免费文献传递   相关文献

黄草乌中的新的二萜生物碱



全 文 :有机化学
Chinese Journal of Organic Chemistry ARTICLE

* E-mail: wfp@scu.edu.cn
Received January 9, 2014; revised January 24, 2014; published online February 14, 2014.
Project supported by the National Natural Science Foundation of China (No. 81273387).
国家自然科学基金(No. 81273387)资助项目.

Chin. J. Org. Chem. 2014, 34, 909~915 © 2014 Chinese Chemical Society & SIOC, CAS http://sioc-journal.cn/ 909

DOI: 10.6023/cjoc201401013 研究论文
黄草乌中的新的二萜生物碱
唐天兴 陈东林 王锋鹏*
(四川大学华西药学院 成都 610041)
摘要 从黄草乌(Aconitum vilmorinianum Kom.)中分离得到 20 个二萜生物碱, 并应用 HRESIMS, 1D-和 2D-NMR, 单晶
X 射线衍射等方法确定了它们的结构 . 其中一个为新的 C19 二萜生物碱 , 1-epi-16β-hydroxycardiopetaline, 它是
16β-hydroxycardiopetaline 的差向异构体; 19 个为已知化合物.
关键词 黄草乌; C19-二萜生物碱; 1-表-16β-羟基-cardiopetaline
A New C19-Diterpenoid Alkaloid from Aconitum vilmorinianum
Tang, Tianxing Chen, Donglin Wang, Fengpeng*
(West China College of Pharmacy, Sichuan University, Chengdu 610041)
Abstract A new C19-diterpenoid alkaloid, 1-epi-16β-hydroxycardiopetaline, together with 19 known diterpenoid alkaloids,
was isolated from the roots of Aconitum vilmorinianum Kom. The structure of the new alkaloid was established on the basis of
spectral data (HR-MS, X-ray crystallographic analysis, 1D- and 2D-NMR).
Keywords Aconitum vilmorinianum; C19-diterpenoid; 1-epi-16β-hydroxycardiopetaline

乌头属(Aconitum)在全世界共有 400 种左右, 广泛
的分布在北半球地区, 如亚洲、欧洲和北美洲. 而中国
特有的大约有 200 种, 其中约 76 种药用. 用途主要包括
治疗风湿性关节炎和各种疼痛等疾病 [1]. 黄草乌
(Aconitum vilmorinianum Kom.)生于海拔 2100~2500 m
间山地丛林中. 主要分布于云南中部、四川(会理)及贵
州西部. 其根有剧毒, 味麻, 可药用, 治疗跌打损伤、风
湿等症[2]. 对黄草乌中的化学成分研究早期报道较多,
从中分离得到约20余个二萜生物碱成分[1]. 由于植物的
产地、气候等因素对其化学成分影响较大, 2008 年, 谭
宁 华 等 [3] 报 道 了 从 该 植 物 中 分 离 得 到 一 个 具
C(8)-C(9)-C(10)三元环体系的新骨架的 C19-二萜生物碱.
为了更好的开发利用我国乌头属植物的药用资源, 本课
题组对其进行更深入的系统研究, 从该植物中共分离得
到 20 个化合物(Scheme 1), 其中一个为新的 C19二萜生
物碱 epi-16β-hydroxycardiopetaline (1), 其余 19 个已知
化合物分别为: talatisamine (2)[4], karakoline (3)[5], sa-
chaconitine (4)[6], 14-O-veratroylneoline (5)[7], vilmorri-
anine A (6)[8], yunaconitine (7)[9], condelphine (8)[10],
14-acetyl-sachaconitine (9)[11], indaconitine (10)[12],
14-acetylkarakoline (11)[13], 14-acetyltalatizamine (12)[14],
cammaconine (13)[15], isotalatizidine (14)[16], 8-deacetyl-
yunaconitine (15)[17], 16β-hydroxycardiopetaline (16)[18],
pseudaconine (17) [19], columbianine (18), denudatine
(19)[20], panicutine (20)[21]. 新 化 合 物 的 结 构 应 用
HRESIMS, 1D-和 2D-NMR, 单晶 X 射线衍射等方法予
以确证.
1 结果与讨论
化合物1为白色无定型粉末, 通过HR-ESI-MS确定
其分子式为 C21H33NO4 (m/z: 364.2474 [M+H]+, calcd
364.2487), 不饱和度为 6. 1 的 NMR 显示其含有一个氮
乙基[δH 2.25~2.32, 2.43~2.46 (m, 2H); 1.02 (t, J=7.2
Hz, 3H); δC 46.8 (t), 11.3 (q)]和一个角甲基[δH 0.78 (s,
3H); δC 24.2 (q)]. 除氮乙基外, 该化合物仅示出 19 个碳
信号, 无甲氧基和酯基取代信号, 结合生源推测其为
C19-二萜生物碱[22,23]. 13C NMR示出该化合物有4个含氧
取代的碳信号[δC 65.4 (d), 72.4 (s), 73.9 (d), 71.2 (d)], 表
明该化合物的 4 个氧取代碳均为羟基取代. 1H NMR 示


有机化学 研究论文

910 http://sioc-journal.cn/ © 2014 Chinese Chemical Society & SIOC, CAS Chin. J. Org. Chem. 2014, 34, 909~915

N
R1
R3
R2
R4
N
R1
R3
OCH3
R5
R2
H3CO
OCH3
R4
N
R1
R3
R2
H3CO
OCH3
N
R1
R3
R2
R4
HO
H
N
HO
OH
H
H3C N
O
O
H3CCO
O
H
1 R1 = -OH, R2 = R3 = R4 = OH
3 R1 = R2 = R3 = OH, R4 = OCH3
4 R1 = R2 = OCH3, R2 = R3 = OH
9 R1 = R2 = OCH3, R2 = OH, R3 = OAc
11 R1 = R2 = OH, R3 = OAc, R4 = OCH3
16 R1 = R2 = R3 = R4 = OH
5 R1 = R2 = OH, R3 = OVr, R4 = R5 = H
6 R1 = OCH3, R2 = OAc, R3 = OAs, R4 = OH, R5 = H
7 R1 = OCH3, R2 = OAc, R3 = OAs, R4 = R5 = OH
10 R1 = OCH3, R2 = OAc, R3 = OBz, R4 = R5 = OH
15 R1 = OCH3, R2 = OH, R3 = OAs, R4 = R5 = OH
17 R1 = OCH3, R2 = R3 = R4 = R5 = OH
2 R1 = OCH3, R2 = R3 = OH
8 R1 = R2 = OH, R3 = OAc
12 R1 = OCH3, R2 = OH, R3 = OAc
14 R1 = R2 = R3 = OH
13 R1 = R4 = OCH3, R2 = R3 = OH
18 R1 = R2 = R3 = OH, R4 = OCH3
19 20
b

Scheme 1
出一个质子三重峰的信号[δH  4.52 (t, J=4.8 Hz, 1H)]可
指定为 H-14β, 说明 C-14 位有羟基取代. HMBC 谱中,
H-14 (δH 4.52)分别与 C-8 [δC 72.4 (s)]和 C-16 [δC 71.2
(d)]相关, 表明 C-8 位和 C-16 位也为羟基取代. 剩余一
个羟基取代指定在 C-1 位是基于 HMBC 谱中 H-1 (δH
4.13)与C-3的相关(图 1). 当 1 位为 α-OH 时, C-1 化学位
移值通常为δC 72左右, 而当1位为β-OH时通常为 δC 68
左右[16], 而化合物 1 的 C-1 为 δC 65.4 (d), 可能是由于溶
剂效应影响所致. 化合物 16 以氘代吡啶为溶剂时, C-1
的化学位移同样向高场位移了约 2 ppm. 由此确证化合
物 1 为 16 的差向异构体, 命名为 1-epi-16β-hydroxycar-
diopetaline. 最后, 我们通过单晶 X 衍射分析确定了该
化合物结构(图 2), 并由 2D-NMR 归属了其所有碳氢个
信号(表 1).
N
OH
OH
OH
OH
: 1H-1H COSY
: HMBC (H C)

图 1 化合物 1 主要的 1H-1H COSY, HMBC 相关
Figure 1 The key 1H-1H COSY, HMBC correlations of 1
化合物 1 和 16 为一对差向异构体, 但两者的极性,
溶解度以及化学位移等都存在明显差异. 化合物 1 难溶
于氯仿, 而化合物16微溶于氯仿. 且两者的化学位移在
C-1, C-2, C-3, C-4, C-10, C-12 以及 C-19 都存在较大差

图 2 化合物 1 的单晶 X 衍射结构
Figure 2 X-ray structure of 1
异. 这归因于 A 环构象的不同. 对化合物 16 来说, 由于
1α-OH基与氮上的孤对电子可形成分子内氢键, 故A环
取船式构象. 反之, 而在化合物 1 中, 则无此种分子内
氢键的存在, 所以, 正如单晶 X 衍射分析示出那样, 化
合物 1 的 A 环以椅式构象存在. 该化合物其余几个环系
也通过单晶 X 衍射实验予以确证, F 环与 A 环一样为椅
式构象, D 环和 E 环同为船式构象, 七元 B 环为扭船式,
而五元 C 环为信封式.
2 结论
天然产C19-二萜生物碱的含氧取代一般都含有甲氧

Chinese Journal of Organic Chemistry ARTICLE

Chin. J. Org. Chem. 2014, 34, 909~915 © 2014 Chinese Chemical Society & SIOC, CAS http://sioc-journal.cn/ 911
表 1 化合物 1 和 16 的 NMR 数据(400 MHz for 1H NMR, 100
MHz for 13C NMR, J/Hz)
Table 1 NMR data of compounds 1 and 16 (400 MHz for 1H
NMR, 100 MHz for 13C NMR, J/Hz)
1 16 No. δH (J in Hz)a δ  Ca δ  Ca δ  Cb
1
2

3

4
5
6

7
8
9
10
11
12

13
14
15

16
17
18
19
21

22
4.13 brs
1.80 hidden (α)
3.02 hidden (β)
1.39~1.43 m (β)
1.94~2.00 m (α)

2.00 hidden 
1.61 dd (14.4, 8.0) (α)
2.19 hidden (β)
2.22 d (7.6)

2.47 hidden
2.80~2.86 m

1.39~1.43 m (α)
2.09~2.15 m (β)
2.43 hidden
4.52 t (4.8)
2.61 dd (15.6, 4.8) (α)
2.69~2.73 m (β)
4.02 t (6.4)
2.77 brs
0.78 s
2.03, 2.41 hidden
2.25~2.32 m
2.43~2.46 m
1.02 t (7.2)
65.4 d
29.2 t

32.6 t

32.4 s
44.1 d
23.4 t

43.0 d
72.4 s
45.0 d
37.8 d
47.9 s
26.4 t

42.4 d
73.9 d
44.1 t

71.2 d
61.2 d
24.2 q
55.1 t
46.8 t

11.3 q
70.7 d
28.2 t

30.3 t

30.8 s
44.9 d
23.4 t

43.8 d
72.2 s
44.9 d
42.5 d
47.0 s
27.4 t

42.5 d
73.7 d
43.5 t

70.8 d
60.7 d
25.1 q
57.7 t
46.1 t

10.8 q
72.4 d
29.6 t

31.3 t

32.9 s
46.6 d
25.0 t

45.4 d
74.5 s
46.4 d
43.8 d
48.7 s
28.1 t

43.9 d
76.2 d
45.4 t

72.5 d
63.2 d
27.5 q
60.2 t
48.3 t

13.0 q
a In C5D5N+CDCl3; b in CDCl3.
基, 不含甲氧基的化合物非常罕见. 另外, 该类化合物
的 C-1 的含氧取代基的构型几乎都是 α-取向, β-取向的
结构很少见. 化合物 1 是目前天然产的唯一一个无甲氧
基取代, 且 C-1 为 β-OH 取代的 C19-二萜生物碱.
3 实验部分
3.1 仪器与试剂
红外光谱用 Nicolet FT-IR 2005XV 仪测定, KBr 压
片; 质谱用 VGAutospel 3000 型和 Finigan LCQ 型质谱
仪测定; 核磁共振用 Varian UNION 400/54 核磁共振仪
测定, 溶剂CDCl3, CD3OD或C5D5N, TMS为内标; 旋光
用 Perkin Polarimeter 341 型旋光光度仪测定; 熔点用
WRX-TS 显示热差分析仪测定(未校正). 薄层层析所用
吸附剂为硅胶G, 以0.5% CMC水溶液或者0.5% NaOH,
0.5% CMC 溶液调板, 105 ℃活化 1 h 使用, 用改良的
Dragendorff试剂和20%的硫酸乙醇显色; 柱层析硅胶为
青岛海洋化工厂制品(10~40 μ). 氯仿为工业氯仿重蒸,
石油醚、丙酮、甲醇、均为分析纯, 成都化学试剂厂生
产.
3.2 植物标本
原植物 2012 年 7 月采自云南省武定县, 为种植品
种. 由中国科学院昆明植物研究所陈纪军研究员鉴定.
3.3 提取分离
黄草乌全草粉末 40 kg, 用 0.05 mol/L 的盐酸 500 L
进行渗漉至渗漉液无生物碱反应为止, 将渗漉液用浓氨
水碱化 pH 大于 10, 再用乙酸乙酯萃取. 合并乙酸乙酯
层, 减压蒸馏, 回收溶剂得到总生物碱棕色浸膏 603.5
g.
总生物碱 603.5 g, 采用丙酮和甲醇溶解, 硅胶拌
样, 干法上样, 经硅胶柱层析[硅胶 600 g, 石油醚-丙酮
(1%二乙胺), V∶V=10∶1→1∶1]梯度洗脱. 洗脱液经
TLC 检查合并为 A~E 五部分.
A 部分(35 g)经(石油醚-丙酮, V∶V=40∶1→20∶
1)梯度洗脱得 14-acetylsachaconitine (200 mg).
B 部分(168.7 g)部分经丙酮析晶得 talatisamine (31
g), 剩余部分经[石油醚-丙酮(1%二乙胺), V∶V=15∶
1]洗脱得 B-1, B-2, B-3 三部分. B-1 经(氯仿-甲醇, V∶V
=99∶1)反复柱层析得 14-acetylkarakoline (11 mg). B-2
经 [石油醚-丙酮 (1%二乙胺 ), V∶V=9∶1]洗脱得
sachaconitine (89 mg). B-3 部分经丙酮析晶得 denudatine
(20 mg).
C 部分(135 g)经硅胶柱层析(氯仿-甲醇, V∶V=
150∶1→99∶1)梯度洗脱得 C-1, C-2, C-3, C-4, C-5 五部
分. C-1 先经(氯仿-甲醇, V∶V=200∶1)后用(环己烷-
丙酮, V∶V=40∶1)洗脱得 14-acetyltalatizamine (50
mg). C-2 经[石油醚-丙酮(1%二乙胺), V∶V=30∶1]反
复洗脱得 vilmorrianine A (813 mg), C-3 部分经[石油醚-
丙酮(1%二乙胺), V∶V=30∶1→20∶1]梯度洗脱得
condelphine (19 mg)及C-3-2和C-3-3两部分, C-3-3经(氯
仿-甲醇, V∶V=200∶1)洗脱得 14-o-veratroylneoline
(34 mg)和 indaconitine (11 mg). C-4 部分经反复硅胶柱
层析(石油醚-丙酮, V∶V=20∶1)得 yunaconitine (55
mg).
D部分(59.3 g)先经丙酮析晶得karakoline (10 g), 剩
余部分经硅胶柱层析[石油醚-丙酮(1%二乙胺), V∶V=
10∶1]洗脱得 D-1, D-2, D-3, D-4 四部分. D-1 经(氯仿-
甲醇, V∶V=99∶1)洗脱得panicutine (42 mg). D-3经[石
油醚-丙酮(1%二乙胺), V∶V=5∶1]洗脱得 D-3-1,
D-3-2, D-3-3, D-3-4 四部分. D-3-2 经(氯仿-甲醇, V∶
V=98∶2)反复柱层析得 cammaconine (17 mg), D-3-3 同

有机化学 研究论文

912 http://sioc-journal.cn/ © 2014 Chinese Chemical Society & SIOC, CAS Chin. J. Org. Chem. 2014, 34, 909~915
样以(氯仿-甲醇, V∶V=98∶2)洗脱得 isotalatizidine (45
mg)和 8-deacetylyunaconitine (35 mg).
E 部分(113 g)经胶柱层析[石油醚-丙酮(1%二乙胺),
V∶V=5∶1→1∶1]梯度洗脱得 E-1, E-2, E-3, E-4 四部
分. E-2 经[氯仿-甲醇(1%氨水), V∶V=97∶3]反复柱层
析得 pseudaconine (21 mg), E-3 部分同样以[氯仿-甲醇
(1%氨水), V∶V=97∶3]为展开剂洗脱得 E-3-1, E-3-2,
E-3-3 三部分. 三部分都经乙酸乙酯析晶分别得到 1 (28
mg), 16β-hydroxycardiopetaline (45 mg), columbianine
(55 mg). 化合物 1 后经吡啶溶解, 成功培养出单晶.
3.4 结构测定
1-Epi-16β-hydroxycardiopetaline (1): 白色无定型粉
末. m.p. 231~234 ℃, [α] 20D -3.3 (0.49, CH3OH); 1H
NMR (400 MHz, C5D5N+CDCl3)和 13C NMR (100 MHz,
C5D5N+CDCl3)见表 1; IR (KBr) ν: 3415, 1106, 1046
cm-1 ; ESI-MS m/z (%): 364 [M+H]+ (100); HR-ESI-MS
calcd for C21H34NO4 [M+H]+ 364.2487, found 364.2474.
Talatisamine (2): 白色无定型粉末. m.p. 143~144
℃; 1H NMR (400 MHz, CDCl3) δ: 1.00 (t, J=7.2 Hz, 3H,
NCH2CH3), 3.21, 3.24, 3.29 (each s, each 3H, 3×OCH3),
4.08 (t, J=4.8 Hz, 1H, H-14β); 13C NMR (100 MHz,
CDCl3) δ: 86.1 (d, C-1), 25.6 (t, C-2), 32.6 (t, C-3), 38.4 (s,
C-4), 37.3 (d, C-5), 24.5 (t, C-6), 45.6 (d, C-7), 72.6 (s,
C-8), 46.7 (d, C-9), 45.5 (d, C-10), 48.4 (s, C-11), 27.5 (t,
C-12), 45.8 (d, C-13), 75.3 (d, C-14), 38.2 (t, C-15), 82.0
(d, C-16), 62.8 (d, C-17), 79.3 (t, C-18), 52.9 (t, C-19),
49.3 (t, C-21), 13.5 (q, C-22), 56.2 (q, C-1), 56.3 (q,
C-16), 56.3 (q, C-18). 以上数据与文献报道值[4]基本一
致.
Karakoline (3): 白色无定型粉末. m.p. 185~187
℃; 1H NMR (400 MHz, CDCl3) δ: 0.86 (s, 3H, H-18), 1.09
(t, J=7.2 Hz, 3H, N-CH2CH3), 3.32 (s, 3H, OCH3), 4.20
(t, J=4.8 Hz, 1H, H-14β); 13C NMR (100 MHz, CDCl3) δ:
72.4 (d, C-1), 29.6 (t, C-2), 31.1 (t, C-3), 32.8 (s, C-4),
44.9 (d, C-5), 25.0 (t, C-6), 46.4 (d, C-7), 74.1 (s, C-8),
46.6 (d, C-9), 39.8 (d, C-10), 48.7 (s, C-11), 29.6 (t, C-12),
43.9 (d, C-13), 75.8 (d, C-14), 42.2 (t, C-15), 81.8 (d,
C-16), 63.3 (d, C-17), 28.2 (q, C-18), 60.1 (t, C-19), 48.3
(t, C-21), 13.0 (q, C-22), 56.2 (q, C-16). 以上数据与文献
报道值[5]基本一致.
Sachaconitine (4): 白色无定型粉末. m.p. 113~115
℃; 1H NMR (400 MHz, CDCl3) δ: 0.73 (s, 3H, H-18), 1.00
(t, J=7.2 Hz, 3H, NCH2CH3), 3.21, 3.30 (each s, each 3H,
2×OCH3), 4.09 (dd, J=4.8 Hz, 1H, H-14β); 13C NMR
(100 MHz, CDCl3) δ: 86.7 (d, C-1), 26.1 (t, C-2), 37.4 (t,
C-3), 34.5 (s, C-4), 50.6 (d, C-5), 25.0 (t, C-6), 45.6 (d,
C-7), 72.8 (s, C-8), 46.8 (d, C-9), 38.3 (d, C-10), 48.8 (s,
C-11), 27.6 (t, C-12), 45.6 (d, C-13), 75.5 (d, C-14), 37.7
(t, C-15), 82.1 (d, C-16), 62.5 (d, C-17), 26.1 (q, C-18),
56.7 (t, C-19), 49.3 (t, C-21), 13.6 (q, C-22), 56.2 (q, C-1),
56.3 (q, C-16). 以上数据与文献报道值[6]基本一致.
14-O-veratroylneoline (5): 白色无定型粉末 . m.p.
178~181 ℃; 1H NMR (400 MHz, CDCl3) δ: 1.12 (t, J=
7.2 Hz, 3H, NCH2CH3), 3.25, 3.27, 3.92, 3.93 (each s, each
3H, 4×OCH3), 4.12 (d, J=6.4 Hz, 1H, H-6β), 5.16 (t, J=
4.4 Hz, 1H, H-14β), 6.88~7.66 (m, 3H, aromatic protons);
13C NMR (100 MHz, CDCl3) δ: 72.0 (d, C-1), 29.6 (t,
C-2), 29.4 (t, C-3), 38.0 (s, C-4), 44.3 (d, C-5), 83.3 (d,
C-6), 53.0 (d, C-7), 74.8 (s, C-8), 45.9 (d, C-9), 43.6 (d,
C-10), 49.7 (s, C-11), 29.2 (t, C-12), 37.6 (d, C-13), 76.6
(d, C-14), 42.5 (t, C-15), 82.0 (d, C-16), 63.2 (d, C-17),
80.0 (t, C-18), 56.8 (t, C-19), 48.2 (t, C-21), 12.9 (q, C-22),
57.9 (q, C-6), 59.1 (q, C-16), 56.3 (q, C-18), 122.5 (s,
C-1), 112.0 (d, C-2), 148.5 (s, C-3), 152.9 (s, C-4), 110.3
(d, C-5), 123.3 (d, C-6), 165.7 (s, PhCO), 55.8, 55.9 (q,
aromatic OCH3). 以上数据与文献报道值[7]基本一致.
Vilmorrianine A (6): 白色无定型粉末. m.p. 180~
183 ℃; 1H NMR (400 MHz, CDCl3) δ: 1.03 (t, J=7.2 Hz,
3H, NCH2CH3), 3.18, 3.26, 3.30, 3.39, 3.86 (each s, each
3H, 5×OCH3), 4.10 (d, J=6.0 Hz, 1H, H-6β), 5.03 (t, J=
4.4 Hz, 1H, H-14β), 6.91, 8.01 (A2B2, J=8.8 Hz, 4H,
aromatic protons); 13C NMR (100 MHz, CDCl3) δ: 82.6 (d,
C-1), 33.2 (t, C-2), 71.8 (d, C-3), 43.2 (s, C-4), 46.8 (d,
C-5), 83.4 (d, C-6), 44.7 (d, C-7), 85.8 (s, C-8), 48.7 (d,
C-9), 43.5 (d, C-10), 50.4 (s, C-11), 28.2 (t, C-12), 39.2 (d,
C-13), 75.2 (d, C-14), 38.1 (t, C-15), 82.3 (d, C-16), 61.3
(d, C-17), 77.2 (t, C-18), 48.7 (t, C-19), 47.5 (t, C-21), 13.2
(q, C-22), 55.6 (q, C-1), 57.8 (q, C-6), 56.6 (q, C-16),
59.1 (q, C-18), 169.7 (s, COCH3), 21.7 (q, COCH3), 122.8
(s, C-1), 131.6 (d, C-2 and C-6), 113.7 (d, C-3 and C-5),
163.4 (s, C-4), 165.9 (s, PhCO), 55.3 (q, aromatic OCH3).
以上数据与文献报道值[8]基本一致.
Yunaconitine (7): 白色无定型粉末. m.p. 140~143
℃; 1H NMR (400 MHz, CDCl3) δ: 1.10 (t, J=7.2 Hz, 3H,
NCH2CH3), 3.15, 3.25, 3.29, 3.54, 3.86 (each s, each 3H,
5×OCH3), 4.02 (d, J=6.4 Hz, 1H, H-6β), 4.86 (d, J=4.8
Hz, 1H, H-14β), 6.91, 8.01 (A2B2, J=8.8 Hz, 4H, aromatic
protons); 13C NMR (100 MHz, CDCl3) δ: 83.1 (d, C-1),
33.4 (t, C-2), 71.8 (d, C-3), 43.1 (s, C-4), 47.2 (d, C-5),
82.2 (d, C-6), 44.6 (d, C-7), 85.5 (s, C-8), 48.7 (d, C-9),

Chinese Journal of Organic Chemistry ARTICLE

Chin. J. Org. Chem. 2014, 34, 909~915 © 2014 Chinese Chemical Society & SIOC, CAS http://sioc-journal.cn/ 913
40.7 (d, C-10), 50.2 (s, C-11), 35.1 (t, C-12), 74.7 (s,
C-13), 75.5 (d, C-14), 39.6 (t, C-15), 83.5 (d, C-16), 61.7
(d, C-17), 77.2 (t, C-18), 48.7 (t, C-19), 47.5 (t, C-21), 13.2
(q, C-22), 55.8 (q, C-1), 58.8 (q, C-6), 57.7 (q, C-16),
59.1 (q, C-18), 169.7 (s, COCH3), 21.7 (q, COCH3), 122.6
(s, C-1), 131.6 (d, C-2 and C-6), 113.7 (d, C-3 and C-5),
163.4 (s, C-4), 165.9 (s, PhCO), 55.3 (q, aromatic OCH3).
以上数据与文献报道值[9]基本一致.
Condelphine (8): 白色无定型粉末. m.p. 158~159
℃; 1H NMR (400 MHz, CDCl3) δ: 1.12 (t, J=7.2 Hz, 3H,
N-CH2CH3), 3.29, 3.36 (each s, each 3H, 2×OCH3), 4.86
(t, J=4.8 Hz, 1H, H-14β); 13C NMR (100 MHz, CDCl3) δ:
72.0 (d, C-1), 29.0 (t, C-2), 29.6 (t, C-3), 37.1 (s, C-4),
41.2 (d, C-5), 24.9 (t, C-6), 45.3 (d, C-7), 74.7 (s, C-8),
44.6 (d, C-9), 36.4 (d, C-10), 48.8 (s, C-11), 26.5 (t, C-12),
43.1 (d, C-13), 76.6 (d, C-14), 42.5 (t, C-15), 81.9 (d,
C-16), 63.6 (d, C-17), 78.8 (t, C-18), 56.0 (t, C-19), 48.4 (t,
C-21), 12.9 (q, C-22), 56.4 (q, C-16), 59.4 (q, C-18),
170.4 (s, COCH3), 21.3 (q, COCH3). 以上数据与文献报
道值[10]基本一致.
14-Acetylsachaconitine (9): 白色无定型粉末. m.p.
87~91 ℃; 1H NMR (400 MHz, CDCl3) δ: 0.74 (3H, s,
H-18), 1.02 (t, J=7.2 Hz, 3H, NCH2CH3), 3.19, 3.24 (each
3H, s, 2×OCH3), 4.79 (t, J=4.8 Hz, 1H, H-14β). 与标准
品[石油醚-丙酮, V∶V=5∶1; 氯仿-甲醇, V∶ V=
98∶2] Rf 值相同, 以上氢谱数据与文献值[11]基本一致.
Indaconitine (10): 白色无定型粉末. m.p. 189~193
℃; 1H NMR (400 MHz, CDCl3) δ: 1.09 (t, J=7.2 Hz, 3H,
N-CH2CH3), 3.14, 3.24, 3.28, 3.53 (each s, each 3H, 4×
OCH3), 4.02 (d, J=6.4 Hz, 1H, H-6β), 4.89 (d, J=4.4 Hz,
1H, H-14β), 7.41~8.06 (m, 5H, aromatic protons); 13C
NMR (100 MHz, CDCl3) δ: 83.4 (d, C-1), 35.1 (t, C-2),
71.6 (d, C-3), 43.1 (s, C-4), 48.6 (d, C-5), 82.2 (d, C-6),
44.5 (d, C-7), 85.5 (s, C-8), 47.2 (d, C-9), 40.7 (d, C-10),
50.2 (s, C-11), 33.4 (t, C-12), 74.6 (s, C-13), 78.7 (d,
C-14), 39.5 (t, C-15), 83.0 (d, C-16), 61.7 (d, C-17), 77.0
(t, C-18), 48.8 (t, C-19), 47.4 (t, C-21), 13.2 (q, C-22), 55.8
(q, C-1), 58.7 (q, C-6), 57.8 (q, C-16), 59.1 (q, C-18),
169.8 (s, COCH3), 21.5 (q, COCH3), 130.0 (s, C-1), 128.5
(d, C-2 and C-6), 129.6 (d, C-3 and C-5), 133.1 (d, C-4),
165.9 (s, PhCO). 以上数据与文献报道值[12]基本一致.
14-Acetylkarakoline (11): 白色无定型粉末 . m.p.
99~100 ℃; 1H NMR (400 MHz, CDCl3) δ: 0.89 (s, 3H,
H-18), 1.12 (t, J=7.2 Hz, 3H, N-CH2CH3), 3.27 (s, 3H,
OCH3), 4.86 (t, J=4.8 Hz, 1H, H-14β); 13C NMR (100
MHz, CDCl3) δ: 72.1 (d, C-1), 29.4 (t, C-2), 30.8 (t, C-3),
32.7 (s, C-4), 45.3 (d, C-5), 25.2 (t, C-6), 44.6 (d, C-7),
74.8 (s, C-8), 46.1 (d, C-9), 36.6 (d, C-10), 48.3 (s, C-11),
29.0 (t, C-12), 43.1 (d, C-13), 77.1 (d, C-14), 42.5 (t,
C-15), 82.0 (d, C-16), 63.0 (d, C-17), 27.5 (q, C-18), 60.2
(t, C-19), 48.3 (t, C-21), 12.9 (q, C-22), 56.0 (q, C-16),
170.5 (s, COCH3), 21.3 (q, COCH3). 以上数据与文献报
道值[13]基本一致.
14-Acetyltalatizamine (12): 白色无定型粉末. m.p.
95~97 ℃; 1H NMR (400 MHz, CDCl3) δ: 1.05 (t, J=7.2
Hz, 3H, NCH2CH3), 3.22, 3.27, 3.29 (each s, each 3H, 3×
OCH3), 4.81 (t, J=4.8 Hz, 1H, H-14β); 13C NMR (100
MHz, CDCl3) δ: 85.7 (d, C-1), 26.1 (t, C-2), 32.6 (t, C-3),
38.4 (s, C-4), 35.2 (d, C-5), 24.8 (t, C-6), 45.8 (d C-7),
73.6 (s, C-8), 46.1 (d, C-9), 44.8 (d, C-10), 48.6 (s, C-11),
28.3 (t, C-12), 45.3 (d, C-13), 76.6 (d, C-14), 40.8 (t,
C-15), 81.5 (d, C-16), 62.2 (d, C-17), 79.4 (t, C-18), 53.0
(t, C-19), 49.3 (t, C-21), 13.5 (q, C-22), 56.1 (q, C-1), 56.2
(q, C-16), 59.4 (q, C-18), 170.7 (s, COCH3), 21.3 (q,
COCH3). 以上数据与文献报道值[14]基本一致.
Cammaconine (13): 白色无定型粉末. m.p. 136~
137 ℃; 1H NMR (400 MHz, CDCl3) δ: 1.06 (t, J=7.2 Hz,
3H, NCH2CH3), 3.27, 3.34 (each s, each 3H, 2×OCH3),
4.14 (t, J=4.8 Hz, 1H, H-14β); 13C NMR (100 MHz,
CDCl3) δ: 86.2 (d, C-1), 25.6 (t, C-2), 32.0 (t, C-3), 39.0 (s,
C-4), 45.8 (d, C-5), 24.5 (t, C-6), 45.7 (d, C-7), 72.8 (s,
C-8), 46.8 (d, C-9), 37.5 (d, C-10), 48.7 (s, C-11), 27.6 (t,
C-12), 45.4 (d, C-13), 75.5 (d, C-14), 38.2 (t, C-15), 82.1
(d, C-16), 62.9 (d, C-17), 68.7 (t, C-18), 52.9 (t, C-19),
49.5 (t, C-21), 13.6 (q, C-22), 56.5 (q, C-1), 56.3 (q,
C-16). 以上数据与文献报道值[15]基本一致.
Isotalatizidine (14): 白色无定型粉末. m.p. 116~
117 ℃; 1H NMR (400 MHz, CDCl3) δ: 1.17 (t, J=7.2 Hz,
3H, NCH2CH3), 3.31, 3.34 (each s, each 3H, 2×OCH3),
4.20 (t, J=4.8 Hz, 1H, H-14β); 13C NMR (100 MHz,
CDCl3) δ: 72.1 (d, C-1), 26.7 (t, C-2), 29.6 (t, C-3), 37.1 (s,
C-4), 41.7 (d, C-5), 24.7 (t, C-6), 45.0 (d, C-7), 74.0 (s,
C-8), 46.6 (d, C-9), 43.9 (d, C-10), 48.5 (s, C-11), 28.3 (t,
C-12), 39.8 (d, C-13), 75.6 (d, C-14), 41.7 (t, C-15), 81.8
(d, C-16), 64.0 (d, C-17), 78.9 (t, C-18), 56.5 (t, C-19),
48.5 (t, C-21), 13.0 (q, C-22), 56.3 (q, C-16), 59.4 (q,
C-18). 以上数据与文献报道值[16]基本一致.
8-Deacetylyunaconitine (15): 白色无定型粉末. m.p.
101~104 ℃; 1H NMR (400 MHz, CDCl3) δ: 1.12 (t, J=
7.2 Hz, 3H, NCH2CH3), 3.25, 3.28, 3.31, 3.41, 3.86 (each

有机化学 研究论文

914 http://sioc-journal.cn/ © 2014 Chinese Chemical Society & SIOC, CAS Chin. J. Org. Chem. 2014, 34, 909~915
s, each 3H, 5×OCH3), 4.07 (d, J=6.8 Hz, 1H, H-6β), 5.12
(d, J=4.8 Hz, 1H, H-14β), 6.92, 7.98 (A2B2, J=8.8 Hz,
4H). 与标准品(石油醚-丙酮, V∶V=3 1∶ ; 氯仿-甲醇,
V∶V=97 3∶ ) Rf 值相同, 以上氢谱数据与文献值[17]基
本一致.
16β-Hydroxycardiopetaline (16): 白色无定型粉末.
m.p. 213~216 ℃; 1H NMR (400 MHz, CDCl3) δ: 0.88 (s,
3H, H-18), 1.11 (t, J=7.2 Hz, 3H, NCH2CH3), 4.32 (t, J=
4.8 Hz, 1H, H-14β); 13C NMR 谱数据见表 1. 以上数据与
文献报道值[18]基本一致.
Pseudaconine (17): 白色无定型粉末. m.p. 205~
208 ℃; 1H NMR (400 MHz, CDCl3) δ: 1.10 (t, J=7.2 Hz,
3H, NCH2CH3), 3.23, 3.30, 3.31, 3.41 (each s, each 3H,
4×OCH3), 4.14 (d, J=7.2 Hz, 1H, H-6β), 3.98 (d, J=4.8
Hz, 1H, H-14β); 13C NMR (100 MHz, CDCl3) δ: 84.3 (d,
C-1), 35.6 (t, C-2), 72.1 (d, C-3), 43.4 (s, C-4), 48.5 (d,
C-5), 82.1 (d, C-6), 52.0 (d, C-7), 72.6 (s, C-8), 50.2 (d,
C-9), 41.8 (d, C-10), 50.0 (s, C-11), 33.7 (t, C-12), 76.6 (s,
C-13), 79.4 (d, C-14), 39.8 (t, C-15), 82.9 (d, C-16), 62.2
(d, C-17), 77.3 (t, C-18), 49.1 (t, C-19), 47.2 (t, C-21), 13.6
(q, C-22), 56.1 (q, C-1), 57.2 (q, C-6), 57.7 (q, C-16),
59.2 (q, C-18). 以上数据与文献报道值[19]基本一致.
Columbianine (18): 白色无定型粉末. m.p. 202~
205 ℃; 1H NMR (400 MHz, CD3OD) δ: 1.12 (t, J=7.2
Hz, 3H, NCH2CH3), 3.33 (s, 3H, OCH3), 4.13 (t, J=4.8
Hz, 1H, H-14β); 13C NMR (100 MHz, CD3OD) δ: 73.8 (d,
C-1), 25.7 (t, C-2), 27.0 (t, C-3), 38.9 (s, C-4), 45.2 (d,
C-5), 30.4 (t, C-6), 42.1 (d, C-7), 75.7 (s, C-8), 47.3 (d,
C-9), 46.8 (d, C-10), 49.8 (s, C-11), 31.0 (t, C-12), 41.7 (d,
C-13), 76.4 (d, C-14), 42.7 (t, C-15), 84.4 (d, C-16), 64.6
(d, C-17), 68.1 (t, C-18), 57.6 (t, C-19), 49.2 (t, C-21), 13.3
(q, C-22), 56.4 (q, C-16). 经单晶X射线衍射实验确定了
其结构.
Denudatine (19): 白色无定型粉末. m.p. 249~251
℃; 1H NMR (400 MHz, CDCl3) δ: 1.12 (t, J=7.2 Hz, 3H,
NCH2CH3), 0.70 (s, 3H, H-18), 4.29 (brs, H-15, 1H), 5.25,
5.04 (each s, each 1H, H-17). 与标准品(石油醚-丙酮,
V∶V=5∶1; 氯仿-甲醇, V∶V=98∶2) Rf 值相同, 以
上氢谱数据与文献值[20]基本一致.
Panicutine (20): 白色无定型粉末. m.p. 211~214
℃; 1H NMR (400 MHz, CDCl3) δ: 1.47 (s, 3H, H-18), 2.35
(s, 3H, NCH3), 4.81, 4.97 (each s, each 1H, H2-17); 13C
NMR (100 MHz, CDCl3) δ: 35.7 (t, C-1), 70.7 (d, C-2),
43.7 (t, C-3), 36.7 (s, C-4), 62.9 (d, C-5), 203.7 (s, C-6),
50.2 (t, C-7), 41.6 (s, C-8), 59.0 (d, C-9), 44.3 (s, C-10),
211.7 (s, C-11), 52.6 (d, C-12), 22.5 (t, C-13), 49.8 (d,
C-14), 29.1 (t, C-15), 142.0 (s, C-16), 110.5 (t, C-17), 31.0
(q, C-18), 60.2 (t, C-19), 68.3 (d, C-20), 43.2 (q, C-21),
169.9 (s, COCH3), 21.5 (q, COCH3), 以上数据与文献报
道值[21]基本一致.
3.5 1-Epi-16β-hydroxycardiopetaline 的单晶 X 衍射
测定
在吡啶中室温培养 2 周, 得到块状单晶. 晶体大小
为 0.3 mm×0.3 mm×0.2 mm, 斜方晶系, 空间群为
P212121, a=7.9517(4) Å, b=12.7354(5) Å, c=17.9181(8)
Å, V=1814.54(14) Å3, Dc=1.331 mg/mm3, λ=0.7107
nm, μ=0.091 mm-1, F(000)=792, T=293.15 K, 收集衍
射点数为 4922, 独立衍射点数 3252, 优化方法基于 F2
全矩阵最小二乘法, 衍射区为-6≤h≤9, -15≤k≤14,
-22≤l≤21, 最后修正值 R1为 0.0471, R(all)为 0.0552.
1-epi-16β-hydroxycardiopetaline 的 X 射线衍射数据存放
于英国剑桥X单晶衍射数据中心, CCDC编号为978786.
References
[1] Xiao, P.-G..; Wang, F.-P.; Gao, F.; Yan, L.-P.; Chen, D.-L.; Liu, Y.
Acta Phytotaxom. Sin. 2006, 44, 1 (in Chinese).
(肖培根, 王锋鹏, 高峰, 闫路平, 陈东林, 刘勇, 植物分类学报,
2006, 44, 1.)
[2] Institute of Botany, Chinese Academy of Sciences and Institute of
Materia Medica, Chinese Academy of Medical Sciences. Flora
Reipublicae Populais Sinica, 1979, Vol. 27, Science Press, Beijing,
p. 245 (in Chinese).
(中国科学院植物所 , 中国医学科学院药物所 , 中国植物志 ,
1997, Vol. 27, p. 245.)
[3] Xiao, J.; Tan, N.-H.; Ji, C.-H.; Lu, Y.; Gong, N.-B. Tetrahedron
Lett. 2008, 49, 4851.
[4] Yunusov, M. S.; Yunusov, S. Y. Khim. Prir. Soedin. 1970, 6, 90.
[5] Konno, C.; Shirasaka, M.; Hikino, H. J. Nat. Prod. 1982, 45, 128.
[6] Pelletier, S. W.; Mody, N. V.; Katsui, N. Tetrahedron Lett. 1977, 18,
4027.
[7] Sang, H. S.; Kim, J. S.; Kang, S. S. Chem. Pharm. Bull. 2003, 51,
999.
[8] Yang, C.-R.; Hao, X.-J.; Wang, D.-Z.; Zhou, J. Acta Chim. Sinica
1981, 39, 147 (in Chinese).
(杨崇仁, 郝小江, 王德祖, 周俊, 化学学报, 1981, 39, 147.)
[9] Chen, S.-Y. Acta Chim. Sinica 1979, 37, 15 (in Chinese).
(陈泗英, 化学学报, 1979, 37, 15.)
[10] Pelletier, S. W.; Keith, L. H.; Parthasarathy, P. C. J. Am. Chem. Soc.
1967, 89, 4146.
[11] Rahman, A. U.; Choudhary, M. Nat. Prod. Rep. 1997, 14, 191.
[12] Klasek, A.; Simanek, V.; Santavy, F. Lloydia 1972, 35, 55.
[13] Vaisov, Z. M.; Yuusov, M. S. Khim. Prir. Soedin. 1986, 6, 801.
[14] Sakai, S.; Takayama, H.; Okamoto, T. J. Pharm. Soc. Jpn. 1979, 99,
647.
[15] Mody, N. V.; Pelletier, S. W.; Mollov, N. M. Heterocycles 1980, 14,
1751.
[16] Pelletier, S. W.; Djarmati, Z. J. Am. Chem. Soc. 1976, 98, 2626.
[17] A, P.; Wang, F.-P. Nat. Prod. Res. Dev. 2002, 14, 37 (in Chinese).
(阿萍, 王锋鹏, 天然产物研究与开发, 2002, 14, 37.)

Chinese Journal of Organic Chemistry ARTICLE

Chin. J. Org. Chem. 2014, 34, 909~915 © 2014 Chinese Chemical Society & SIOC, CAS http://sioc-journal.cn/ 915
[18] Jesus, G. D.; Juan, G. R.; Werner, H. Phytochemistry 2005, 66, 837.
[19] Pelletier, S. W.; Mody, N. V.; Sawhney, R. S. Can. J. Chem. 1979,
57, 1652.
[20] Uhirin, D.; Proksa, B.; Zhamiansan, J. Planta Med. 1991, 57, 390.
[21] Pelletier, S. W.; Joshi, B. S.; Desai, H. K.; Panu, A. Heterocycles
1986, 24, 1275.
[22] Pelletier, S. W.; Mody, N. V.; Joshi, B. S.; Schramm, L. C. In Alka-
loids: Chenical and Biological Perspectives, Vol. 2, Ed.: Pelletier,
S. W.; Wiley, New York, 1984, p. 205.
[23] Wang, F.-P. Acta Pharm. Sinca 1981, 16, 943 (in Chinese).
(王锋鹏, 药学学报, 1981, 16, 943.)
(Zhao, X.)