免费文献传递   相关文献

长白瑞香的化学成分(英文)



全 文 : 2008 年 11 月 第 6 卷 第 6 期 Chin J Nat Med Nov. 2008 Vol. 6 No. 6 411








Chemical Constituents from Daphne koreana Nakai

HU Xiao-Jia1, JIN Hui-Zi1*, SU Juan2, ZHANG Wei2, XU Wen-Zheng1, YAN Shi-Kai1,
LIU Run-Hui2, LÜ Hui-Zi3, ZHANG Wei-Dong1,2
1School of Pharmacy, Shanghai Jiaotong University, Shanghai, 200240;
2School of Pharmacy, Second Military University, Shanghai 200433;
3School of Pharmacy, Yanbian University, Yanji 133000, China
【ABSTRACT】 AIM: To study the chemical constituents of the stems and barks of Daphne koreana from the hangbai
Mountain in the North of China. METHODS: Compounds were separated by column chromatography with silica gel,
Sephadex LH-20 and RP-18 silica gel. Their structures were elucidated on the basis of physiochemical and spectral
analyses. RESULTS: Ten compounds were isolated from D. koreana and the structures were identified as
daphnoretin-7-O-β-D-glucopyranoside (1), luteolin-7-methylether-5-O-β-D-glucopyranoside (2), sakuranin (3),
yuankanin (4), daphneticin (5), isodaphneticin (6), 5-demethoxydaphneticin (7), syringin (8), (−)-pinoresinol (9) and
(−)-pinoresinol- 4-O-β-D-glucopyranoside (10). CONCLUSION: Compounds 1 ~ 10 were isolated from this plant for
the first time.
【KEY WORDS】Daphne koreana; Thymelaeaceae; Chemical constituents
【CLC Number】 R284.1 【Document code】 A 【Aiticle ID】1672-3651(2008)06-0411-04
doi: 10.3724/SP. J. 1009.2008.00411
Members of Daphne genus (Thymelaeaceae)
have been of interest to us due to their excellent me-
dicinal values. Different classes of natural products
have been isolated from these species, including fla-
vonoids, coumarins and diterpenoids. Some species
are widely used to treat wound, bruises and faucitis in
folk medicine[1].
The species of D. koreana is a member of the
Daphne genus. It is distributed in the North of China,
especially in the Changbai Mountain area where the
traditional usage of D. Koreana is very popular[2]. The
stems and barks of this plant are also used as a folk-
loric medicine “Zhu Shi Ma” because of its detumes-
cence and acesodyne activities. Previously several
coumarins were reported from the stems and barks of
D. Koreana[3]. In this paper, ten compounds,
daphnoretin-7-O-β-D-glu-copyranoside (1), luteo-
lin-7-methylether-5-O-β-D- glupyranocoside (2), sa-

【Received on】 2007-10-01
【Foundation Item】 This project was supported by the Science
and Technology Commission Foundation of Shanghai (No.05DZ19
733)
【*Corresponding author】 JIN Hui-Zi: Associate Prof., Tel:
86-21-34205989, E-mail: kimhz@sjtu.edu.cn
kuranin (3), yuankanin (4), daph-neticin (5), iso-
daphneticin (6), 5-demethoxydaphne-ticin (7), sy-
ringin (8), (−)-pinoresinol (9) and (−)- pinoresi-
nol-4-O-β-D-glucopyranoside (10) were isolated and
identified from the stems and barks of D. Koreana.
All compounds were obtained from this plant for the
first time.
1 Apparatus and Reagents
1H and 13C NMR spectra were recorded in
DMSO-d6 and CDCl3 on a Bruker DRX-600 at 500
and 125 MHz, respectively. ESI-MS were recorded on
Q-TOF micro mass spectrometer. The normal phase
silica gel and TLC silica gel plate were purchased
from Yantai, China. Sephadex LH-20 (GE Healthcare,
Sweden) and RP-18 silica gel (Merck) were used for
column chromatography.
2 Plant Material
The stems and barks of D. Koreana were col-
lected in Erdaobaihe, Jilin Province in China, in Aug,
2006. The plant material was identified by Profs.
Huang Baokang and Zheng Han-Chen, Department of
Phytochemistry, Second Military Medical University.
HU Xiao-Jia, et al. /Chinese Journal of Natural Medicines 2008, 6(6): 411−414
412 Chin J Nat Med Nov. 2008 Vol. 6 No. 6 2008 年 11 月 第 6 卷 第 6 期

The voucher specimen (collection No. 0604) is de-
posited at Herbarium of School of Pharmacy, Shang-
hai Jiaotong University, Shanghai, China.
3 Extraction and Isolation
The air dried powdered stems and barks of D.
Koreana (8.6 kg) were extracted with 75% ethanol
four times at room temperature. The solution was
concentrated and partitioned with solvents starting
with petroleum ether, chloroform, ethyl acetate and
n-butanol, yielding 57.0, 105.0, 495.5 and 420.0 g of
extracts, respectively. Part of the chloroform fraction
(70.0 g) was subjected to silica gel column chroma-
tography and eluted with CHCl3-MeOH mixtures of
increasing polarity (1% to 50%). The fractions were
combined to ten fractions on the basis of TLC com-
parison. Then the ten fractions were further purified
by a series of chromatographic techniques, such as
silica gel column (mesh 200-300), Sephadex LH-20
(CHCl3-CH3OH=1:1) and RP-18 silica gel (CH3OH-
H2O), yielding compounds 1 (75 mg), 2 (25 mg), 3
(18 mg), 4 (18 mg), 5 (25 mg), 6 (30 mg), 7 (12 mg),
8 (13 mg), 9 (50 mg) and 10 (90 mg).
4 Identification
Daphnoretin-7-O-β-D-glucopyranoside (1)
C25H22O12, white crystal, mp: 202-204 . ℃ ESI-MS
m/z: 537.2 [M + Na]+. 1H NMR (DMSO-d6, 500 MHz)
δ: 3.78 (3H, s, OCH3), 4.21~4.91 (6H, m, glu-H-2~6),
5.83 (1H, d, J = 7.0 Hz, glu-H-1), 6.36 (1H, d, J = 9.0
Hz, H-3), 7.14 (1H, dd, J = 8.0, 2.0 Hz, H-6), 7.15
(1H, s, H-8), 7.18 (1H, d, J = 2.0 Hz, H-8), 7.49 (1H,
d, J = 8.0 Hz, H-5), 7.58 (1H, s, H-5), 7.68 (1H, d, J
= 9.0 Hz, H-4), 7.74 (1H, s, H-4). 13C NMR
(DMSO-d6, 125 MHz) δ: 56.0 (OCH3), 60.8 (glu-C-6),
69.8 (glu-C-4), 73.3 (glu-C-2), 76.2 (glu-C-3), 77.4
(glu-C-5), 101.7 (C-8), 104.0 (glu-C-1), 104.5 (C-8),
109.3 (C-5), 112.3 (C-10), 113.6 (C-6), 114.4 (C-3),
114.8 (C-10), 129.6 (C-5), 129.6 (C-4), 137.7 (C-3),
143.1 (C-4), 147.3 (C-6), 147.4 (C-7), 150.2 (C-9),
155.6 (C-9), 157.0 (C-7), 159.9 (C-2), 160.0 (C-2)[4].
Luteolin-7-methylether-5-O-β-D-glucopyrano-
side(2) C22H22O11, yellow powder, mp: 228-231 . ℃
ESI-MS: m/z 485.3 [M + Na]+. 1H NMR (DMSO-d6,
500 MHz) δ: 3.13~3.74 (6H, m, glu-H-2~6), 3.91 (3H,
s, OCH3), 4.74 (1H, d, J = 7.0 Hz, glu-H-1), 6.61 (1H,
s, H-3), 6.87 (1H, d, br, H-5) 6.91 (1H, d, J = 3.0 Hz,
H-6), 7.04 (1H, d, J = 3.0 Hz, H-8), 7.37 (1H, br s,
H-2), 7.39 (1H, br d, H-6), 9.30 (1H, s, 3-OH) , 9.83
(1H, s, 4-OH). 13C NMR (DMSO-d6, 125 MHz) δ:
56.0 (OCH3), 60.8 (glu-C-6), 69.8 (glu-C-4), 73.3
(glu-C-2), 76.2 (glu-C-3), 77.4 (glu-C-5), 96.5 (C-8),
104.2 (glu-C-1), 103.5 (C-6), 105.8 (C-3),
109.2(C-10), 115.8 (C-3, 5), 121.0 (C-1), 128.1
(C-2, 6), 158.1 (C-5), 158.6 (C-9), 160.8 (C-4),
161.3 (C-2), 163.7 (C-7), 176.8 (C-4)[5].
Sakuranin (3) C22H24O10, yellow powder, mp:
212-214 . ℃ ESI-MS: m/z 449.2 [M + H]+. 1H NMR
(DMSO-d6, 500 MHz) δ: 3.26~3.70 (6H, m,
glu-H-2~6), 4.80 (1H, d, J = 8.0 Hz, glu-H-1), 3.78
(3H, s, 7-OCH3), 5.44 (1H, dd, J = 2.0, 2.0 Hz, H-2),
3.13 (1H, m, H-3), 2.83 (1H, m, H-3), 6.48 (1H, d, J =
2.0 Hz, H-6), 6.30 (1H, d, J = 3.0 Hz, H-8), 7.30 (2H,
d, J = 9.0 Hz, H-2,6), 6.78 (2H, d, J = 9.0 Hz, H-3,
5), 9.52 (4-OH). 13C NMR (DMSO-d6, 125 MHz) δ:
44.5 (C-3), 60.8 (glu-C-6), 69.8 (glu-C-4), 73.3
(glu-C-2), 76.2 (glu-C-3), 77.4 (glu-C-5),.78.4 (C-2),
95.8 (C-8), 97.5 (C-6), 101.8 (glu-C-1), 106.2 (C-10),
115.1 (C-3, 5), 130.9 (C-1), 128.9 (C-2, 6), 157.6
(C-4), 159.5 (C-5), 165.2 (C-7), 163. 8 (C-9), 189.4
(C-4)[6].
Yuankanin (4) C27H30O14, white powder, mp:
300-302 . ESI℃ -MS: m/z 601.2 [M + Na]+. 1H NMR
(DMSO-d6, 500 MHz) δ: 2.98~3.99 (6H, m,
glu-H-2~6), 3.89 (3H, s, OCH3), 4.19 (1H, d, J = 7.0
Hz, glu-H-1), 4.77 (1H, d, J = 8.0 Hz, xyl-H-2), 6.69
(1H, s, H-3), 6.87 (1H, d, J = 2.0 Hz, H-8), 6.91 (2H,
d, J = 8.0 Hz, H-3, 5), 7.02 (1H, d, J = 2.0 Hz, H-6),
7.91 (2H, d, J = 8.0 Hz, H-2, 6). 13C NMR
(DMSO-d6, 125 MHz) δ: 56.1 (OCH3), 60.8 (glu-C-6),
65.6 (xyl-CH2), 69.5 (xyl-C-5), 69.8 (glu-C-4), 73.3
(glu-C-2), 73.4 (xyl-C-3), 75.6 (glu-C-3), 75.9
(xyl-C-4), 76.5 (glu-C-5), 96.6 (C-8), 103.0 (glu-C-1),
103.8 (C-6), 104.1 (xyl-C-2), 105.8 (C-3), 109.2
(C-10), 115.9 (C-3, 5), 121.1 (C-1), 128.1 (C-2, 6),
158.1 (C-5), 158.4 (C-9), 160.8 (C-4), 161.3 (C-2),
163.5 (C-7), 176.8(C-4)[7].
Daphneticin (5) C19H12O7, colorless crystal,
mp: 235-238 . ESI℃ -MS: m/z: 409.1 [M + Na]+. 1H
NMR (DMSO-d6, 500 MHz) δ: 3.41 (1H, m, H-9),
3.67 (1H, m, H-9), 3.78 (6H, s, 2 × OCH3), 4.32 (1H,
m, H-8), 4.32 (1H, d, J = 8.0 Hz, H-7), 4.34 (1H, s,
9-OH), 6.33 (1H, d, J = 10.0 Hz, H-3), 6.76 (2H, s,
H-2, 6), 6.98 (1H, d, J = 9.0 Hz, H-6), 7.21 (1H, d, J
= 9.0 Hz, H-5), 8.00 (1H, d, J = 10.0 Hz, H-4), 8.53
(1H, s, 4-OH). 13C NMR (DMSO-d6, 125 MHz) δ:
56.3 (2 × OCH3), 60.5 (C-9), 77.6 (C-7), 79.8 (C-8),
HU Xiao-Jia, et al. /Chinese Journal of Natural Medicines 2008, 6(6): 411−414
2008 年 11 月 第 6 卷 第 6 期 Chin J Nat Med Nov. 2008 Vol. 6 No. 6 413

106.2 (C-2, 6), 112.9 (C-6), 113.5 (C-3), 113.6
(C-10), 119.7 (C-5), 126.3 (C-1), 132.3 (C-4), 138.2
(C-8), 144.1 (C-4), 147.8 (C-7), 149.4 (C-3, 5),
149.7 (C-9), 160.4 (C-2)[8].
Isodaphneticin (6) C20H18O8, yellow powder,
mp: 248-249 . E℃ SI-MS: m/z 386.0 [M]+. 1H NMR
(DMSO-d6, 500 MHz) δ: 3.40 (1H, m, H-9), 3.67 (1H,
m, H-9), 3.78 (6H, s, 2 × OCH3), 4.32 (1H, m, H-8),
4.32 (1H, d, J = 8.0 Hz, H-7), 4.34 (1H, t, 9-OH),
6.33 (1H, d, J = 10.0 Hz, H-3), 6.76 (2H, s, H-2, 6),
6.98 (1H, d, J = 9.0 Hz, H-6), 7.21 (1H, d, J = 9.0 Hz,
H-5), 8.00 (1H, d, J = 10.0 Hz, H-4), 8.51 (1H, s,
4-OH). 13C NMR (DMSO-d6, 125 MHz) δ: 56.1 (2 ×
OCH3), 59.8 (C-9), 76.6 (C-7), 78.0 (C-8), 105.5
(C-2, 6), 112.7 (C-6), 113.1 (C-3), 113.3 (C-10),
119.7 (C-5), 125.8 (C-1), 131.0 (C-4), 136.2 (C-8),
143.0 (C-4), 144.8 (C-7), 146.7 (C-9), 147.9 (C-3, 5),
159.8 (C-2)[9].
5-demethoxydaphneticin (7) C19H16O7, yel-
low powder, mp: 179-180 . ESI℃ -MS: m/z 356.3
[M]+. 1H NMR (DMSO-d6, 500 MHz) δ: 3.39 (1H, m,
H-9), 3.69 (1H, m, H-9), 3.78 (3H, s, OCH3), 4.30
(1H, m, H-8), 5.07 (1H, d, J = 8.0 Hz, 9-OH), 6.32
(1H, d, J = 10.0 Hz, H-3), 6.82 (1H, d, J = 8.0 Hz,
H-5), 6.89 (1H, dd, J = 8.0, 2.0 Hz, H-6), 7.04 (1H, d,
J = 2.0 Hz, H-2), 6.95 (1H, d, J = 8.0 Hz, H-6), 7.20
(1H, d, J = 8.0 Hz,H-5), 7.99 (1H, d, J = 10.0 Hz,
H-4), 9.18 (1H, s, 4-OH). 13C NMR (DMSO-d6, 125
MHz) δ: 55.7 (OCH3), 59.8 (C-9), 76.3 (C-7), 78.0
(C-8), 111.8 (C-2), 112.6 (C-3), 113.0 (C-10), 113.2
(C-6), 115.3 (C-5), 119.7 (C-5), 120.6 (C-6), 126.7
(C-1), 130.9 (C-8), 143.0 (C-9), 144.7 (C-4), 146.7
(C-7), 147.1 (C-3), 147.6 (C-4), 159.8 (C-2)[10].
Syringin (8) C17H24O9, white crystal, mp:
192-193 . ESI℃ -MS: m/z 395.4 [M + Na]+. 1H NMR
(CD3OD, 500 MHz) δ: 3.21~3.78 (6H, m, glu-H-2~6),
3.86 (6H, s, 2 × OCH3), 4.23 (1H, d, J = 4.0 Hz, H-3),
4.87 (1H, d, J = 7.0 Hz, glu-H-2), 6.32 (1H, dt, J =
15.0, 4.0 Hz, H-2), 6.56 (1H, d, J = 15.0 Hz, H-1),
6.75 (2H, s, H-2, 6). 13C NMR (CD3OD, 125 MHz) δ:
57.3 (2 × OCH3), 62.9 (glu-C-6), 63.9 (C-3), 69.8
(glu-C-4), 71.7 (glu-C-2), 76.0 (glu-C-3), 78.1
(glu-C-5), 101.7 (glu-C-1), 105.8 (C-2, 6), 130.4
(C-2), 131.6 (C-1), 135.6 (C-1), 136.2 (C-4), 154.7
(C-3, 5)[11].
(−)-pinoresinol (9) C22H22O6, white powder,
mp:120 . ESI℃ -MS:m/z 381.2 [M + Na]+. 1H NMR
(CDCl3, 500 MHz) δ: 3.09 (2H, s, H-8, 8′), 3.88 (6H,
s, 2 × OCH3), 3.86 (2H, s, H-9, 9), 4.20 (2H, s, H-9,
9), 4.71 (2H, d, J = 4.0 Hz, H-7, 7), 6.80 (2H, d, J =
8.0 Hz, H-5, 5), 6.87 (2H, dd, J = 8.0, 2.0 Hz, H-6,
6), 6.88 (2H, d, J = 2.0 Hz, H-2, 2). 13C NMR
(CDCl3, 125 MHz) δ: 54.1 (C-8, 8), 55.9 (2 × OCH3),
71.6 (C-9, 9), 85.8 (C-7, 7), 108.7 (C-2, 2), 114.3
(C-5, 5), 118.9 (C-6, 6), 132.9 (C-1, 1), 145.3 (C-4,
4), 146.7 (C-3, 3)[12].
(−)-pinoresinol-4-O-β-D-glucopyranoside (10)
C26H32O11, whiter powder, mp: 221-230 . ESI℃ -MS:
m/z 519.3 [M–H]−. 1H NMR (CDCl3, 500 MHz) δ:
3.76 (6H, s, 2 × OCH3), 3.12~3.86 (6H, m, glu-H-
2~6), 4.88 (1H, d, J = 7.0 Hz, glu-H-1), 3.04 (2H, s,
H-8, 8), 4.12 (4H, m, H-9, 9), 4.60 (1H, d, J = 4.0 Hz,
H-7), 4.68 (1H, d, J = 4.0 Hz, H-7), 6.72 (1H, dd, J =
4.0, 1.0 Hz, H-6), 6.76 (1H, d, J = 1.0 Hz, H-2), 6.84
(1H, dd, J = 9.0, 1.0 Hz, H-6), 6.88 (1H, d, J = 4.0 Hz,
H-5), 6.92 (1H, d, J = 1.0 Hz, H-2), 7.04 (1H, d, J =
9.0 Hz, H-3). 13C NMR (CDCl3, 125 MHz) δ: 53.5
(C-8), 53.6 (C-8), 55.7 (OCH3), 55.6 (OCH3), 60.6
(glu-C-6), 69.7 (glu-C-4) 70.8 (C-9), 70.9 (C-9), 76.8
(glu-C-3), 73.2 (glu-C-2), 77.0 (glu-C-5), 84.8 (C-7),
85.1 (C-7), 100.2 (glu-C-1), 110.4 (C-2), 110.6 (C-2),
115.1 (C-5), 115.3 (C-5), 118.1 (C-6), 118.1 (C-6),
132.2 (C-1), 135.2 (C-1), 145.8 (C-3), 145.9 (C-3),
147.5 (C-4), 149.0 (C-4) [13].
References
[1] Jiangsu New Medicine School. Dictionary of traditional
Chinese material medicine [M]. Shanghai People Republi-
shing Company, 1977: 2428-2429.
[2] Institute of TCM, Jilin. Flora of Changbaishan [M]. Jilin
People Republishing Company, 1982: 757-759.
[3] Huang EX, Xu ML, Yang JX, et al. Chemical constituents
from Daphne koreana [J]. China J Chin Mater Med, 1990,
15(10): 33-34.
[4] Narantuya S, Batsuren D, Rashkes YV, et al. Chemical study
of plants of Mongolia flora, Coumarins of Stellera
chamaejasme: The structure of chamaejasmoside-A, a new
bicoumarin glycoside [J]. Khim Prir Soedin, 1994, 30(2):
197-199.
[5] Ulubelen A, Bucker, R, Mabry TJ, et al. Flavone
5-O-glucosides from Daphne sericea [J]. Phytochemistry,
1982, 21(3): 801-803.
[6] Geibel M, Citation FW. Flavonoid 5-glucosides from Prunus
cerasus bark and their characteristic weak glycosidic bond-
ing [J]. Phytochemistry, 1991, 30(5): 1519-1521.
[7] Ji CR, Liu YZ, Feng WS, et al. The structure of yuanhuagan-
studies of the flavone from the leaves of Daphne Genkwa [J].
Chin Tradit Herb Drugs, 1986, 17(11): 7-9.
[8] Zhuang LG, Seligmann O, Wagner H. Daphneticin, a cou-
marinolignoid from Daphne tangutica [J]. Phytochemistry,
HU Xiao-Jia, et al. /Chinese Journal of Natural Medicines 2008, 6(6): 411−414
414 Chin J Nat Med Nov. 2008 Vol. 6 No. 6 2008 年 11 月 第 6 卷 第 6 期

1983, 22(2): 617-619.
[9] Cottiglia F, Bonsignore L, Loy G, et al. Structure elucidation
and antibacterial activity of a new coumarinolignoid from
Daphne gnidium L. [J] Magn Reson Chem, 2002, 40(8):
551-553.
[10] Lin W, Juian L. Synthesis and structure elucidiation of cou-
marinolignans [J]. J Chem Res (S), 1988, (12): 396-397.
[11] Park H, Jung WT, Basnet PJ, et al. Syringin4-O-β-glucoside,
a new phenylpropanoid glycoside, and constunolide, a nitric
oxide synthase inhibitor, from the stem of Magnolis sieboldii
[J]. J Nat Prod, 1996, 59(12): 1128-1130.
[12] Zhuang LG. Studies on the 13C NMR of lignins from Aituo-
tuo [J]. Chin Tradit Herb Drugs, 1983, 14(1): 3-5.
[13] Takeshi D. The constituents of Eucommia ulmoides OLIV. I.
Isolation of (+)-medioresinol di-O-β-D-glucopyranoside [J].
Chem Pharm Bull, 1983, 31(9): 2993-2997.

长白瑞香的化学成分
扈晓佳 1, 金慧子 1*, 苏 娟 2, 张 薇 2, 许文争 1, 严诗楷 1, 柳润辉 2, 吕惠子 3,
张卫东 1,2
1 上海交通大学药学院, 上海 200240;
2 上海第二军医大学药学院, 上海 200433;
3 延边大学药学院, 延吉 133000
【摘 要】 目的:研究产自长白山地区的长白瑞香(Daphne koreana)的化学成分。方法: 应用硅胶柱色谱, Sephadex
LH-20 和 RP-18 反相柱色谱的方法分离和纯化化合物, 通过光谱方法及理化性质鉴定化合物结构。结果:从长白瑞香氯仿
部位分离得到 10 个化合物, 分别为:双白瑞香苷(1), 7-甲氧基-木犀草素-5-O-β-D-葡萄糖苷(2), 樱花苷(3), 芫花苷(4), 瑞香
新素(5), 异瑞香新素(6), 5-去甲氧基瑞香新素(7), 紫丁香苷(8), 左旋松脂酚(9), 左旋松脂酚-4-O-β-D-葡萄糖苷(10)。结论:
所有化合物均为首次从该植物中分得。
【关键词】 长白瑞香; 瑞香科; 化学成分

【基金项目】 上海市科委专项基金(No. 05DZ19733)



·信 息·

《中国天然药物》编辑部获中国科技期刊学研究 重点基金项目资助

根据中国高校自然科学学报研究会基金委员会 2008 年 9 月的通知, 由《中国天然药物》编辑部郑
晓南牵头申报的项目“科技期刊进入国际重大数据库的意义与途径(GBJXA0801)”排名第一位, 获得重
点基金资助项目。此次科技期刊学研究项目基金委员会共评审出 38 项立项项目, 其中:重点基金项目 2
项, 一般基金项目 29项。《中国天然药物》编辑部获得此重点基金资助项目有扎实的研究和实践基础, 中
国药科大学期刊编辑部于 1999 年成功举办了“中国科技期刊进入国际权威检索系统国际学术研讨会”,
并出版了同研究专著《最新 SCI 源期刊要目总览》和《国际权威检索系统与检索机构》。自创刊以来, 《中
国天然药物》已进入 17 个国际重要数据库, 该研究对于推动科技期刊进入国际权威检索系统, 从而进一
步提高中国科技期刊的国际显示度具有重要意义。
(本刊编辑部)