs, and the Ndff of different organs were high level at fruit
rapid⁃expanding stage, and the Ndff of fruit was the highest. The distribution ratio of 15N at fruit ma⁃
turity stage was significantly different under fertilization depths, and that of the vegetative and repro⁃
ductive organs of 20 cm treatment were obviously higher than 0 cm and 40 cm treatments, but that
of the storage organs of 20 cm treatment was lower than 0 cm and 40 cm treatments. At fruit maturity
stage, 15N utilization rate of apple plant of 20 cm treatment was 24.0%, which was obviously higher
than 0 cm (14.1%) and 40 cm (7.6%) treatments, and 15N loss rate was 54.0%, which was obvi⁃
ously lower than 0 cm (67.8%) and 40 cm (63.5%) treatments. With the increase of fertilization
depths, the N residue in soil increased sharply.
Key words: apple; fertilization depth; 15N⁃urea; absorption; distribution; utilization; loss.
∗现代农业产业技术体系建设专项(CARS⁃28)和公益性行业(农业)科研专项(201103003)资助.
∗∗通讯作者. E⁃mail: ymjiang@ sdau.edu.cn
2014⁃03⁃21收稿,2015⁃01⁃04接受.
应 用 生 态 学 报 2015年 3月 第 26卷 第 3期
Chinese Journal of Applied Ecology, Mar. 2015, 26(3): 755-760
我国苹果栽培面积和产量居世界首位,苹果产
业已经成为生产区农民增收致富的重要经济来源.
近 30多年来,世界苹果栽培制度发生了深刻的变
化,苹果矮砧密植已经成为世界苹果栽培发展的方
向[1-3] .我国目前果园多为乔化栽植,这种栽培方式
由于树冠大、技术复杂、成花难、结果后树冠郁闭、管
理成本高等问题已经不能适应现代苹果产业的发
展[4] .因此,苹果矮砧密植栽培已成为我国果树研究
者和生产者的共识[5-6] .矮化砧木是实现苹果矮化栽
培的最主要途径,矮化中间砧是目前最主要的利用
方式,具有早果性强、产量高、生长势强、抗逆性强等
优点,其中 M26 中间砧的应用范围最广,占矮化苹
果总面积的 70%[7] .
我国的苹果园主要分布在山地、丘陵等土壤贫
瘠地带,有机质含量低[8],主要靠施用化肥满足果
树对矿质营养的需求.根系是吸收矿质元素的主要
器官,根系的分布深度通过影响地下营养空间和土
壤营养及水分的利用而直接影响产量的高低.研究
发现,乔砧果树根系 70%以上集中在 40 cm 土层
内[9-10],而矮化中间砧苹果矮化程度越高,根系越集
中分布在土壤上层[11],因此不同苹果砧木根系在土
壤中的集中分布层及对养分的吸收利用有明显差
异.氮作为苹果生长发育必需的大量矿质元素[12],
不仅能提高叶片的光合速率,还能促进花芽分化、提
高坐果率,增加产量[13-15],但同时施用的过量氮素
通过氨挥发、硝化 /反硝化、淋溶和径流等方式从土
壤⁃作物系统中损失,造成河流、湖泊等周边水体环
境的富营养化程度加剧[16] .
前人已经对玉米[17-18]、乔化果树[19-20]等生态
系统进行了不同深度施肥、氮素累积等的研究,而关
于不同深度施肥对矮化果树氮素的吸收利用、土壤
残留及淋失动态研究还未见报道.因此,本试验利
用15N 示踪技术,研究了不同土层深度施肥对烟富
3 / M26 /平邑甜茶15N⁃尿素吸收、利用及损失的影响,
以期确定矮化富士苹果最适施肥深度,为优化矮化
果园氮素管理提供科学依据.
1 材料与方法
1 1 试验材料与试验设计
试验在山东省烟台市莱山镇官庄村果园进行.
试材为垄栽 5年生烟富 3 / M26 /平邑甜茶苹果,株行
距为 1 m×4 m.试验地土壤有机碳 7.8g·kg-1、硝态
氮 25 1mg·kg-1、铵态氮 56. 3 mg·kg-1、速效磷
34 1 mg·kg-1、速效钾 221.3 mg·kg-1;0 ~ 20、20 ~
40、40~60、60~80、80~100 cm土层容重分别为 1.1、
1.3、1.4、1 4、1 4 g·cm-3 .
选取生长势基本一致,无病虫害的植株 9 株.于
2013年 3月 27日进行施肥处理,分表层(0 cm)、上
层(20 cm)、中层(40 cm)3 个处理,每个处理 3 株.
施肥方法:距植株中心干 30 cm 处挖深和宽均为
20 cm左右的环状沟,在沟内每株均匀施15 N⁃尿素
(上海化工研究院生产,丰度 10.1%)10 g,同时施入
普通尿素 150 g、硫酸钾 280 g、磷酸氢二铵 260 g,施
肥后每株立即浇水 4 L.分别于盛花期(4 月 25 日)、
新梢旺长期(6 月 15 日)、花芽分化期(7 月 20)、果
实膨大期(8月 25日)进行局部取样分析,并在果实
成熟期(10 月 10 日)对整株植株进行破坏性取样.
同时在果实成熟期进行土层取样,在单株所占面积
内均匀布设 12 个采样点,避开施肥沟,以 20 cm 为
一个土层取样,取至 100 cm,随后将每层 12 个土样
均匀混合,按四分法取样.
1 2 测定方法与计算公式
1 2 1叶片叶面积、叶绿素测定方法 于 2013 年 10
月 10日(果实成熟期),在树体上均匀采 20 片叶
片,测定各处理植株的叶面积(YMJ⁃B 叶面积仪,
Konica Minolta,Japan)和叶绿素含量(SPAD⁃502 叶
绿素计,Konica Minolta,Japan).
1 2 2 植株样品测定方法 局部取样分为果实
(花)、叶片、一年生枝、多年生枝和根,整株样品分
为果实(花)、叶片、一年生枝、多年生枝、中心干和
根.样品按清水、洗涤剂、清水、1%盐酸、3 次去离子
水顺序冲洗后,在 105 ℃下杀青 30 min,随后在 80
℃下烘干至恒量,电磨粉碎后过 60 目筛,混匀后装
袋备用.土样取回后自然风干、研磨、过筛、装袋
待测.
样品全氮用凯氏定氮法测定[21],土壤容重采用
环刀法测定,15N丰度用 ZHT⁃03(北京分析仪器厂)
质谱计测定.
Ndff =(植物样品中15N 丰度-15N 自然丰度) /
(肥料中15N丰度-15N自然丰度)×100%
氮肥分配率=各器官从氮肥中吸收的氮量(g) /
总吸收氮量(g)×100%
氮肥利用率= [Ndff×器官全氮量( g)] /施肥量
(g)×100%
氮肥残留率=(Ndff×土层厚度×土壤容重×土层
全氮量) /施肥量(g)×100%
土壤氮肥损失率 = 100%-氮肥利用率-氮肥残
留率
657 应 用 生 态 学 报 26卷
1 3 数据处理
应用 Microsoft Excel 2003软件对数据进行处理
和绘图,应用 DPS 7.05 软件进行数据的统计分析
(单因素方差分析),差异显著性检验用 LSD 法,显
著性水平 α= 0.05.
2 结果与分析
2 1 不同施肥深度对果实成熟期叶片叶面积、叶绿
素和全氮的影响
由表 1可知,在果实成熟期,不同施肥深度的叶
片叶面积、叶绿素和全氮均以 20 cm 最大,0 cm 次
之,40 cm最小,且差异均达显著水平.表明 20 cm施
肥处理能显著提高叶片的全氮,从而提高叶绿素含
量,增强后期光合作用,进而延缓叶片衰老.
2 2 不同施肥深度对苹果各器官 Ndff的影响
Ndff指植株器官从肥料中吸收分配到的15N 量
对该器官全氮量的贡献率,反映了植株器官对肥
料15N的吸收征调能力[22] .由表 2 可知,在盛花期,
不同施肥深度均以根的 Ndff 最高,其次为多年生枝
等贮藏器官,而花、叶片等地上部新生器官 Ndff 均
较低,表明盛花期贮藏器官对15N 的吸收征调能力
较强,根系吸收的氮素首先向贮藏器官中转运,然后
才向地上部新生器官中转移,此期枝条、叶片、花等
新生器官建造所需的氮素营养主要来源于上一年的
贮藏.与盛花期相比,新梢旺长期和花芽分化期,地
上部新生器官 Ndff 增长明显,表明此期吸收的15N
主要分配供给新生器官进行形态建成.果实膨大期,
表 1 不同施肥深度对果实成熟期叶片叶面积、叶绿素和全
氮的影响
Table 1 Effects of different fertilization depths on leaf
area, chlorophyll and total N of apple leaves at fruit matu⁃
rity stage (n=3)
施肥深度
Fertilizer depth
(cm)
叶面积
Leaf area
(mm2)
叶绿素
Chlorophyll
(SPAD)
全氮
Total N
(g)
0 22.8b 53.7b 10.2b
20 26.0a 59.2a 15.5a
40 20.5c 49.6c 7.8c
同列不同小写字母表示处理间差异显著(P<0.05) Different small let⁃
ters in the same column meant significant difference among treatments at
0.05 level. 下同 The same below.
叶片、1年生枝、多年生枝、根等各器官 Ndff 均达到
较高水平.果实成熟期,果实的 Ndff 最高,其次是 1
年生枝、叶片、根、多年生枝,中心干的 Ndff 最小,表
明春季土施15N 尿素,到果实采收期果实为生长中
心,对15N的吸收征调能力最强.
3个施肥深度各测定时期各器官的 Ndff 均以
20 cm最高,显著高于 0 和 40 cm 处理,且 40 cm 施
肥处理最低.表明 20 cm 施肥处理苹果植株各器官
对肥料15N的吸收征调能力强于 0 和 40 cm 施肥处
理,有利于发挥肥效,满足树体各时期对养分的
需求.
2 3 不同施肥深度对果实成熟期苹果各器
官15N分配率的影响
各器官中15N 占全株15N 总量的百分率反映了
肥料氮在树体内的分布及在各器官中的迁移规
律[23] .由图1可知,在果实成熟期,各器官的15N分
表 2 不同施肥深度下苹果植株各器官的 Ndff
Table 2 Ndff in different organs of apple plant under different fertilization depths (%)
生育期
Growth period
施肥深度
Fertilization depth
(cm)
器官 Organ
果(花)
Fruit ( flower)
叶片
Leaf
1年生枝
Annual shoot
多年生枝
Perennial branches
中心干
Trunk
根
Root
盛花期 0 0.1b 0.1b - 0.1b - 0.5b
Full⁃bloom stage 20 0.1a 0.1a - 0.1a - 1.0a
40 0.0c 0.0c - 0.1c - 0.2c
新梢旺长期 0 0.2b 0.3b 0.4b 0.2b - 0.6b
New shoot growing 20 0.3a 0.4a 0.6a 0.2a - 1.2a
stage 40 0.1c 0.3c 0.3c 0.1c - 0.3c
花芽分化期 0 0.8b 1.0b 1.3b 0.4b - 0.8b
Flower bud 20 1.0a 1.4a 1.7a 0.5a - 1.3a
differentiation stage 40 0.6c 0.9c 1.0c 0.3c - 0.4c
果实膨大期 0 1.2b 1.6b 1.6b 0.5b - 1.2b
Fruit rapid⁃swelling 20 1.9a 2.2a 2.4a 0.9a - 1.8a
stage 40 0.8c 1.1c 1.2c 0.4c - 0.7c
果实成熟期 0 1.8b 1.0b 1.1b 0.5b 0.5b 0.8b
Fruit maturity 20 2.4a 1.5a 1.5a 0.9a 0.8a 1.2a
stage 40 1.2c 0.7c 0.8c 0.3c 0.3c 0.6c
7573期 丁 宁等: 施肥深度对矮化苹果15N⁃尿素吸收、利用及损失的影响
图 1 不同施肥深度下果实成熟期苹果各器官的15N分配率
Fig.1 Partition ratio of 15N in different organs of apple at fruit
maturity stage under different fertilization depths.
A: 生殖器官 Reproductive organ; B: 营养器官 Vegetative organ; C:
贮藏器官 Storage organ. 不同小写字母表示处理间差异显著 ( P <
0 05) Different small letters meant significant difference among treat⁃
ments at 0.05 level.
配率分布趋势大体一致,均以贮藏器官(多年生枝、
中心干、根)最大,营养器官(1 年生枝、叶片)次之,
生殖器官(果实)最小.3 个施肥深度中,20 cm 施肥
处理生殖器官和营养器官的15N 分配率显著高于 0
和 40 cm施肥处理,而生殖器官的15N分配率显著低
于 0和 40 cm施肥处理.
2 4 不同施肥深度对果实成熟期苹果植株15N 利
用率的影响
由表 3可知,3 个施肥处理间苹果植株的总氮
量 、吸收15 N量及15 N肥料利用率存在显著差异 ,
表 3 不同施肥深度对果实成熟期苹果植株15N利用率的影响
Table 3 Effects of different fertilization depths on 15N utili⁃
zation rate of apple plant at fruit maturity stage
施肥深度
Fertilizatin
depth
(cm)
植株总氮
Total N of
plant
(g)
吸收15N量
15N absorbed
(g)
15N肥利用率
15N⁃urea
utilization rate
(%)
0 70.7b 0.7b 14.1b
20 79.0a 1.1a 24.0a
40 61.0c 0.4c 7.6c
20 cm施肥处理显著高于 0和 40 cm施肥处理,而且
20 cm施肥处理15N 利用率分别是 0 和 40 cm 施肥
处理的 1.7和 3.2倍.
2 5 不同施肥深度对果实成熟期土壤15N 残留、损
失的影响
由表 4可知,不同施肥深度土壤15N 残留量差
异显著,0 cm施肥处理土壤15N残留量最少(1.9 g),
20 cm处理(2.1 g)次之,40 cm处理(2.8 g)最大.说
明随着施肥深度增加,土壤15N 残留量显著增大.而
且 0和 20 cm施肥处理土壤15N 残留量基本累积在
0~60 cm土层中,表明绝大部分未被吸收利用的氮
素集中于 0 ~ 60 cm 土层,向深层淋溶损失较小;40
cm施肥处理土壤15N残留量主要累积在 40~100 cm
土层,向深层淋溶损失较大.不同施肥深度土壤15N
损失率存在差异显著,表现为 0 cm(67 8%)>40 cm
(63.5%)>20 cm(54.0%).
表 4 不同施肥深度对土壤15N残留及损失的影响
Table 4 Effects of different fertilization depths on 15N residue and loss in soil
施肥深度
Fertilization
depth (cm)
不同土层15N残留量
15N amount of residue in different soil depths (g)
0~20 cm 20~40 cm 40~60 cm 60~80 cm 80~100 cm
15N总残留量
15N amount of
residue (g)
15N残留率
15N residual
rate (%)
15N损失率
15N loss rate
(%)
0 0.6a 0.7b 0.4c 0.1c 0.1c 1.9c 17.2c 67.8a
20 0.3b 1.1a 0.7b 0.2b 0.1b 2.1b 22.0b 54.0c
40 0.1c 0.6b 1.1a 0.8a 0.3a 2.8a 28.9a 63.5b
3 讨 论
氮素是植物叶绿素的重要组成部分,合理增施
氮肥可改善叶片质量,从而增强植株光合作
用[24-25] .孙权等[26]研究表明,施肥深度 40 cm 处理
能显著增加葡萄叶片氮含量;沈玉芳等[27]研究表
明,施肥深度 0 ~ 90 cm 处理可显著提高小麦叶面
积、株高和地上部生物量.本试验中,20 cm施肥处理
植株的叶面积、叶绿素和叶片全氮含量显著高于 0
和 40 cm处理,说明上层区域为 M26 矮化苹果根系
密集层,根系对氮肥的吸收能力最强,运输到地上部
的氮素最多,向叶片中的分配增加,进而提高了植株
的光合作用.这与段文学等[28]研究施氮深度对旱地
小麦耗水特性和干物质积累与分配的影响结果
一致.
本试验利用15N示踪结果表明,20 cm施肥处理
的15N利用率最高(23.7%),分别为 0 cm(14.1%)和
40 cm(7.6%)施肥处理的 1.7和 3.2倍.这是因为 20
cm施肥处理根的 Ndff 均显著高于 0 和 40 cm 施肥
处理,增强了根系对氮的吸收能力;并且 20 cm施肥
处理其他器官的 Ndff也显著高于 0和 40 cm施肥处
理,表明上层施肥处理增强了器官对氮的吸收征调
能力,满足了不同生育期器官发育对养分的需求.不
同作物体系最佳施肥深度结果存在差异,说明不同
857 应 用 生 态 学 报 26卷
作物根系在土壤中集中分布的层次不同.李红波
等[20]研究表明,嘎啦苹果 0、20 和 40 cm 施肥处理
15N利用率分别为 20.2%、26.4%和 13.7%.对比本试
验结果可以看出, M26 中间砧富士苹果 0 cm
(14 1%)和 40 cm(7.6%)施肥处理氮肥利用率显著
低于嘎啦苹果,说明 M26矮砧苹果根系分布较浅且
主要分布在上层区域.这也与陈登文等[29]的研究结
论一致(矮化栽培富士根群密集区分布于 20~40 cm
土层中,占总根量的 70%以上).因此,进行 M26 矮
砧苹果栽培,施肥深度位置在上层区域(20 cm)最
适宜.
施肥对果树的影响不仅与养分吸收量有关,也
与其在各器官的分配有关.从本试验结果来看,在果
实成熟期,3个土层深度施肥处理15N 在各器官的分
配趋势基本一致,但上层施肥处理植株生殖器官和
营养器官的分配率显著高于表层和中层施肥处理.
而贮藏器官的分配率低于表层和中层施肥处理,这
与张进等[30]研究冬枣不同施肥时期各器官15N分配
率的结果一致.表明在果实成熟期,上层施肥处理养
分主要分配在地上部,有利于植株地上部氮素分配
的均衡和果实中氮素的积累,从而增加产量.
研究表明,果园氮肥损失的主要途径为气态损
失(氨挥发、硝化和反硝化)、地面径流和渗漏
等[31-32] .朱兆良[33]研究表明,国内当季作物化肥氮
在土壤中的残留率一般在 15% ~ 30%,国外土壤15N
残留率在 12% ~ 44%.本试验15N 残留率在 17.2% ~
28.9%,而且 0 cm施肥处理的15N 残留率最少,损失
率最大.这是由于肥料处于土壤表面,加之夏天温度
高,有利于铵态氮向氨气的转化,而 40 cm施肥处理
主要向深层土壤的淋溶比较大,氮肥利用率较低,因
此氮肥损失也比较严重.所以,在生产中既要考虑作
物的生长因素,又要考虑氮素利用和损失因素,针对
不同作物采取不同的施肥策略.本试验结果表明,进
行 M26矮砧苹果栽培,施肥深度在上层区域 (20
cm)氮肥损失率最低.
参考文献
[1] Balkhoven⁃baart JMT, Wagenmskers PS, Bootsma JH,
et al. Developments in Dutch apple plantings. Acta Hor⁃
ticulturae, 2000, 513: 261-269
[2] Robinson T. Recent advances and future directions in or⁃
chard planting systems. Acta Horticulturae, 2004, 732:
367-381
[3] Claudio DV, Chiara C, Marina B, et al. Effect of inter⁃
stock (M.9 and M.27) on vegetative growth and yield of
apple trees. Scientia Horticulturae, 2009, 119: 270 -
274
[4] Maria LM. Influence of planting and training systems on
fruit yield in apple orchard. Journal of Fruit and Orna⁃
mental Plant Research, 2004, 12: 97-104
[5] Zhang Q (张 强), Wei Q⁃P (魏钦平), Wang X⁃W
(王小伟), et al. Effects of shoot numbers and distribu⁃
tion in canopy on yields and qualities of ‘ Fuji’ apple
with standard rootstock. Acta Horticulturae Sinica (园艺
学报), 2010, 37(8): 1205-1212 (in Chinese)
[6] Zhang Q (张 强), Wei Q⁃P (魏钦平), Liu S⁃Z (刘
松忠), et al. Formation of canopy structure, yield and
fruit quality of ‘Fuji’ apple with SH6 dwarf interstock
from juvenility to fruiting early stage. Scientia Agricultu⁃
ra Sinica (中国农业科学), 2013, 46 ( 9): 1874 -
1880 (in Chinese)
[7] Li B⁃Z (李丙智), Han M⁃Y (韩明玉), Zhang L⁃S
(张林森), et al. Survey of applying actuality and
adaptability on apple dwarfing rootstock in China. Fruit
Grower’ s Friend (果农之友), 2010(2): 35-36 ( in
Chinese)
[8] Jiang Y⁃M (姜远茂), Peng F⁃T (彭福田), Zhang F⁃S
(张福锁), et al. Status of organic matter and nutrients
in Shandong orchard soils. Chinese Journal of Soil Sci⁃
ence (土壤通报), 2001, 32(4): 167-169 ( in Chi⁃
nese)
[9] Gan Z⁃T (甘卓亭), Liu W⁃Z (刘文兆). Distribution
of the fine roots of different aged apple trees in Weibei
rainfed tableland of the Loess Plateau. Acta Ecologica
Sinica (生态学报), 2008, 28(7): 3401- 3407 ( in
Chinese)
[10] Liu X⁃Y (刘小勇), Dong T (董 铁), Zhang K (张
坤), et al. Distribution and accumulation of mineral ni⁃
trogen in apple orchard soils in dry plateau of eastern
Gansu Province. Chinese Journal of Applied Ecology (应
用生态学报), 2010, 21(3): 796-800 ( in Chinese)
[11] Ma B⁃K (马宝焜), Xu J⁃Z (徐继忠), Sun J⁃S (孙建
设). Consideration for high density planting with dwarf
rootstocks in apple in China. Journal of Fruit Science
(果树学报), 2010, 27(1): 105-109 (in Chinese)
[12] Gu M⁃R (顾曼如), Zhang R⁃S (张若抒), Shu H⁃R
(束怀瑞). A preliminary report of the study on nitrogen
nutrition of apple trees: The characteristics of annual
periodic variations in plant. Acta Horticulturae Sinica
(园艺学报), 1981, 8(4): 21-28 (in Chinese)
[13] Raese JT, Drake SR, Curry EA. Nitrogen fertilizer in⁃
fluences fruit quality, soil nutrients and cover crops,
leaf color and nitrogen content, biennial bearing and
cold hardiness of “Golden Delicious”. Journal of Plant
Nutrition, 2007, 30: 1585-1604
[14] Saenz JL, Dejong TM, Weinbaum SA. Nitrogen stimula⁃
ted increases in peach yield are associated with extended
fruit development period and increased fruit sink capaci⁃
ty. Journal of the American Society for Horticultural Sci⁃
ence, 1997, 122: 772-777
[15] Ghoname AA, Dawood MG, Riad GS, et al. Effect of
absorption nitrogen forms and biostimulants foliar appli⁃
cation on the growth, yield and chemical composition of
9573期 丁 宁等: 施肥深度对矮化苹果15N⁃尿素吸收、利用及损失的影响
hot pepper grown under sandy soil conditions. Research
Journal of Agriculture and Biological Sciences, 2009, 5:
840-852
[16] Lian G (连 纲), Wang D⁃J (王德建), Lin J⁃H (林
静慧), et al. Characteristics of nutrient leaching from
paddy field in Taihu Lake area. Chinese Journal of Ap⁃
plied Ecology (应用生态学报), 2003, 14 ( 11):
1879-1883 (in Chinese)
[17] Zhao B (赵 斌), Dong S⁃T (董树亭), Wang K⁃J
(王空军), et al. Effects of controlled⁃release fertilizers
on summer maize grain yield, field ammonia volatiliza⁃
tion, and fertilizer nitrogen use efficiency. Chinese Jour⁃
nal of Applied Ecology (应用生态学报), 2009, 20
(11): 2678-2684 ( in Chinese)
[18] He H (何 华), Kang S⁃Z (康绍忠). Effect of ferti⁃
gation depth on dry matter partition and water use effi⁃
ciency of corn. Chinese Journal of Plant Ecology (植物
生态学报), 2006, 26(4): 454-458 (in Chinese)
[19] Zhao L (赵 林), Jiang Y⁃M (姜远茂), Peng F⁃T
(彭福田), et al. Studies on utilization and accumula⁃
tion dynamics of spring soil 15N⁃urea application in ap⁃
ple orchard. Acta Horticulturae Sinica (园艺学报),
2009, 36(12): 1805-1809 (in Chinese)
[20] Li H⁃B (李红波), Ge S⁃F (葛顺峰), Jiang Y⁃M (姜
远茂), et al. Characteristics of absorption, distribution
and utilization of 15N⁃urea applied in different depths in
Gala (Malus hupehensis). Scientia Agricultura Sinica
(中国农业科学), 2011, 44(7): 1408-1414 (in Chi⁃
nese)
[21] Bao S⁃D (鲍士旦). Soil and Agricultural Chemistry
Analysis. 3rd Ed. Beijing: China Agriculture Press,
2000: 263-268 (in Chinese)
[22] Gu M⁃R (顾曼如). Application of 15N on the nitrogen
nutritional study in apple tree. China Fruits (中国果
树), 1990(2): 46-48 (in Chinese)
[23] Xu J⁃E (徐季娥), Lin Y⁃Y (林裕益), Lyu R⁃J (吕
瑞江), et al. Study on the absorption and the distribu⁃
tion of 15N⁃labelled urea to ‘Yali’ pear trees autumn
application. Acta Horticulturae Sinica (园艺学报),
1993, 20(2): 145-149 (in Chinese)
[24] Li G⁃H (李刚华), Ding Y⁃F (丁艳锋), Xue L⁃H (薛
利红), et al. Research progress on diagnosis of nitrogen
nutrition and fertilization recommendation for rice by use
chlorophyll meter. Plant Nutrition and Fertilizer Science
(植物营养与肥料学报), 2005, 11(3): 412-416 (in
Chinese)
[25] Shen Y⁃F (沈玉芳), Li S⁃Q (李世清), Shao M⁃A
(邵明安). Effects of spatial coupling of watering and
fertilization on winter wheat photosynthetic characteris⁃
tics and grain yield. Chinese Journal of Applied Ecology
(应用生态学报), 2007, 18(10): 2256 - 2262 ( in
Chinese)
[26] Sun Q (孙 权), Wang J⁃F (王静芳), Wang S⁃F
(王素芳), et al. Influence of fertilization depth on
NPK content in leaves, yield and fruit quality of grape⁃
vine. Journal of Fruit Science (果树学报), 2007, 24
(4): 455-459 (in Chinese)
[27] Shen Y⁃F (沈玉芳), Li S⁃Q (李世清), Shao M⁃A
(邵明安). Effects of water and fertilizer spatial coup⁃
ling on biological characteristics and biomass of winter
wheat. Scientia Agricultura Sinica (中国农业科学),
2007, 40(8): 1822-1829 ( in Chinese)
[28] Duan W⁃X (段文学), Yu Z⁃W (于振文), Shi Y (石
玉), et al. Effects of nitrogen application depth on wa⁃
ter consumption characteristics and dry matter accumu⁃
lation and distribution in rainfed wheat. Acta Agronomica
Sinica (作物学报), 2013, 9(4): 657-664 ( in Chi⁃
nese)
[29] Chen D⁃W (陈登文), Li S⁃Y (李社义), Gao A⁃Q
(高爱琴), et al. Affection of planting pattern of short
shape interstock apple trees on root distribution, root
system growth and development and fruit quality. Jour⁃
nal of Northwest Forestry University (西北林学院学
报), 2002, 17(4): 6-8 (in Chinese)
[30] Zhang J (张 进), Jiang Y⁃M (姜远茂), Shu H⁃R
(束怀瑞), et al. Characteristics of absorption, distri⁃
bution and utilization of ‘ Zhanhuadongzao’ jujube to
15N in different fertilizer application stages. Acta Horti⁃
culturae Sinica (园艺学报), 2005, 32(2): 288-291
(in Chinese)
[31] Fan Y⁃N (范亚宁), Li S⁃Q (李世清), Li S⁃X (李生
秀). Utilization rate of fertilizer N and dynamic changes
of soil NO3
- ⁃N in summer maize field in semi⁃humid
area of Northwest China. Chinese Journal of Applied
Ecology (应用生态学报), 2008, 19(4): 799- 806
(in Chinese)
[32] Li S⁃Q (李世清), Li S⁃X (李生秀). Leaching loss of
nitrate from semiarid area agroecosystem. Chinese Jour⁃
nal of Applied Ecology (应用生态学报), 2000, 11
(2): 240-242 ( in Chinese)
[33] Zhu Z⁃L (朱兆良). Nitrogen management in relation to
food production and environment in China. Acta
Pedologica Sinica (土壤学报), 2002, 39(suppl.): 3-
11 (in Chinese)
作者简介 丁 宁,男,1986 年生,博士研究生.主要从事苹
果氮素营养研究. E⁃mail: dingningsd@ 163.com
责任编辑 张凤丽
067 应 用 生 态 学 报 26卷