全 文 : DOI: 10.5846/stxb201301060043
空心莲子草(Alternanthera philoxeroides)响应南方菟丝
子(Cuscuta australis)寄生的生长-防御权衡
郭素民 1, 2, 3,李钧敏 2, 3,李永慧 1, 3, ,闫明 1,*
(1 山西师范大学生命科学学院,临汾 041004;2 浙江省植物进化生态学与保护重点实验
室,台州 318000;3 台州学院生态研究所,台州 318000)
摘要:为探讨全寄生植物南方菟丝子防治入侵植物空心莲子草的可行性,以二者野外天然生
长的种群为研究对象,分析南方菟丝子寄生对空心莲子草生长及防御的影响,阐明空心莲子
草在受到寄生胁迫时如何权衡自身生长与防御的关系,进而发展出一套应对南方菟丝子寄生
的生长-防御策略。结果显示:(1)南方菟丝子寄生显着改变空心莲子草茎的形态,茎直径
和平均节间长均增加,茎直径变化极显着(P<0.01);(2)南方菟丝子寄生显着减少空心莲
子草叶片数,但同时显着增加后者茎的分枝数, 而茎上的节是潜在的无性繁殖体,故有利于
空心莲子草的克隆繁殖;此外,南方菟丝子寄生显着降低了空心莲子草的根、茎、叶生物量
和总生物量,抑制空心莲子草的生长;(3)南方菟丝子寄生显着增加空心莲子草茎的单宁、
总酚、三萜皂苷含量,增强其防御能力;(4)南方菟丝子寄生的空心莲子草的生物量与茎
部木质素、三萜皂苷、单宁和总酚含量均呈现显着负相关性(P<0.01),对照组则不存在相
关性;且寄生组较对照组相比,生物量的相对百分比显着低于对照组(P<0.01),而用于防
御的次生代谢产物总含量的相对百分比显着高于对照组(P<0.01)。以上结果表明,受到南
方菟丝子寄生胁迫后,空心莲子草改变自身的生长-防御策略,减少营养生长投入而将更多
的资源投向克隆繁殖,同时增强对“防御”物质的投入,增强其防御能力,以利于后代生存和
繁衍。
关键词:入侵植物 空心莲子草 南方菟丝子 权衡 生长 防御
The trade-off between growth and defense in
Alternanthera philoxeroides parasitized by Cuscuta
australis
基金项目:国家自然科学基金(30800133; 31270461); 中国博士后基金(20080440557); 浙江省自然科学基金
(Y5110227)
* 通讯作者 Corresponding author. E-mail: mycorrhiza@sina.com
网络出版时间:2014-03-13 15:07
网络出版地址:http://www.cnki.net/kcms/doi/10.5846/stxb201301060043.html
GUO Sumin1, 2, 3, LI Junmin2, 3, LI Yonghui1, 3, YAN Ming1,*
1 School of Life Science, Shanxi Normal University, Linfen 041004, China; 2 Zhejiang
Province Key Laboratory of plant evolutionary ecology and conservation, Taizhou 318000,
China; 3 Institute of Ecology, Taizhou University, Taizhou 318000, China
Abstract: The uncontrolled range expansion of invasive plant species has become a
worldwide problem in this century. Finding suitable biological control measures for these
invasive species has become a focus for many biologists. Using biological control species
that are not native to the invaded community can generate further problems in the
community. Thus, in recent years, scientists have started to look for enemies that are (1)
able to inhibit growth in an invasive species, and (2) native to the invaded region. Parasitic
plants are one example of such novel native enemies. Several studies provide support for
the use of native parasitic plants as potential biological control agents for invasive plants.
However, the exact response of invasive plants to the parasitic plants is still poorly known.
In this study, the relationship between a common invasive plant Alternanthera
philoxeroides (Amaranthaceae) and its native parasitic plant Cuscuta australis
(Convolvulaceae) was investigated. A. philoxeroides is a notorious invasive weed that
originates from South America. It is widely distributed in China and has had a marked
negative impact on local biodiversity and the economy of China. C. australis, a native
holoparasitic plant in China, has been found to naturally parasitize invasive A.
philoxeroides in the field. The growth of the parasite depends on assimilation of the host’s
nutrients and water. A field survey was conducted to investigate the trade-off between
growth and defense in A. philoxeroides in response to parasitization by C. australis.
Biomass of A. philoxeroides and the secondary metabolite composition in the stems with
or without C. australis were measured. Results showed the following: (1) Root mass, stem
mass, leaf mass, total biomass and leaf number of A. philoxeroides were significantly
reduced in plants parasitized by C. australis, but the number of stem nodes significantly
increased. Clonal reproduction of A. philoxeroides mainly relies on the stem nodes; thus,
the results indicate a significant inhibition of growth and an increased investment in clonal
reproductive ability. (2) Parasitization by C. australis significantly increased the secondary
metabolite contents in stems of A. philoxeroides, including lignin, total phenols, tannins
and tri-terpenoid saponin. These four types of secondary metabolite play important roles
in the plant when under stress. The increase in secondary metabolites indicates an
enhanced defense capability in the host. (3) The total biomass of A. philoxeroides
parasitized by C. australis was significantly reduced, while the relative percentage content
of secondary metabolites significantly increased. Moreover, a significant negative
correlation was found between total biomass and secondary metabolite content in stems
of A. philoxeroides parasitized by C. australis. Overall, this study suggests that in
response to parasitism by C. australis, A. philoxeroides alters its balance in investment
between growth and defense, with less investment in growth and more on clonal
reproduction and defense. Such a trade-off strategy between growth and defense may
help invasive plants mitigate the negative effects of new native enemies in the invaded
community. Nonetheless, native parasitic plants do provide a novel enemy for invasive
plant species and may provide a less risky but effective way to control invasive plants.
Keywords: invasive plant; Alternanthera philoxeroides; Cuscuta australis; trade-off;
growth; defense
生物防治目前已经成为防治有害入侵生物的重要方法[1]。常规的生物防治方法常通过引
进入侵植物原产地的天敌来控制入侵植物,但原产地天敌释放后存在造成新的生物入侵的风
险,因而越来越少被采用[2]。近年来,在入侵地天然群落中寻找新的本地天敌用于生物防治
的方法不仅可以达到控制入侵植物的目的,而且具有生态安全等优点,逐渐成为生物防治的
研究重点[3]。植物寄生可以显着影响入侵植物的生长、繁殖、生物量分配格局,最终导致入
侵植物群落结构发生变化,恢复本地群落的物种多样性,达到生物防治的目的[4-9]。已有研
究发现一些入侵植物在天然状态下被本地寄生植物所侵染,生长受到显着抑制,显着增加入
侵群落的多样性,促进本地群落的恢复,表明寄生植物是一种有潜力的生物防治剂,如田野
菟丝子(Cuscuta campestris)可用于防治薇甘菊[5-7],南方菟丝子(Cuscuta australis)可
用于防治空心莲子草[4],无根藤属的 Cassytha pubescens 可用于防治金雀儿(Cytisus
scoparius)[8]。
外来入侵植物空心莲子草(Alternanthera philoxeroides)由于其具有强大的克隆繁殖
特性、广泛的生态适应机制及缺乏专一的自然天敌的控制从而成功入侵世界各地,对入侵地
的环境及生态系统造成了严重威胁[10]。近年来,国内外对空心莲子草的研究不断深入,主
要涉及其繁殖特性[11]、生境适应性[12, 13]、遗传多样性[14]以及防治[15, 16]等方面,但对于空心
莲子草在入侵地的防御能力的演变的相关研究则很少。
植物的生长与防御之间往往存在着权衡[17]。植物在逆境环境下,如受到植物食草动物
和病原体等生物因子的攻击,或是受到寒冷、干旱等非生物因子的胁迫时,可以通过减少对
生长的投资,增加次生代谢产物的积累来增强对生物与非生物因子胁迫的防御[18, 19]。因此,
我们假设入侵植物碰到本地新天敌——全寄生植物南方菟丝子时,除了养分流失导致的生长
抑制外,还会通过改变其生长与防御的权衡策略,将更多的资源投入到防御,进一步抑制其
生长。本文以野外天然生长的空心莲子草和南方菟丝子为研究对象,比较分析南方菟丝子寄
生与未寄生时空心莲子草形态结构、生物量、次生代谢产物含量,判断其是否存在生长-防
御权衡的改变,以为深入了解空心莲子草的入侵机理及南方菟丝子防治空心莲子草的可行性
提供理论依据。
1 材料与方法
1.1 植物样品采集
实验材料选自浙江省临海市的三江湿地(28°40′ N—29°04′ N,120°49′ E—
121°41′ E)。空心莲子草主要依靠茎节进行营养繁殖[15, 20]。该样地中空心莲子草形成单
优群落,南方菟丝子寄生空心莲子草的时间为 5 a[4]。于 2012 年 7 月上旬在无南方菟丝子
寄生的空心莲子草群落中随机设置 3 m×3 m 的样方 10 个,在有南方菟丝子寄生的空心莲子
草群落中随机设置 3 m×3 m 的样方 30 个,每个样方间隔 30 m 以上。在每个样方中随机采
集 10 株空心莲子草(采样时注意保持植株的完整性),共 100 株作为对照组,共 300 株作
为寄生组(确保植株上南方菟丝子的寄生盖度达 70% 以上)。
1.2 空心莲子草茎形态观察和结构指标的测定
采用计数法统计每株空心莲子草的叶片数量、分枝数、节数,使用直尺和游标卡尺分别
测量茎长和茎直径,并计算平均节间长。
1.3 空心莲子草各部位生物量的测定
将空心莲子草植株分为根、茎、叶各部位,105 ℃杀青 0.5 h 后,于 70 ℃烘箱烘干至
恒重,采用电子天平(精确至 0.0001 g)称取根、茎、叶各部分的生物量,并计算总生物
量。
1.4 空心莲子草次生代谢产物含量的测定
用高速研磨仪将空心莲子草的茎研磨成粉末,过 0.25 mm 筛,用于四种次生代谢产物
含量的测定。采用浓硫酸法测定茎部木质素含量[21];采用紫外分光法分别测定空心莲子草
茎部的单宁[22]、总酚[23]和三萜皂苷含量[24]。对照组共测定 100 株植株的样品,寄生组共测
定 300 株植株的样品。
1.5 数据处理
每个样方对 10 株空心莲子草测定的数值取平均值作为该样方的数据,再进行后续的数
据处理,对照组共有 10 个样方的数据,寄生组共有 30 个样方的数据。数据采用平均数±标
准差表示。利用 One-way ANOVA 比较寄生组与对照组的空心莲子草之间各指标的差异显
着性,运用线性回归模型(LRM)对其进行回归统计和相关分析。数据处理均采用 SPSS19.0
软件完成,图形采用 Origin8.0 软件生成。
2 结果
2.1 南方菟丝子寄生对空心莲子草茎形态结构的影响
南方菟丝子寄生显着改变空心莲子草茎的形态结构(图 1)。与对照组相比,南方菟丝
子寄生后空心莲子草茎的茎直径极显着增加(P<0.01),而平均节间长变化不显着
(P=0.816)。
0
1
2
3
4
5
6
寄生组
平
均
节
间
长
/c
m
A
ve
ra
ge
in
te
rn
od
e
le
ng
th
/c
m a
a
对照组
0
2000
4000
6000
8000
10000
12000
(b)
寄生组
茎
直
径
/μ
m
S
te
m
d
ia
m
et
er
/ μ
m
A
B
对照组
(a)
图 1 南方菟丝子寄生对空心莲子草茎形态的影响
Fig.1 Effects of parasitism of Cuscuta australis on the morphological traits in the stem of Alternanthera
philoxeroides
2.2 南方菟丝子寄生对空心莲子草生长的影响
南方菟丝子寄生显着抑制了空心莲子草的生长(图 2)。与对照组相比,南方菟丝子寄
生后空心莲子草茎的分枝数极显着增加(P<0.01),叶片数显着减少(P<0.05)。
0
20
40
60
80
100
120
140
160
180
(b)(a)
叶
片
数
Le
af
n
um
be
r
寄生组
a
b
对照组
0
2
4
6
8
10
12
分
枝
数
Br
an
ch
n
um
be
r
寄生组
A
B
对照组
图 2 南方菟丝子寄生对空心莲子草生长的影响
Fig.2 Effects of parasitism of Cuscuta australis on the growth of Alternanthera philoxeroides
南方菟丝子寄生后空心莲子草的生物量显着下降,其中对根生物量和叶生物量的影响极
为显着(P<0.01),分别降低了 59%和 61%;对茎生物量和总生物量影响显着(P<0.05),
分别降低了 41%和 31%(图 3)。
0
1
2
3
4
5
6
7
寄生组
根
生
物
量
/g
R
oo
t b
io
m
as
s/
g
对照组
A
B
0
1
2
3
4
5
6
7
寄生组
茎
生
物
量
/g
St
em
b
io
m
as
s/
g
对照组
a
b
0
1
2
3
4 (d)(c)
(b)(a)
寄生组
叶
生
物
量
/g
Le
af
b
io
m
as
s/
g
对照组
A
B
0
2
4
6
8
10
12
寄生组
总
生
物
量
/g
To
ta
l b
io
m
as
s/
g
对照组
a b
图 3 南方菟丝子寄生对空心莲子草生物量的影响
Fig. 3 Effects of parasitism of Cuscuta australis on the biomass of Alternanthera philoxeroides
2.3 南方菟丝子寄生对空心莲子草茎部次生代谢产物含量的影响
南方菟丝子寄生胁迫下,空心莲子草茎部的4种次生代谢产物均显着增加,单宁和三萜
皂苷含量均极显着增加(P<0.01),木质素和总酚含量显着增加(P<0.05)(图4)。
0.00
0.05
0.10
0.15
0.20
b
木
质
素
含
量
/m
g
-1
Li
gn
in
c
on
te
nt
/m
g
-1
a
0.00
0.05
0.10
0.15
0.20
对照组 寄生组
三
萜
皂
苷
含
量
/m
g¡
g-
1
Tr
ite
rp
en
oi
d
sa
po
ni
n
co
nt
en
t/m
g¡
g-
1
对照组 寄生组
A
B
0.00
0.05
0.10
0.15
0.20
0.25
0.30
单
宁
含
量
/m
g¡
g-
1
Ta
nn
in
c
on
te
nt
/m
g¡
g-
1
对照组 寄生组
A
B
0.0
0.1
0.2
0.3
0.4
0.5
0.6
(d)(c)
(a) (b)
总
酚
含
量
/m
g¡
g-
1
To
ta
l p
he
no
lic
c
on
te
nt
/m
g¡
g-
1
对照组 寄生组
a
b
图 4 南方菟丝子寄生对空心莲子草茎次代谢产物含量的影响
Fig.4 Effects of the parasitism of Cuscuta australis on the secondary metabolites’ content in the stem of
Alternanthera philoxeroides
2.4 空心莲子草对南方菟丝子寄生的生长—防御权衡
生物量与四种次生代谢产物含量的回归分析显示,无南方菟丝子寄生的对照组中,空心
莲子草的生物量与茎木质素、三萜皂苷、单宁和总酚含量均无线性关系(P=0.128; P=0.290;
P=0.107; P=0.287);但南方菟丝子寄生的空心莲子草的生物量与茎木质素、三萜皂苷、单
宁和总酚含量均存在显着的线性关系(P<0.01)(图 5)。
4 8 12 16 20
0.00
0.03
0.06
0.09
0.12
0.15
4 8 12 16 20
0.00
0.03
0.06
0.09
0.12
0.15
0 4 8 12 16 20
0.10
0.15
0.20
0.25
0.30
0 4 8 12 16 20
0.0
0.1
0.2
0.3
0.4
0.5
木
质
素
含
量
/m
g·
g-
1
Li
gn
in
c
on
te
nt
/m
g·
g-
1
生物量/g
Biomass/g
y=-0.002x+0.122
P=0.002 R2=0.287
(d)(c)
(b)(a)
三
萜
皂
苷
含
量
/m
g¡
g-
1
Tr
ite
rp
en
oi
d
sa
po
ni
n
co
nt
en
t/m
g¡
g-
1
生物量/g
Biomass/g
y=-0.002x+0.091
P<0.001 R2=0.359
单
宁
含
量
/m
g¡
g-
1
Ta
nn
in
c
on
te
nt
/m
g¡
g-
1
生物量/g
Biomass/g
y=-0.01x+0.262
P<0.001 R2=0.634
总
酚
含
量
/m
g¡
g-
1
To
ta
l p
he
no
lic
c
on
te
nt
/m
g¡
g-
1
生物量/g
Biomass/g
y=-0.007x+0.398
P=0.001 R2=0.334
图 5 寄生组空心莲子草生物量与四种次生代谢产物含量的回归分析
Fig.5 Regression analysis between the biomass and the total contents of second metabolites of
Alternanthera philoxeroides in response to parasitizing by Cuscuta australis
由图 6 可知,南方菟丝子寄生后,空心莲子草将更多的资源投入到防御中,四种次生
代谢产物总量的相对百分比显着高于无寄生的对照组(F=18.880, P<0.01),而生物量的相
对百分比要显着低于无寄生的对照组(F=18.880, P<0.01)。
0
20
40
60
80
100
120
寄生组对照组生
长
-防
御
相
对
含
量
百
分
比
/%
Th
e
re
la
tiv
e
pe
rc
en
ta
ge
o
f g
ro
w
th
-d
ef
en
se
/% 生物量
次生代谢产物含量
图 6 南方菟丝子寄生对空心莲子草生长—防御相对百分比含量的影响
Fig. 6 Effects of the parasitism of Cuscuta australis on the relative percentage of growth-defense of
Alternanthera philoxeroides
3 讨论
3.1 南方菟丝子寄生对空心莲子草形态结构及生长的影响
本实验室在早期野外采样研究中发现南方菟丝子寄生 3a 可抑制空心莲子草个体的生
长,使空心莲子草的根生物量、叶生物量、茎生物量和总生物量下降,仅为对照的 73%、
58%、45%和 57%,但与未被寄生群落中的植株相比不存在显着性差异,认为是由于寄生
时间较短导致生物量差异不明显[4]。本文采用在同一样地的大规模采样与分析发现南方菟丝
子寄生5a后空心莲子草根、茎和叶的生物量及总生物量均显着下降,分别降低了59%、41%、
61%、31%,这一结果验证了上一个实验的解释的合理性[4],也与其它研究发现的菟丝子属
植物寄生显着抑制入侵植物的生长的结果相一致[5-7, 9]。
空心莲子草在受到南方菟丝子寄生胁迫后,会通过改变其形态结构来响应这种胁迫。本
研究发现,南方菟丝子寄生后,空心莲子草叶片数显着减少,而茎分枝数显着增加。由于空
心莲子草主要依靠茎节进行营养繁殖[15, 20],分枝数的增加意味着产生更多茎节,说明空心
莲子草受到南方菟丝子胁迫时会减少营养生长的投入而将更多的资源投向繁殖,以便通过产
生新繁殖部件来应对老繁殖部件营养的丢失与生长的抑制,更有利于下一代的繁殖[11]。本
实验室在其它植物响应寄生植物胁迫时也发现了这一现象,具体的生理生态响应及有关机制
有待进一步研究[9, 25]。
3.2 南方菟丝子寄生对空心莲子草次生代谢产物含量的影响
植物的次生代谢物质在植物提高自身保护和生存竞争能力、协调与环境的关系上充当着
重要的角色[19]。本研究发现南方菟丝子寄生胁迫下,空心莲子草茎的四种次生代谢产物,
即木质素、单宁、总酚、三萜皂苷含量均显着增加。单宁是植物体内一种有效的化学防御物
质,不仅可抵御病原体的侵害,而且可使植物具有苦涩的味道,降低草食动物与昆虫的取食。
总酚和三萜皂苷是植物体内重要的防御物质[26]。在环境胁迫下,酚类化合物和萜类化合物
的积累在化感作用中有重要作用[27],促进“植物-植物相互交流”,有助于植物进行主动防御
[28],迅速提升植物的直接防御和间接防御能力。已有较多研究发现草食动物与昆虫取食会
使植物的次生代谢产物含量迅速增加,增强植物的防御能力[19, 29, 30]。南方菟丝子寄生胁迫
下空心莲子草次生代谢产物的增加表明,空心莲子草对南方菟丝子寄生胁迫产生了一定的防
御反应,其茎部次生代谢产物含量的增加可以提高空心莲子草对南方菟丝子的抵抗能力[16],
减弱寄生植物吸器的形成,影响寄生植物对寄主植物营养的利用,从而阻碍其生长发育繁殖,
但增高的次生代谢产物的可能的作用机理仍需进一步研究。
3.3 空心莲子草响应南方菟丝子寄生的生长-防御权衡
生物量是反映植株生长情况的重要指标,而次生代谢产物仅在植物面临食草动物啃食和
病原体侵害等胁迫时才产生。最佳防御假说认为,植物次生代谢物质的产生是以减少植物生
长为成本的,只有在次生代谢物质所能获得的防御收益大于植物生长获得的收益时,植物才
产生次生代谢物质[31, 32]。因此,植株生长与次生代谢产物积累间往往存在权衡关系[33],这
种权衡关系可反映出植物的生长-防御策略。
根据资源可利用性假说,草食昆虫取食与资源可用性的关系会导致植物的生长-防
御权衡发生改变。竞争力进化假说(EICA 假说)也认为,由于外来植物在引入地往往会逃
离天敌的控制,因此将重新调整其生长与防御的权衡关系,从而进化出更强的竞争能力和更
弱的防御能力[34, 35]。Pan 等通过比较分析原产地与入侵地的空心莲子草的生长及防御能
力,证明了我国入侵地的空心莲子草受到原产地天敌昆虫胁迫时,生长-防御策略发生了
变化,表现出较高的生长和较低的防御策略,增强自身对生长的能量分配,加快生长以更
好在入侵地扩张[36, 37]。本研究采用线性回归分析野外天然生长的空心莲子草在南方菟丝子
寄生胁迫下的生物量与次生代谢产物含量的相关性,发现未被南方菟丝子寄生的空心莲子草
的生长-防御之间不存在线性相关,而南方菟丝子寄生的空心莲子草的生物量与茎木质素、
三萜皂苷、单宁和总酚含量均具有极显着性负相关,即南方菟丝子寄生后,空心莲子草可改
变生长-防御权衡策略,使总生物量下降,次生代谢产物含量增加,重新将更多的资源投入
到防御,而且减少对生长的投资。
本研究发现空心莲子草在入侵地遇到新的自然天敌—-南方菟丝子时,重新权衡生长与
防御的能量分配,重复发展出其在原产地的策略,资源由“生长”向“防御”的再分配使得空心
莲子草的防御能力增强。这种投资的权衡策略将有利于空心莲子草的生存,对空心莲子草在
入侵地的扩张中的作用及其快速进化将具有重要的意义。但入侵植物在碰到本地新天敌之后
是否都会重新产生新的生长-防御权衡策略?这一规律仍需进一步的深入研究才可揭晓。
References:
[1] Clewley G D, Eschen R, Shaw R H, Wright D J, Sheppard A. The effectiveness of classical
biological control of invasive plants. Journal of Applied Ecology, 2012, 49(6): 1287-1295.
[2] Li J M, Jin Z X, Song W J. Do native parasitic plants cause more damage to exotic invasive
hosts than native non-invasive hosts? An implication for biocontrol. PLoS One, 2012, 7(4):
e34577, doi:10.137/journal.pone.0034577.
[3] Colautti R I, Ricciardi A, Grigorovich I A, Maclsaac H. Is invasion success explained by the
enemy release hypothesis? Ecology Letters, 2004, 7(8): 721-733.
[4] Wang R K, Guan M, Li Y H, Yang B F, Li J M. Effect of the parasitic Cuscuta australis on the
community diversity and the growth of Alternanthera philoxeroides. Acta Ecologica Sinica,
2012, 32(6): 1917-1923.
[5] Yu H, Yu F H, Miao S L, Dong M. Holoparasitic Cuscuta campestris suppresses invasive
Mikania micrantha and contributes to native community recovery. Biological Conservations,
2008, 141(10): 2653-2661.
[6] Yu H, Liu J, He W M, Miao S L, Dong M. Cuscuta australis restrains three exotic invasive
plants and benefits native species. Biological Invasions, 2011, 13(3): 747-756.
[7] Zan Q J, Wang B S, Wang Y J, Liao W B, Li M G, Xu H L. The ecological evaluation on the
controlling Mikania micrantha by Cuscuta campestris. Acta Scientiarum Naturalium
Universitatis Sunyatseni, 2002, 41(6): 60-63.
[8] Prider J, Wlting J, Facelli J M. Impacts of a native parasitic plant on an introduced and a
native host species: implications for the control of an invasive weed. Annals of Botany, 2009,
103(1): 107-115.
[9] Zhang J, Yan M, Li J M. Effect of differing levels parasitism from native Cuscuta australis on
invasive Bidens pilosa growth. Acta Ecologica Sinica, 2012, 32(10): 3136-3143.
[10]Ma R Y, Wang R. Invasive mechanism and biological control of alligator weed, Alternanthera
philoxeroides (Amaranthaceae), in china. Chinese Journal of Applied Environmental Biology,
2005, 11(2): 246-250.
[11] Guo W, Li J M, Hu Z H. Effects of clonal integration on growth of Alternanthera
philoxeroides under simulated acid rain and herbivory. Acta Ecologica Sinica, 2012, 32(1):
151-158.
[12] Jia X, Fu D J, Pan X Y, Li B, Chen J K. Growth pattern of alligator weed (Alternanthera
philoxeroides) in terrestrial habitats. Biodiversity Science, 2007, 15(3): 241-246.
[13] Schooler S, Baron Z, Julien M. Effect of simulated and actual herbivory on alligator weed,
Alternanthera philoxeroides, growth and reproduction. Biological Control, 2006, 36(1):
74-79.
[14]Pan X Y, Liang H Z, Sosa A, Geng Y P, Li B, Chen J K. Patterns of morphological variation of
alligator weed (Alternanthera philoxeroides): from native to invasive regions. Biodiversity
Science, 2006, 14(3): 232-240.
[15]Jiang H Y, Cheng Z Y, Hao Y. Research progress on physiological and ecological
characteristics of Alternanthera philoxeroides. Journal of Anhui Agricultural Sciences, 2007,
35(22): 6721-6722.
[16] Li Y H. Ecological response of Alternanthera philoxeroides to the local parasitic Cuscuta
australis [D]. Shanxi: Shanxi Normal University, 2012.
[17] Jia X. Geographical variation of invasive Alternanthera philoxeroides in its Native and
introduced Ranges [D]. Shaanxi: Northwest University, 2008.
[18] Huang L Q, Guo L P. Secondary metabolites accumulating and geoherbs formation under
environmental stress. China Journal of Chinese Materia Medica, 2007, 32(4): 277-280.
[19] Yan X F, Wang Y, Li Y M. Plant secondary metabolism and its response to environment. Acta
Ecologica Sinica, 2007, 27(6): 2554-2562.
[20] Erwin S, Huckaba A, He K S, McCarthy M. Matrix analysis to model the invasion of
alligatorweed (Alternanthera philoxeroides) on Kentucky Lakes. Journal of Plant Ecology,
2012, 14(6): 1101-1110.
[21]Xiong S M, Zuo X F, Zhu Y Y. Determination of cellulose, hemi-cellulose and Ligin in rice
hull. Cereal & Feed Industry, 2005, (8): 40-41.
[22]Li J M, Jin Z X, Zhu X Y. Comparison of the total tannin in different organs of Calycanthus
chinensis. Guihaia, 2007, 27(6): 944-947.
[23]Jin Z X, Li J M, Zhu X Y. Analysis of the total phenols content in different organs of
Calycanthus chinensis from different habitat. Journal of Anhui Agricultural University, 2006,
33(4): 454-457.
[24]Li J H, Jin Z X, Chen B, Jiang X M, Wang H D. Dynamic analysis of the secondary
metabolites contents in the leaves of an endangered plant Sinocalycanthus chinensis. Journal
of Northwest Forestry University, 2008, 23(2): 28-31.
[25]Yang B F, Li J M. Effect of parasitic plant Cuscuta australis R. Br. on growth of three
invasive plants. Journal of Zhejiang University: Agriculture﹠Life Sciences, 2012, 38(2):
127-131.
[26] Zhang G Y, He X Y, Tang L, Yan K, Chen W, Xu S, Li X. Effects of elevated ozone on
phenolic substances content and total antioxidative capacity of Quercus mongolica leaves.
Chinese Journal of Applied Ecology, 2009, 20(3): 725-728.
[27] Kong C H, Xu T, Hu F, Huang S S. Allelopathy under environmental stress and its induced
mechanism. Acta Ecologica Sinica, 2000, 20(5): 849-854.
[28] Zhang S F, Zhang Z, Wang H B, Kong X B. New discovery about plant defense: plant-plant
communication. Chinese Journal of Plant Ecology, 2012, 36(10): 1120-1124.
[29] Miller B, Madilao L L, Ralph S, Bohlmann J. Insect-induced conifer defense. White pine
weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions,
and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in
Sitka spruce. Plant Physiology, 2005, 137(1): 369-382.
[30] Chludil H D, Leicach S R, Corbino G B, Barriga L G, Vilariño M P. Genistin and
quinolizidine alkaloid induction in L. angustifolius aerial parts in response to mechanical
damage. Journal of Plant Interactions, 2013, 8(2): 117-124,
[31] Bazzaz F A, Chiariello N R, Coley P D, Pitelka L F. Allocating resources to reproduction and
defense. BioScience, 1987, 37(1): 58-67.
[32] Chapin F S, Bloom A J, Field C B, Waring R H. Plant responses to multiple environmental
factors. BioScience, 1987, 37(1): 49-57.
[33] Su W H, Zhang G F, Zhou H, Guo X R, Zhang L. Effects of nitrogen on the growth and
accumulation of secondary metabolites of Erigeron breviscapus (Compositae). Acta Botanica
Yunnanica, 2010, 32(1): 41-46.
[34] Blossey B, Notzold R. Evolution of increased competitive ability in invasive nonindigenous
plants: a hypothesis. The Journal of Ecology, 1995, 83(5): 887-889.
[35] Müller-Schärer H, Schaffner U, Steinger T. Evolution in invasive plants: implications for
biological control. Trends in Ecology & Evolution, 2004, 19(8): 417-422.
[36] Pan X Y, Jia X, Fu D J, Li B. Geographical diversification of growth–defense strategies in an
invasive plant. Journal of Systematics and Evolution, 2013, 51(3): 308-317.
[37] Pan X Y, Jia X, Chen J K, Li B. For or against: the importance of variation in growth rate for
testing the EICA hypothesis. Biological Invasions, 2012, 14(1): 1-8.
参考文献:
[4] 王如魁, 管铭, 李永慧, 杨蓓芬, 李钧敏. 南方菟丝子寄生对喜旱莲子草生长及群落多样
性的影响. 生态学报, 2012, 32(6): 1917-1923.
[7] 昝启杰, 王伯荪, 王勇军, 廖文波, 李鸣光, 徐华林. 田野菟丝子控制薇甘菊的生态评价.
中山大学学报: 自然科学版, 2002, 41(6): 60-63.
[9] 张静, 闫明, 李钧敏. 不同程度南方菟丝子寄生对入侵植物三叶鬼针草生长的影响. 生
态学报, 2012, 32(10): 3136-3143.
[10]马瑞燕, 王韧. 喜旱莲子草在中国的入侵机理及其生物防治. 应用与环境生物学报, 2005,
11(2): 246-250.
[11]郭伟, 李钧敏, 胡正华. 酸雨和采食模拟胁迫下克隆整合对空心莲子草生长的影响. 生
态学报, 2012, 32(1): 151-158.
[12]贾昕, 傅东静, 潘晓云, 李博, 陈家宽. 陆生生境中喜旱莲子草的生长模式. 生物多样性,
2007, 15(3): 241-246.
[14]潘晓云, 梁汉钊, Sosa A, 耿宇鹏, 李博, 陈家宽. 喜旱莲子草茎叶解剖结构从原产地到
入侵地的变异式样. 生物多样性, 2006, 14(3): 232-240.
[15]江红英, 陈中义, 郝勇. 喜旱莲子草生理生态特性研究进展. 安徽农业科学, 2007, 35(22):
6721-6722.
[16] 李永慧. 入侵植物喜旱莲子草对南方菟丝子寄生的生态响应研究 [D]. 山西: 山西师范
大学, 2012.
[17]贾昕. 外来入侵种喜旱莲子草在原产地和入侵地的地理变异 [D]. 西安: 西北大学,
2008.
[18]黄璐琦, 郭兰萍. 环境胁迫下次生代谢产物的积累及地道药材的形成. 中国中药杂志,
2007, 32(4): 277-280.
[19]阎秀峰, 王洋, 李一蒙. 植物次生代谢及其与环境的关系. 生态学报, 2007, 27(6):
2554-2562.
[21]熊素敏, 左秀凤, 朱永义. 稻壳中纤维素、半纤维素和木质素的测定. 粮食与饲料工业,
2005, (8): 40-41.
[22]李钧敏, 金则新, 朱小燕. 夏蜡梅营养器官总鞣质含量的比较. 广西植物, 2007, 27(6):
944-947.
[23]金则新, 李钧敏, 朱小燕. 不同生境夏蜡梅营养器官总酚含量分析. 安徽农业大学学报,
2006, 33(4): 454-457.
[24]李建辉, 金则新, 陈波, 蒋鑫淼, 王海东. 濒危植物夏蜡梅叶片次生代谢产物含量的动态
分析. 西北林学院学报, 2008, 23(2): 28-31.
[25]杨蓓芬, 李钧敏. 南方菟丝子寄生对 3种入侵植物生长的影响. 浙江大学学报: 农业与生
命科学版, 2012, 38(2): 127-131.
[26]张国友, 何兴元, 唐玲, 颜坤, 陈玮, 徐胜, 李响. 高浓度臭氧对蒙古栎叶片酚类物质含
量和总抗氧化能力的影响. 应用生态学报, 2009, 20(3): 725-728.
[27]孔垂华, 徐涛, 胡飞, 黄寿山. 环境胁迫下植物的化感作用及其诱导机制. 生态学报,
2000, 20(5): 849-854.
[28] 张苏芳, 张真, 王鸿斌, 孔祥波. 植物防御的新发现: 植物-植物相互交流. 植物生态学
报, 2012, 36(10): 1120-1124.
[33]苏文华, 张光飞, 周鸿, 郭晓荣, 张磊. 氮素对短葶飞蓬生长和次生代谢产物积累的影响.
云南植物研究, 2010, 32(1): 41-46.