Abstract:Drought and heavy metals contamination greatly affect plant growth, while the cloning and function analysis of stress-inducible genes provide an effective approach to improve the stress tolerance and yield of crops by genetic engineering. The expression of LEA (late embryogenesis abundant protein) gene could be induced by various stresses such as drought, high salinity, cold, and heavy metals. The study on transgenic plants showed that LEA could increase plant tolerance to water stress, had ion-binding activity, and acted as an antioxidant under abiotic stresses. Aquaporins largely presented in plasma membrane and vacuolar membrane, and played a key role in root water uptake and transportation both at cellular and at whole plant level. The expression of aquaporins was up-regulated in response to drought and salinity, and conferred the water stress tolerance in plant. Cation-efflux transport proteins were involved in the absorption, transportation, and accumulation of heavy metals in plants. All of the proteins mentioned above could have potential applied profits on improving the biological water-saving, drought resistance, and heavy metals tolerance of lawny grass.