全 文 :天然产物研究与开发 NatProdResDev2010, 22:755-760
文章编号:1001-6880(2010)05-0755-06
ReceivedSeptember27, 2009;AcceptedNovember21, 2009
FoundationItem:ThisworkwassupportedbyScienceProjectfromJian-
gxiEducationDepartment(GJJ09162), JiangxiNaturalScienceFund
(2009GZN0029) andChinese NationalNaturalScience Fund
(31060250)
*CorrespondingauthorTel:86-791-3828079;E-mail:hgh3813899@so-
hu.com
木荷及其与无患子皂甙抽提物单复配体外抗稻瘟病活性
霍光华* ,詹五根 ,付日辉 ,陈明辉
江西农业大学生物科学与工程学院 ,南昌 330045
摘 要:来自木荷叶和无患子中果皮的皂甙抽提物对抗稻瘟病原活性被试验。皂甙抽提物体外抑制活性显示
了皂甙剂量与抗真菌效果高度相关性。它们的抗稻瘟有效中浓度 EC50:木荷叶乙醇抽提物为 42.95 μg/mL,木
荷叶水抽提物为 452.91 μg/mL,无患子中果皮的甲醇抽提物为 95.65 μg/mL。一个重要的结果是当上述木荷
叶和无患子中果皮醇抽提物以 3∶4到 15∶8的质量配比时产生了显著的增效抗稻瘟作用 ,而在其它配比时有相
加作用。通过乙醚 /丙酮沉析 、硅胶柱色谱分离 ,以及酸水解和薄层过程 , 检测出木荷抽提物皂甙中含有 2种三
萜类皂甙元和 5种单糖。纯化后的皂甙在 150 μg/mL时显示了 98.28%的抑制率。此研究结果表明:木荷叶抽
提物 , 或木荷叶和无患子中果皮抽提复配物对毁灭性的稻瘟病害具有重要地抗病效果。
关键词:皂甙抽提物 , 复配 , 木荷 , 无患子 , 稻瘟病
中图分类号:S482.2+92 文献标识码:A
InvitroAntifungalActivityofSaponinExtractsfromSchimasuperbain
CombinationwithSapindusmukorossiagainstPiriculariaoryzae
HUOGuang-hua* , ZHANWu-gen, FURi-hui, CHENMing-hui
ColegeofBioscienceandEngineering, UniversityofJiangxiAgriculture, Nanchang330045 , China
Abstract:SaponinextractsfromSchimasuperbaleaves(SSL)andSapindusmukorossifruitmesocarp(SMFM)have
beentestedagainstthepathogenPiriculariaoryzae.Theinhibitoryefectoftheseextractsmeasuredinvitroshowanearly
relationshipbetweenthesaponindoseandtheantifungalefect.TheirvaluesofEC50(efectiveconcentrationsat50% in-
hibitoryrate)are42.95 μg/mLforanethanolicextractofSSL, 452.91 μg/mLforawaterextractofSSLand95.65
μg/mLforamethanolicextractofSMFMrespectively.AnimportantresultwasthatcombinationofextractsfromSSLand
SMFMhavenotablesynergisticeffectatratiosrangedfrom3∶4to15∶8 (m/m)andadditiveefectatotherratio.Inad-
dition, antifungalcomponentsofSSLwereestablishedastriterpenoidsaponinscomposedof2aglyconesand5 monosac-
charidesafterpurificationbyethylether/acetoneprecipitation, silicagelchromatography, hydrolysisandTLCprocedure.
Thepurifiedsaponincomplexshoweduptoa98.28% inhibitoryrateat150 μg/mL.Theresultssuggestedthatselected
extractsfromSSLoracombinationofSSLandSMFMcanplayanimportantroleinresistancePiriculariaoryzae, ade-
structivediseaseofrice.
Keywords:Saponin-extract;Combination;Schimasuperba;Sapindusmukorosi;Piriculariaoryzae
Introduction
Riceblastisthemostdestructivediseaseofricecaused
bythefungalpathogen, PiriculariaoryzaeCavaral
[ Magnaporthegrisea(Hebert)Barr] .P.oryzaecan
infectricefromtheseedlingstagetomaturity.Infection
resultsinlesionsonmostplantpartsincludingleaves,
leafcolar, stems, nodes, paniclesandgrains.Itisesti-
matedforthediseasetoreduceannualworldwideyield
by157miliontons(ShiandWang, 2008).Controling
thisdiseasehaslargelyreliedonbreedingresistantcul-
tivarsandapplyingchemicalfungicides.However, the
efectivenesofthesestrategiesislimitedbecauseof
thefrequentemergenceofP.oryzaeisolatesthatarea-
bletoovercomespecificresistancegenesorfungicides.
Antifungalchemicalsfromnaturalproductsexhibitben-
DOI :10.16333/j.1001-6880.2010.05.011
eficialefect(GrayerandHarboune, 1994;Grayerand
Kokubun, 2001;Mukhopadhyay, 2004;Rodriguesetal,
2005;Dawetal, 2008;).Therefore, wecariedoutex-
perimentstoisolatenewnaturalbioactiveproductsfrom
plants, whichcanbeusedagainstriceblast.
SchimasuperbaGardn.etChamp(Theaceae)ismainly
distributedinCentralandSouthernChina.Theplantis
commonlycultivatedasanornamentaltree, fortimber
productionandasafirebreakplanting.Itsbarkpowder
isusedasarepelantagenttodispelwildpigsand
birdsfromcropsinFujianmountain, topoisonfishin
Taiwan, andasanarowtiptoxinbytraditionalhunt-
ers.Amethanolicextractofitsstembarkisusedtokil
snails(ZengandJu, 2005), toinduceapastiainPlute-
laxylostelaandPieriesrapae(Dengetal, 2007), and
tocontrolintestinalparasite.Werecentlyfindastrong
antifungalefectofanethanolicextractofSchimasu-
perbleavesonP.oryzae(Huoetal, 2008).
Theobjectiveofthispaperwastotest, invitro, theanti-
fungalactivityofsaponin-richextractsofleavesofSchi-
masuperba, anditscombinationwithextractofameso-
carpofSapindusmukorossiGaertn.Thechemicalcom-
ponentsoftheseextractswerealsoinvestigated.Theo-
veralobjectiveofthestudywastosearchformorese-
lective, moreenvironmentalyfriendlyandtoxicological-
lysafefungicides.
MaterialsandMethods
Plantmaterialandpathogenicfungalstrains
LeavesofSchimasuperba(SSL)andfruitsofSapindus
mukorosi(SMF)werecolectedfromJiangxiProvince
ofChinainNovember2007.Theywereidentifiedby
Prof.X.H.ShioftheColegeofForestry, Universityof
JiangxiAgriculture.Voucherspecimenshavebeende-
positedattheherbariumofthisColege.Thepathogenic
fungalstrainisPyriculariaoryzae05Z11 obtainedfrom
theResearchSchoolofPlantProtection, Academyof
JiangxiAgriculturalScience.
Preparationofsaponin-richextracts
Schimasuperba
Theair-driedandpowderedleaveswereextractedwith
aseriesofsolventswithincreasingpolarities.These
werepetroleum, chloroform, ethylacetate, ethanoland
watersuccessively.Theethanolicphasewasfurtherpu-
rifiedbyprecipitationwithanhydrousethylether/ace-
tone1:1 (v/v), centrifugationat3000 rpmfor15
min, silica-gel(100 ~ 200 mesh)chromatography, elu-
tionwithCH3OH/CHCl3 /H2O5:2:1(v/v/v).Thee-
lutedfractionwasdriedunderasteamofN2.
Sapindusmukorosi
Afterremovingtheseedandepicarpfromthefruit, the
mesocarpwasdriedinanovenat50 ℃ for48 h, and
thenpowderedinagrinder.Thepowderedsamplewas
extractedwithmethanolwhichgaveabrownsyrup.The
suspendedparticleswereseparatedbycentrifugationat
8000 rpmfor20min, folowedbyvacuumdryingofthe
extractat70 ℃, whichgaveapaleyelowish-white
powder.
Identificationofsaponin-richfractionsfrom Schi-
masuperba
FractionsfromSchimasuperbaweretestedbyusinga
foamtest, concentratedsulphuricacidreactionand
Rosen-heimerreaction.Thefractionisolatedusingsili-
cagelwashydrolyzedwith1MH2SO4 , at90 ℃ under
refluxconditionsfor15 h.Themixturewasextracted
withethylacetatetoobtaintheaglyconepart, andthe
aqueouslayerwasneutralizedwithBaCO3 , centrifuged
at4500 rpmfor10 minandfiltered.Theethylacetate
layerandthefiltratefromtheH2Olayerwereanalyzed
onTLCplatewithsilicagelGusingaCH3OH/CHCl3
3∶1 solventwith10% H2SO4 colorreagent, andusing
n-butanol/ethylacetate/isopropanol/ aceticacid/
H2O/ pyridine12∶34∶21∶12∶10∶10 solventwithani-
line-phthalicacidcolorreagentrespectively.Thefol-
lowingstandardsaccharides(galactose, glucose, man-
nose, arabinose, rhamnose, xylose)wereusedforiden-
tificationofthecolorspots.
Growthinhibitionmeasurements
ExtractsofSSL, SMFMindiferentconcentrations(50,
100, 200, 400 , 800, 1600 μg/mL)andanegativecon-
trol(0μg/mL, CK)wereaddedtoseparateErlenmey-
erflaskscontainingsterilizedPDA(121 ℃, 1.2 atm,
20 min)andmixedthoroughly, thenpouredseparately
intosterilizedPetridishesandalowedtosolidify.3
plugswith8 mmdiametersofactivegrowingmycelium
colonyofPiriculariaoryzaewereplacedinatriangular
756 NatProdResDev Vol.22
shapeintheeachplate(replicated, twoplate, 6 plugs
pertreatment).Theseplateswerethenincubatedat27
℃.Measurementofthecolonydiameteroftheradial
myceliumgrowthwascarriedoutonthe4thday.Thein-
hibitoryrateofeachtreatmentwasexpressedasthe
percentgrowthinhibitioncomparedtothenegativecon-
trolusingthefolowingformula(Testrule, 2006),
whereOCDt=observedcolonydiameterwithtreat-
ment, OCDc=observedcolonydiameterwithouttreat-
ment, IPD = initialplugdiameter, GMCt= growth
measurementofcolonywithtreatment, GMCc=growth
measurementofcolonywithouttreatment, IR=inhibi-
toryrate.
GMCt=OCDt– IPD
GMCc=OCDc– IPD
IR(%)=(GMCc– GMCt)/GMCc×100
Therelationshipbetweensaponindose(x)andanti-
fungalefect(probabilityvalueaboutinhibitoryrateof
reducingthecolonydiameter, Y)wasdrawnout.
Combinationtestofsaponin-richingredientfrom
SchimasuperbaandSapindusmukorossi
Fivediferentextractmixtures[ (a+5b)/6、(a+2b)/
3、(a+b)/2、(2a+b)/3、(5a+b)/6] weretested,
whereaandbarethecalculatedefectiveconcentra-
tionsat50% inhibitoryrate(EC50)ofextractsfrom
SchimasuperbaandSapindusmukorosirespectively.
Thepresenceofanysynergisticorantagonisticefect
wasevaluatedusingthefolowingformula, whereCTC
=co-toxicitycoeficient, OIRM=observedinhibitory
rateofmixture, PIRM=predictedinhibitoryrateof
mixture.
CTC(%)=(OIRM– PIRM)/PIRM ×100
andwhereCTC>20 indicatesasynergisticefect, CTC
from-20to20 indicatesanadditiveefect, CTC<-20 in-
dicatesanantagonisticefect(Wei, 1999;Chen, 2000).
Statisticalanalysis
Statisticalanalysisofthedatawasperformedwithsoft-
wareDPS3.01 formeansineverytable, linearregres-
sionequationsanddeterminingsignificantdiference
levelsatp=0.01 levelofsignificance.
Results
Efectofdifferentsolventextractionfractionsof
SSLandSMFM onmyceliumgrowthofP.oryzae
invitro
Table1 Extractiverate(500gplantmaterial)andantifungalactivityofextractsindifferentpolarsolventofSSLandmeth-
anolextractofSMFMat800 μg/mL
Nameofextracts MassofExtract(g) Extractiverate(%) *GMC(cm) IR** (%)
PetroleumextractofSSL 29.00 5.80 2.33 -16.67
ChloroformextractofSSL 35.34 7.07 2.00 0.00
EthyletherextractofSSL 2.16 0.43 1.50 25.00
EthylacetateextractofSSL 3.59 0.72 2.40 -20.00
EthanolextractofSSL 35.21 7.04 0.02 99.00
WaterextractofSSL 60.33 12.07 0.73 63.50
MethanolextractofSMFM 55.80 11.16 0.07 96.34
Negativecontrol - - 2.00 0.00
* GMC:Growthmeasurementofcolony;**IR:Inhibitoryrate
Thetotalamountofextractiveobtained(extractive
rate)fromSSLusing6 solventswithdiferentpolarity
is33.13% (Table1), including19.11% hydrophilic
fractions(ethanolicandwaterextractions), 12.87%
hydrophobicfractions(chloroformandpetroleumex-
tractions)and1.15% moderatehydrophobicfractions
(ethylacetateandethyletherextractions).Theanti-
fungalcomponentsmainlyexistinhydrophilicfrac-
tions.Thestrongestantifungalactivityagainstblast
(99.02% inhibitoryrateat800 μg/mL)isintheeth-
anolicextract.Theantifungalactivity(63.5% inhibi-
toryrate)ofthewaterextractwaslesthanfortheeth-
anolicextract, whileothercomponentshadlitleanti-
fungalactivity, orevenpromotedmycelium growth.
Therewasalsogoodantifungalactivityagainstblast
withthemethanolicextractofSMFMhaving96.34%
757Vol.22 HUOGuang-hua, etal:InvitroAntifungalActivityofSaponinExtractsfromSchimasuperbainCombinationwithSapindusmukorosiagainstPiriculariaoryzae
inhibitoryrateat800μg/mL(Table2).
Efectiveconcentrationofactivefractionsinhibiting
myceliumgrowthofP.oryzaeinvitro
Thecomparisonbetweenlogarithmvaluesofconcentra-
tion(logx)andprobabilityvaluesofinhibitoryrate
(y)(Table2)indicatesanearlyrelationshipbetween
doseofextractsandactivityefectusingthesoftware
DPS3.01.Theirlinearrelationshipsareexpressedby
theequationsy=2.00+1.84 logx, R=0.999 foreth-
anolicextractofSSL;y=1.61+1.28 logx, R=0.992
forthewaterextractofSSLandy=0.97+2.04 logx,
R=0.997 formethanolicextractofSMFMrespective-
ly.Thecalculatedefectiveconcentrationsat50% in-
hibitoryrate(EC50)usingaboveequationsare42.95
μg/mL, 452.91 μg/mL, and95.65 μg/mLforthe
ethanolicextractofSSL, thewaterextractofSSLand
themethanolicextractofSMFMrespectively.Thein-
hibitoryconcentrationandactiverangeshowthestron-
gestantifungalextractisethanolicfractionofSSLand
secondismethanolicfractionofSMFM, whilethewater
fractionofSSLshowsonlyweakantifungalactivity.
Table2 TheinhibitoryeffectofethanolicextractandwaterextractofSSL, andmethanolicextractofSMFM indifferent
concentrationsonP.oryzae
Nameofextracts ToxicityRegressionequations
EC50
(μg/mL)
Confidence
limit(95%)
Regression
coeficients
EthanolicextractofSSL y=2.00+1.84logx 42.95 38.34-48.43 0.999
WaterextractofSSL y=1.61+1.27logx 452.91 173.23-1791.58 0.992
MethanolicextractofSMFM y=0.97+2.04logx 95.65 69.97-136.86 0.997
CombinedeffectofethanolicextractofSSLand
methanolicextractofSMFM oninhibitingmyceli-
umgrowthofP.oryzaeinvitro
ThecombinedbehavioroftheethanolicextractofSSL
andmethanolicextractofSMFMsystemsareshownin
Table3.Theirmassratiosare3:40, 3:16, 3:8, 3:4,
15:8 basedonthe
Table3 CotoxicitycoefficientofextractcombinationsofSSLandSMFMInhibittingmyceliumgrowthofP.oryzae
RatioofSSL
andSMFM
extracts
Predictedinhibitoryratesfromdose-efectequations(%)
ExtractofSSL ExtractofSMFM
Totalpredicted
inhibitoryratesof
prediction(%)
Observed
inhibitoryrates
(%)
Cotoxicity
Coeficients
(%)
3:40 11.43 44.01 55.44 60.43 9.00
3:16 22.99 36.95 59.94 60.96 1.70
3:8 32.25 28.20 60.45 62.51 3.41
3:4 39.24 18.15 57.39 69.67 21.39
15:8 45.13 6.82 51.95 80.57 55.09
concentrationratiosfromfivediferentextractmixtures:
(a+5b)/6, (a+2b)/3, (a+b)/2, (2a+b)/3, (5a
+b)/6wherea=42.95 μg/mL, b=95.65 μg/mL
respectively.Itisobservedthatcotoxicitycoeficient
valuesareabove20 withtheextractcombinationratios
3:4and15:8.Thebestefectattheratioof15:8gives
riseto55.09% synergisticefect.Theothercombina-
tionsalshowanadditiveefectbecausetheircotoxicity
coeficientvaluesareintherangefrom1.7to9 onthe
standardrangefrom -20 to20.Noantagonisticefects
wereobserved.Thisindicatesthatusingacombination
ofSSLandSMFMismoreefectiveininhibitingmyce-
lium growthofP.oryzaethanusingeitherSSLor
SMFMextractsalone.
TheeffectofpurificationoftheethanolicSSLex-
tractoninhibitionofmyceliumgrowthofP.oryzae
invitro
TheresultsinTable4 showthattheinhibitoryrateof
theethanolicextractofSSLisincreasedwithitsin-
creasingpurity.Solventprecipitationisagoodtech-
niqueamenabletolargescaleoperationandindustriali-
zation.Itimprovesrelativepurityfrom7.04%to45.74%,
758 NatProdResDev Vol.22
Table4 TherelativerecoveryrateandinhibitoryrateineachfractionfromSSLat150 μg/mL
PurifiedSSL
fraction
Massofstarting
material
(g)
Massof
isolated
(g)
RelativeRecovery
rate(%)
GMC
(cm)
IR
(%)
Ethanolicextract(EX) 500.0 35.20 7.04 0.38 81.20
PrecipitationofEXusingethylether-acetone(PEA) 20.00 9.15 45.74 0.13 93.27
IsolationofPEAusingSilicagelchromatography 2.00 1.39 69.41 0.03 98.28
Negativecontrol - - - 2.00 0.00
andenhancestheinhibitoryratefrom81.20% to93.
27% at150 μg/mL.Silicagelchromatographyisa
highresolutionmethod, butitsisolativeeficiencyis
limitedbecauseofcolumnvolumeandadsorption.Itin-
creasesrelativepurityfrom45.74% to69.41%, and
inhibitoryratefrom93.27% to98.28% at150 μg/
mL.Theinhibitoryrateisincreasedgradualywiththe
increasingpurityofisolationofSSL.Thisindicatesa
non-linearrelationshipbetweendoseandinhibitory
efect.Atthesametime, itshowsthatantifungalactive
componentsarebeingconcentratedinthesuccessive
fractionsisolated.
IdentificationofantifungalcomponentfromS.su-
perba
Afoamtestwascariedoutonaqueoussolutionsofthe
SSLethanolicextract, andonitsethylether/ acetone
precipitationfractionanditssilicagelelutionafter10
minutesofboiling.Eachfractiongavesimilarpersistent
foamandtherewasnodiferenceinfoamheightof
foammeasurementwithsameconcentrationandtube
sizebetweenanacidicsolutionpH1.0 (adjustedwith
HCl)andanalkalinesolutionpH13.0 (adjustedwith
NaOH).Theresultisconsistentwiththepresenceof
triterpenoidsaponins.Thereactioncoloroftheextracts
whentestedwithconcentratedsulfuricacidchanged
fromyelowtored, thenpurple;whilethereactioncolor
whentestedwithtrichloroaceticacidat100 ℃ gavea
redcolor, againconsistentwiththepresenceoftriterpe-
noidsaponins.
Tofurtheridentifythesaponins, thefinalisolatewas
hydrolyzedwith1Msulphuricacid, theresultingprod-
uctsseparatedwithanethylacetate/waterseparation
andappliedtoaTLCplate.Theaqueousphasegave
fivespotsthatwereidentifiedasthemonosaccharides
(glucosewithRf0.23, galactosewithRf0.15, arabi-
nosewithRf0.36, xylosewithRf0.45 , rhamnosewith
Rf0.55).Theethylacetatephasegavetwospotscon-
sideredtobeaglycones(Rf0.25, 0.54 respectively).
ItislikelythattheSSLextracthasatleasttwodiferent
triterpenoidsaponins, andthatthesesaponinsfromS.
superbaareantifungalagainstP.oryzae.
Discussion
Seventriterpenoidsaponinshavebeenisolatedfroma
methanolicextractofSMFMandshownmoluscicidal
efectsagainstPomaceacanaliculata(Huang, 2003).
Somesaponinsexhibitmoderatecytotoxicityagainsthu-
mantumorcels(Huang, 2008).Inaddition, Theperi-
carpofS.mukorossihasbeentraditionalyusedasa
sourceofnaturalsurfactants(Kommalapatietal, 1997;
Kommalapatietal, 1998;RaoandParia, 2009).Thisis
thefirstreportofSSLandSMFM havingantifungal
efectsagainstP.oryzae.
WhilealcoholextractsofSSLandSMFMhaveantifun-
galproperties, mixturesofthetwoextractscanhaveen-
hanced, orsynergistic, efectsandresultinmoreefi-
cientuseofextractants.Thesynergisticandadditional
efectsofthecombinationofSSLandSMFMextracts
mayberelatedtodiferencesinassociationofdiferent
saponinmoleculeswithsterols(mainlycholesterol)
presentinthefungalcel.Diferencesindetoxifying
glycosidases(Bouarabetal, 2002)frompathogenic
fungiisdificulttoaportiontodiferentsaponinmole-
cules.Itispossibletoincreaseantifungalactivityof
somesaponinswithpartialdeglycosylation(Strardo
andMartin, 2008).
Tocompletelycontrolthemycelium growthofP.
oryzae, itisnecessarytousemorethan800 μg/mLof
ethanolicSSLextract, ormorethan370μg/mLofpuri-
fiedSSLextractor1600μg/mLmethanolicSMFMex-
759Vol.22 HUOGuang-hua, etal:InvitroAntifungalActivityofSaponinExtractsfromSchimasuperbainCombinationwithSapindusmukorosiagainstPiriculariaoryzae
tract.However, incombinationitisonlynecessaryto
use300 μg/mLofethanolicSSLextractplus60 μg/
mLofmethanolicSMFMextract, or150μg/mLofethyl
ether/acetoneSSLprecipitationplus60 μg/mLof
methanolicSMFMextract(attheoptimumdose-efect
ratioof15∶8)fromourinvitroexperiments.Future
fieldapplicationswilberequiredtovalidatethesere-
sultsinvivo.
Extractsofactiveantifungalingredientsisolatedfrom
SSLandSMFMorcombinationsoftheseextractscan
playanimportantroleincontrolingP.oryzae.There-
sultsofthisstudymayultimatelyhelpinsearchforen-
vironmentalapproachestocontrolcropdiseaseanda-
voidchemicalcontamination.Saponinextractsmaybe
usefulasanatractivealternativeantifungalagent, es-
pecialyunderorganicmanagement.
AcknowledgementsAuthorsthankDrBalaThumma
andCharlieBelfromplantindustryofCSIROinAus-
traliafortheirhelpfuladviceandproofreadingtheEng-
lishstyleofourmanuscript.Thisworkwassupported
byScienceProjectfromJiangxiEducationDepartment
(GJJ09162 ), Jiangxi Natural Science Fund
(2009GZN0029)andChineseNationalNaturalSci-
enceFund(31060250).
References
1 BouarabK, MeltonR, PeartJ, etal.Asaponin-detoxifying
enzymemediatessuppressionofplantdefences.Nature,
2002, 418:889-892.
2 ChenL, XuHH, LiYY, etal.Thescreeningmethodstoob-
taintheoptimalsynergisticmixtureratioofcombinedpesti-
cides.JPlantProt, 2000, 27:349-354.
3 DawBD, ZhangLH, WangZZ.Salicylicacidenhancesanti-
fungalresistancetoMagnaporthegriseainriceplants.Aust
PlantPathol, 2008, 37:637-644.
4 DengZY, DengYC, LiuYH.Antifeedantactivitiesoftheex-
tractsfromShimasuperbaetChamp.againstPlutellaxylostel-
laandPieriesrapae.Pesticide, 2007, 46:854-856.
5 GrayerRJ, HarborneJB.Asurveyofantifungalcompoundsfrom
higherplants, 1982-1993.Phytochemistry, 1994, 37:19-42.
6 GrayerRJ, KokubunT.Plant-fungalinteractions:thesearch
forphytoalexinsandotherantifungalcompoundsfromhigher
plants.Phytochemistry, 2001, 56:253-263.
7 HuangHC, LiaoSC, ChangFR, etal.Molusicicidalsaponins
fromSapindusmukorossi, inhibitoryagentsofgoldenapple
snails, Pomaceacanaliculata.JAgricFoodChem, 2003, 51:
4916-4919.
8 HuangHC, WuMD, TsaiWJ, etal.Triterpenoidsaponins
fromthefruitsandgallsofSapindusmukorossi.Phytochemis-
try, 2008, 69:1609-1616.
9 HuoGH, ZhanWG, ChenMH.Antifungalactivitiesfromtwo
TheaceaeSchimasuperbaandCamelliaoleiferaagainstPyric-
ularoryzae.ActaAgricUnivJiangxiensis, 2008a, 30:48-52,
72
10 HuoGH, ZhanWG, ChenMH, etal.Compoundpreparation
anditsmanufacturemethodforresistanceblastfromShima
superba.CNPatent, 2008b, applicationNo.200810070483.7
11 KommalapatiRR, ValsarajKT, ConstantWD, etal.Aqueous
solubilityenhancementanddesorptionofhexachlorobenzene
fromsoilusingaplant-basedsurfactant.WatRes, 1997, 31:
2161-2170.
12 KommalapatiRH, ValsarajKT, ConstantWD, etal.Soilflushing
usingcolloidalgasaphronsuspensionsgeneratedfromaplant-
basedsurfactant.JHazardMater, 1998, 60:73-87.
13 MukhopadhyayB, FieldRA.SynthesisofL-arabinose-contai-
ningfragmentsoftheoatrootsaponinavenacin.Carbohyd
Res, 2004, 339:1285-1291.
14 RodriguesFA, JurickIIWM, DatnofLE, etal.Siliconinflu-
encescytologicalandmoleculareventsincompatibleandin-
compatiblerice-Magnaporthegriseainteractions.PhysiolMol
PlantPathol, 2005, 66:144-159.
15 RaoKJ, PariaS.Solubilizationofnaphthaleneinthepresence
ofplant-syntheticmixedsurfactantsystems.JPhysChemB,
2009, 113:474-481.
16 ShiBJ, WangGL.Comparativestudyofgenesexpressedfrom
ricefungus-resistantandsusceptiblelinesduringinteractions
withMagnaportheoryzae.Gene, 2008, 427:80-85.
17 StuardoM, MartinRS.Antifungalpropertiesofquinoa(Che-
mopodiumquinoqWild)alkalitreatedsaponinsagainstBot-
rytiscinerea.IndCropsandProd, 2008, 27:296-302.
18 Thetestruleofpesticidebiologicaldeterminationinroom.
germicide, thesecondpart:growthtestinhibittingpathogen
fungalmycelium.methodofculturedish, NY/T 1156.2-
2006, China.
19 WeiL.ManufactureonPesticideMixtureandTheirTypes.
Beijing:ChemicalIndustryPress, 1999.22-24.
20 LuY, ZengXN, JuJH.Moluscidalactivityofthemethanol
extractsof40speciesofplants.PlantProt, 2005, 31:31-34.
760 NatProdResDev Vol.22