免费文献传递   相关文献

淡竹叶化学成分研究(英文)



全 文 :428 Chin J Nat Med Nov. 2009 Vol. 7 No.6 2009 年 11 月 第 7 卷 第 6 期








Chemical Constituents from the Leaves of
Lophatherum gracile

ZHANG Jing1, WANG Ying 2,3, ZHANG Xiao-Qi2,3, ZHANG Qing-Wen4, YE Wen-Cai1,2,3*
1Department of Phytochemistry, China Pharmaceutical University, Nanjing 210009;
2Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632;
3Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University,
Guangzhou 510632;
4Institute of Chinese Medical Sciences, University of Macau, China

[ABSTRACT] AIM: To investigate the chemical constituents of the leaves of Lophatherum gracile. METHODS: Iso-
lation and purification were carried out by several column chromatographic methods. Compounds were identified based
on their physicochemical properties and spectral data. RESULTS: Fourteen compounds were isolated from the leaves of
L. gracile. The structures were elucidated as salcolin A (1a), salcolin B (1b), tricin (2), luteolin (3), afzelin (4), tricin
7-O-β-D-glucopyranoside (5), swertiajaponin (6), isoorientin (7), tricin 7-O-neohesperidoside (8), vitexin (9), isovitexin
(10), β-(p-methoxyphenyl) acrylic acid (11), β-sitosterol (12) and daucosterol (13), respectively. CONCLUSION:
Compounds 1a, 1b, 3-4, 6-8 and 10-13 were isolated from this plant for the first time.
[KEY WORDS] Lophatherum gracile; flavonolignan; flavonoid
[CLC Number] R284.1 [Document code] A [Article ID] 1672-3651(2009)06-0428-04
doi: 10.3724/SP. J. 1009.2009.00428
The plant Lophatherum gracile Brongn. (Gramineae)
is widely distributed in the southern China. The leaves of
this plant, also called as “Dan Zhu Ye” in Chinese, were
widely used in the treatment of pyreticosis, hydrodipsia,
ardor urinae and urinary tract inflammation in traditional
Chinese medicine. Pharmacological research demonstrated
that the extract of leaves of L. gracile showed antipyretic,
diuretic, antibacterial, anti-tumor and hyperglycemic effects
[1]. Previous phytochemical investigations of this plant re-
sulted in the isolation of several common flavonoids and
tritepenes [2,3].
As part of a program to assess the chemical and bio-
logical diversity of medicinal plants in south China, we
carried out the chemical investigation on the leaves of L.
gracile, which led to the isolation of fourteen compounds.
On the basis of the spectral and chemical properties, these
compounds were identified as salcolin A (1a), salcolin B
(1b), tricin (2), luteolin (3), afzelin (4), tricin 7-O-β-D-

[Received on] 20-July-2009
[Foundation Item] This project was supported by the National
Science Fund for the outstanding Young Scholars of China
(No.30625039), the Natural Science Foundation of Guangdong
Province (No. 8351063201000003) and the Science and Technol-
ogy Development Fund of Macao Special Administrative Region
(013/2008/A1).
[*Corresponding author] YE Wen-Cai: Prof., Tel/Fax: 86-20-
85221559, E-mail: chywc@yahoo.com.cn
glucopyranoside (5), swertiajaponin (6), isoorientin (7),
tricin 7-O-neohesperidoside (8), vitexin (9), isovitexin (10),
β-(p-methoxyphenyl) acrylic acid (11), β-sitosterol (12) and
daucosterol (13), respectively. Among them, compounds 1a,
1b, 3-4, 6-8, and 10-13 were obtained from this plant for the
first time. The rare disastereromeric flavonolignans 1a and
1b had previously been isolated from several plants [4, 5].
Their structures were determined by comparison their spec-
tral data with literature values of salcolilns A and B, which
are two epimers with different configurations at position 7
[4]. This is the first time to report the occurring of flavono-
lignans in this plant.
1 Apparatus and Reagents
Melting points were obtained on a X-5 micromelting
point detector (uncorrected); Optical rotation values were
measured on a JASCO P-1020 polarimeter with a 0.01 dm
length cell; UV spectra were recorded on a JASCO V-550
UV/VIS Spectrophotometer with a 0.1 dm length cell; IR
spectra (KBr) were measured on a JASCO FT/IR-480 Plus
Fourier Transform Infrared Spectrometer; NMR Spectra
were recorded on Bruker AV-400 spectrometer with TMS as
internal standard; ESI-MS were determined on a Finnigan
LCQ Advantage Spectrometer. A Waters 1525 pump and a
2487 Dual λ absorbance detector for analytical HPLC, us-
ing Cosmosil 5C18-MS-Ⅱwaters column (4.6 mm × 250
mm); a Gilson 360 pump and a UV/VIS-152 detector for
XU Jie-Kun, et al. /Chinese Journal of Natural Medicines 2009, 7(6): 428−431
2009 年 11 月 第 7 卷 第 6 期 Chin J Nat Med Nov. 2009 Vol. 7 No. 6 429

preparative HPLC, using Cosmosil 5C18-MS-Ⅱwaters
column (20 mm × 250 mm). Column chromatographic
separations were carried out on silica gel (200-300 mesh,
Qingdao Haiyang Chemical Group Corporation, Qingdao,
China), Sephadex LH-20 (Pharmacia Biotech AB, Uppsala,
Sweden). HSGF254 silica gel TLC plates (Yantai Chemical
Industrial Institute, Yantai, China) were used for TLC.
2 Plant Material
The dried leaves of L. gracile were collected in
Dongguan city, Guangdong Province, China, and authenti-
cated by Prof. ZHOU Guang-Xiong (Institute of Traditional
Chinese Medicine & Natural Products, Jinan University). A
voucher specimen (No. 070415) was deposited in the Insti-
tute of Traditional Chinese Medicine & Natural Products,
Jinan University, Guangdong, China.
3 Extraction and Isolation
The dried leaves of L. gracile Brongn. (5.0 kg) were
powdered and percolated with 95 % EtOH at room tempera-
ture (5 × 20 L). The extract was concentrated in vacuum to
yield a residue (200 g). The crude extract was redissolved
in 20 % EtOH and subjected to column chromatography
(CC) over macrosporous resin D101 eluted with water, 20
% ethanol, 40 % ethanol, 60 % ethanol, 80 % ethanol, 95 %
ethanol and ethanol, successively. The 60 % and 80 %
ethanol extracts were combined to yeild a residue (32 g),
which was subjected to silica gel CC (CHCl3-MeOH, 100∶
0→0∶100) to afford several fractions. Subsequent sepa-
rations were carried out by silica gel CC, Sephadex LH-20
and preparative HPLC to afford 1a (10 mg), 1b (8 mg), 2 (20
mg), 3 (15 mg), 4 (6 mg), 11 (6 mg), 12 (15 mg) and 13 (20
mg), respectively. Further separation of the 40 % ethanol
extract (40 g) was carried out by silica gel CC (CHCl3-
MeOH, 100∶0→0∶100) to give several. subfractions,
which were reseparated by silica gel CC, Sephadex LH-20
and preparative HPLC to yield 5 (14 mg), 6 (16 mg), 7 (30
mg), 8 (12 mg), 9 (8 mg) and 10 (6 mg), respectively.



Fig. 1 Structures of compounds 1a and 1b

4 Identification
Compound 1a yellow amorphous powder, [α]24 D -10°
(c 0.05, MeOH), ESI-MS m/z 525 [M - H]-, 549 [M + Na]+.
UV (MeOH) λmax: 273, 287, 331 nm; IR (KBr) νmax: 3 424,
2 947, 2 892, 2 840, 1 655, 1 592, 1 497, 1 355, 1 263,
1 167, 1 126, 1 007, 839, 644 cm-1. 1H NMR (DMSO-d6) δ:
12.83 (1H, s, 5-OH), 7.28 (2H, s, H-2′, 6′), 6.98 (1H, d, J =
1.6 Hz, H-2′′), 6.95 (1H, s, H-3), 6.81 (1H, dd, J = 8.2, 1.6
Hz, H-6′′), 6.69 (1H, d, J = 8.2 Hz, H-5′′), 6.48 (1H, br s,
H-8), 6.16 (1H, br s, H-6), 4.85 (1H, d, J = 5.0 Hz, H-7′′),
4.26 (1H, m, H-8′′), 3.86 (6H, s, 3′, 5′-OCH3), 3.74 (3H, s,
3′′-OCH3), 3.64 (1H, dd, J = 11.5, 4.7 Hz, 9′′-CH2), 3.27
(1H, dd, J = 11.5, 4.8 Hz, 9′′-CH2); 13C NMR (DMSO-d6) δ:
181.6 (C-4), 166.0 (C-7), 162.8 (C-2), 161.4 (C-5), 157.5
(C-9), 153.0 (C-3′, 5′), 147.0 (C-3′′), 145.4 (C-4′′), 139.8
(C-4′), 133.0 (C-1′′), 125.5 (C-1′), 119.2 (C-6′′), 114.7
(C-5′′), 111.1 (C-2′′), 104.7 (C-3), 104.3 (C-2′, 6′), 103.3
(C-10), 99.4 (C-6 ), 94.5 (C-8 ), 86.9 (C-8′′), 71.6 (C-7′′),
60.4 (C-9′′), 56.4 (3′, 5′-OCH3), 55.6 (3′′-OCH3). Com-
pound 1a was identified as tricin 4′-O-(threo-β-guaiacyl-
glyceryl) ether (salcolin A) by comparison of its physical
and spectral data with the literature values [5].
Compound 1b yellow amorphous powder, [α]24 D +15°
(c 0.05, MeOH), ESI-MS m/z 525 [M - H]- , 549 [M + Na]+.
UV (MeOH) λmax: 272, 288 339 nm; IR (KBr) νmax: 2 981,
2 884, 2 817, 1 660, 1 591, 1 497, 1 356, 1 126, 853, 836
cm-1. 1H NMR (DMSO-d6 ) δ: 12.84 (1H, s, 5-OH), 7.29
(2H, s, H-2′, 6′), 6.97 (1H, s, H-3), 6.94 (1H, d, J = 1.6 Hz,
H-2′′), 6.74 (1H, dd, J = 8.2, 1.6 Hz, H-6′′), 6.70 (1H, d, J =
8.2 Hz, H-5′′), 6.50 (1H, br s, H-8), 6.16 (1H, br s, H-6),
4.79 (1H, d, J = 5.0 Hz, H-7′′), 4.35 (1H, m, H-8′′), 3.87
(6H, s, 3′, 5′-OCH3), 3.75 (3H, s, 3′′-OCH3), 3.73 (1H, m,
9′′-CH2), 3.50 (1H, dd, J = 11.9, 3.4 Hz, 9′′-CH2); 13C NMR
(DMSO-d6) δ: 181.5 (C-4), 165.9 (C-7), 162.7 (C-2), 161.3
(C-5), 157.5 (C-9), 153.0 (C-3′, 5′), 147.0 (C-3′′), 145.4
(C-4′′), 139.4 (C-4′), 133.2 (C-1′′), 125.4 (C-1′), 119.4
(C-6′′), 114.7 (C-5′′), 111.1 (C-2′′), 104.7 (C-3), 104.2 (C-2′,
6′), 103.2 (C-10), 99.4 (C-6 ), 94.5 (C-8), 86.4 (C-8′′), 72. 2
(C-7′′), 60.2 (C-9′′), 56.4 (3′, 5′-OCH3), 55.6 (3′′-OCH3).
Compound 1b was identified as tricin 4′-O-(erythro-β-
guaiacylglyceryl) ether (salcolin B) by comparison of its
physical and spectral data with the literature values [5].
Compounds 1a and 1b were the epimers, whose configu-
rations at 7 were different.
Compound 2 yellow needles, mp 280-282 ℃. The
HCl-Mg reaction was positive. ESI-MS m/z 683 [2M + Na]+,
329.2 [M - H]-. UV (MeOH) λmax: 210, 270, 352 nm; IR
(KBr) νmax: 3 347, 2 937, 2 848, 2 361, 1 654, 1 612, 1 507,
1 463, 1 358, 1 264, 1 169, 1 118, 1 029, 836 cm-1. 1H NMR
(DMSO-d6 ) δ: 12.96 (1H, s, 5-OH), 10.80 (1H, s, 7-OH),
9.30 (1H, s, 4′-OH), 7.32 (2H, s, H-2′, 6′), 6.97 (1H, s, H-3),
6.55 (1H, d, J = 2.0 Hz, H-8), 6.20 (1H, d, J = 2.0 Hz, H-6),
3.88 (6H, s, 3′, 5′-OCH3). Compound 2 was characterized
as tricin by comparison of its physical and spectral data
with the literature values [3].
Compound 3 yellow amorphous powder, mp
XU Jie-Kun, et al. /Chinese Journal of Natural Medicines 2009, 7(6): 428−431
430 Chin J Nat Med Nov. 2009 Vol. 7 No.6 2009 年 11 月 第 7 卷 第 6 期

327-329 ℃. ESI-MS m/z 285 [M - H]-. UV (MeOH) λmax:
207, 255, 268, 350 nm; IR (KBr) νmax: 3 421, 2 928, 1 656,
1 613, 1 508, 1 365, 1 266, 1 166, 1 033, 839, 565 cm-1.
1H NMR (DMSO-d6) δ: 12.96 (1H, s, 5-OH), 10.66 (1H, br
s, 7-OH), 9.67 (1H, br s, 4′-OH ), 7.42 (1H, dd, J = 8.0, 2.2
Hz, H-6′), 7.39 (1H, d, J = 2.2 Hz, H-2′), 6.88 (1H, d, J =
8.0 Hz, H-5′), 6.65 (1H, s, H-3), 6.44 (1H, d, J = 2.0 Hz,
H-8), 6.18 (1H, d, J = 2.0 Hz, H-6); 13C NMR (DMSO-d6) δ:
181.6 (C-4), 164.1 (C-7), 163.8 (C-2), 161.4 (C-5), 157.3
(C-9), 149.7 (C-4′), 145.7 (C-3′), 121.5 (C-1′), 118.9 (C-6′),
116.0 (C-5′), 113.3 (C-2′), 103.6 (C-10), 102.8 (C-3), 98.8
(C-6), 93.8 (C-8). Compound 3 was identified as luteolin by
comparison of its physical and spectral data with the litera-
ture values [6].
Compound 4 yellow needles, mp 171-173 ℃.
ESI-MS m/z 431 [M - H] -. UV (MeOH) λmax: 208, 266, 339
nm; IR (KBr) νmax: 3 399, 2 977, 2 937, 1 654, 1 600, 1 509,
1 362, 1 177, 1 085, 841, 582 cm-1. 1H NMR (DMSO-d6) δ:
12.62 (1H, s, 5-OH), 7.74 (1H, d, J = 8.7 Hz, H-2′, 6′), 6.90
(1H, d, J = 8.7 Hz, H-3′, 5′), 6.40 (d, J = 2.1 Hz, H-8), 6.20
(1H, d, J = 2.1 Hz, H-6), 5.29 (1H, d, J = 1.2 Hz, rha-1-H),
0.79 (3H, d, J = 6.0 Hz, rha-CH3); 13C NMR (DMSO-d6) δ:
177.7 (C-4), 164.5 (C-7), 161.3 (C-5), 160.0 (C-4′), 157.1
(C-9), 156.5 (C-2), 134.2 (C-3), 130.6 (C-2′, 6′), 120.5
(C-1′), 115.4 (C-3′,5′), 104.0 (C-10), 101.8 (C-1′′), 98.8
(C-6), 93.8 (C-8), 71.1 (C-4′′), 70.6 (C-3′′), 70.4 (C-2′′),
70.1 (C-5′′), 17.4 (C-6′′). Compound 4 was identified as
afzelin by comparison of its physical and spectral data with
the literature values [7].
Compound 5 yellow amorphous powder, mp
242-243 ℃, The HCl-Mg reaction and Molish reactions
were positive. ESI-MS m/z 491 [M - H]-. UV (MeOH) λmax:
206, 250, 270, 346 nm; IR (KBr) νmax: 3421, 1652, 1616,
1498, 1344, 1262, 1177, 1118, 1075, 834 cm-1. 1H NMR
(DMSO-d6) δ: 12.93 (1H, s, 5-OH), 9.48 (1H, br s, 4′-OH ),
7.36 (2H, br s, H-2′, 6′), 7.05 (1H, s, H-3), 6.92 (1H, d, J =
2.0 Hz, H-8), 6.46 (1H, d, J = 2.0 Hz, H-6), 5.05 (1H, d, J =
7.2 Hz, H-1′′), 3.89 (6H, s, 3′, 5′-OCH3). Compound 5 was
identified as tricin 7-O-β-D-glucopyranoside by comparison
of its physical and spectral data with the literature values [3].
Compound 6 yellow amorphous powder, mp
264-266 ℃. ESI-MS m/z 461 [M - H] -, 947 [M + Na]+. UV
(MeOH) λmax: 212, 244, 271, 349 nm; IR (KBr) νmax: 3 415,
2 366, 2 339, 1 652, 1 609, 1 492, 1 445, 1 351, 1 273,
1 206, 1 022, 843 cm-1. 1H NMR (DMSO-d6) δ: 13.49 (1H,
s, 5-OH), 9.63 (1H, br s, 4′-OH ), 7.47 (1H, dd, J = 2.2, 8.8
Hz, H-6′), 7.45 (1H, d, J = 2.2 Hz, H-2′), 6.90 (1H, d, J =
8.4 Hz, H-5′), 6.76 (1H, s, H-3), 6.73 (1H, s, H-6), 4.61 (1H,
d, J = 10.0 Hz, H-6), 3.90 (3H, s, 7-OCH3). 13C NMR
(DMSO-d6) δ: 182.1 (C-4), 164.9 (C-2), 164.1 (C-7), 160.3
(C-5), 156.8 (C-9), 149.8 (C-4′), 145.8 (C-3′), 121.3 (C-1′),
119.1 (C-6′), 115.9 (C-5′), 113.5 (C-2′), 104.1 (C-10), 103.1
(C-3), 90.1 (C-8), 81.6 (C-5′′), 79.1 (C-1′′), 72.8 (C-3′′),
70.9 (C-4′′), 70.3 (C-2′′), 61.8 (C-6′′), 56.5 (7-OCH3).
Compound 6 was identified as swertiajaponin by com-
parison of its physical and spectral data with the literature
values [8].
Compound 7 yellow amorphous powder, mp
237-239 ℃. ESI-MS m/z 447[M - H] -. UV (MeOH) λmax:
213, 257, 271, 352 nm; IR (KBr) νmax: 3 388, 2 919, 1 652,
1 624, 1 491, 1 452, 1 354, 1 082, 1 027, 841, 685, 620 cm-1.
1H NMR (DMSO-d6) δ: 13.56 (1H, s, 5-OH), 10.56 (1H, br
s, 7-OH), 9.61 (1H, br s, 4′-OH ), 7.42 (1H, dd, J = 2.2, 8.4
Hz, H-6′), 7.39 (1H, d, J = 2.2 Hz, H-2′), 6.89 (1H, d, J =
8.4 Hz, H-5′), 6.67 (1H, s, H-3), 6.48 (1H, s, H-8), 4.58 (1H,
d, J = 10.0 Hz, H-1′′); 13C NMR (DMSO-d6) δ: 181.8 (C-4),
163.6 (C-2), 163.2 (C-7), 160.6 (C-5), 156.2 (C-9), 149.7
(C-4′), 145.7 (C-3′), 121.4 (C-1′), 118.9 (C-6′), 116.0 (C-5′),
113.3 (C-2′), 108.8 (C-6), 103.4 (C-10), 102.8 (C-3), 93.5
(C-8), 81.5 (C-5′′), 78.9 (C-1′′), 73.0 (C-2′′), 70.5 (C-3′′),
70.2 (C-4′′), 61.5 (C-6′′). Compound 7 was identified as
isoorientin by comparison of its physical and spectral data
with the literature values [9].
Compound 8 yellow amorphous powder, mp
193-195 ℃. The HCl-Mg reaction and Molish reactions
were positive. ESI-MS m/z 637[M-H]-. UV (MeOH) λmax:
208, 248, 270, 352 nm; IR (KBr) νmax: 3 378, 2 981, 1 662,
1 606, 1 498, 1 457, 1 344, 1 259, 1 122, 1 042, 838 cm-1.
1H NMR (DMSO-d6) δ: 12.94 (1H, s, 5-OH), 9.49 (1H, br s,
4′-OH ), 7.34 (2H, br s, H-2′, 6′), 7.07 (1H, s, H-3), 6.88
(1H, d, J = 2.0 Hz, H-8), 6.38 (1H, d, J = 2.0 Hz, H-6), 5.21
(1H, d, J = 7.2 Hz, H-1′′), 5.12 (1H, s, H-1′′′), 3.88 (6H, s,
3′, 5′-OCH3), 1.19 (3H, s, rha-CH3); 13C NMR (DMSO-d6)
δ: 182.0 (C-4), 164.1 (C-2), 162.6 (C-7), 161.0 (C-9), 156.9
(C-5), 148.7 (C-3′, 5′), 139.9 (C-4′), 120.1 (C-1′), 105.5
(C-10), 104.5 (C-2′, 6′), 103.9 (C-3), 98.2 (C-6), 94.8 (C-8),
56.4 (3′, 5′-OCH3). Carbon signals of sugar units δ: 99.4
(C-1′′), 77.2 (C-2′′), 76.4 (C-3′′), 71.8 (C-4′′), 77.2 (C-5′′),
60.3 (C-6′′), 100.4 (C-1′′′), 69.8 (C-2′′′), 70.3 (C-3′′′), 70.4
(C-4′′′), 68.3 (C-5′′′), 17.9 (C-6′′′). Compound 8 was identi-
fied as tricin 7-O-neohesperidoside by comparison of its
physical and spectral data with the literature values [10].
Compound 9 yellow amorphous powder, mp
262-264 ℃. ESI-MS m/z 431[M - H] -. UV (MeOH) λmax:
210, 265, 335 nm; IR (KBr) νmax: 3 380, 3 260, 1 656, 1 571,
1 508, 1 364, 1 180, 1 042, 832 cm-1. 1H NMR (DMSO-d6)
δ: 13.16 (1H, s, 5-OH), 10.81 (1H, br s, 7-OH), 10.31 (1H,
br s, 4′-OH ), 8.03 (2H, d, J = 8.6 Hz, H-2′, 6′), 6.90 (2H, d,
J = 8.6 Hz, H-3′, 5′), 6.80 (1H, s, H-3), 6.28 (1H, s, H-6),
4.70 (1H, d, J = 9.6 Hz, H-1′′). Compound 9 was identified
as vitexin by comparison of its physical and spectral data
with the literature values values [11].
Compound 10 yellow amorphous powder, mp
223-224 ℃. ESI-MS m/z 431[M - H] -. UV (MeOH) λmax:
209, 272, 336 nm; IR (KBr) νmax: 3 376, 2 933, 1 653, 1 609,
1 609, 1 444, 1 355, 1 077, 1 024, 837 cm-1. 1H NMR
XU Jie-Kun, et al. /Chinese Journal of Natural Medicines 2009, 7(6): 428−431
2009 年 11 月 第 7 卷 第 6 期 Chin J Nat Med Nov. 2009 Vol. 7 No. 6 431

(DMSO-d6) δ: 13.53 (1H, s, 5-OH), 7.90 (2H, d, J = 8.7 Hz,
H-2′, 6′), 6.92 (2H, d, J = 8.7 Hz, H-3′, 5′), 6.72 (1H, s,
H-3), 6.45 (1H, s, H-8), 4.60 (1H, d, J = 9.7 Hz, H-1′′) ,
4.08-3.17 (m, 6H); 13C NMR (DMSO-d6) δ: 181.7 (C-4),
164.6 (C-2), 163.3 (C-7), 161.3 (C-4′), 160.6 (C-5), 156.3
(C-9), 128.3 (C-2′, 6′), 121.0 (C-1′), 116.0 (C-3′, 5′), 108.9
(C-6), 102.8 (C-10), 102.6 (C-3), 93.8 (C-8), 81.4 (C-5′′),
78.9 (C-3′′), 73.2 (C-1′′), 70.5 (C-4′′), 70.2 (C-3′′), 61.4
(C-6′′). Compound 10 was identified as isovitexin by com-
parison of its physical and spectral data with the literature
values [12].
Compound 11 white needles, mp 171-172 ℃,
ESI-MS m/z 177[M - H]-. UV (MeOH) λmax: 211, 218, 312
nm; IR (KBr) νmax: 3 381, 2 953, 1 691, 1 634, 1 602, 1 516,
1 435, 1 330, 1 283, 1 179, 986, 850, 835, 637 cm-1.
1H NMR (DMSO-d6) δ: 7.55 (1H, d, J = 16.0 Hz, H-3),
7.53 (2H, d, J = 8.8 Hz, H-2′, 6′), 6.78 (2H, d, J = 8.8 Hz,
H-3′, 5′), 6.37 (1H, d, J = 16.0 Hz, H-2), 3.66 (3H, s,
4-OCH3); 13C NMR (DMSO-d6) δ: 167.0 (C-1), 160.1
(C-4′), 144.2 (C-1′), 130.2 (C-2′, 6′), 126.5 (C-3), 115.8
(C-3′, 5′), 115.7 (C-2), 55.1(OCH3). Compound 11 was
identified as acrylic acid by comparison of its physical and
spectral data with the literature values [13, 14].
References
[1] Xiao PG. Modern Chinese Materia Medica (Volume Ⅲ) [M].
Chemical Industry Press, 2002, 335-338.
[2] Ohmoto T, Ikuse M, Natori S, et al. Triterpenoids of the
gramineae [J]. Phytochemistry, 1970, 9 (10): 2137-2148.
[3] Chen Q, Wu LJ, Wang J, et al. Studies on the chemical con-
stituents of Lophatherum gracile Brongn. [J]. J Shenyang
Pharm Univ, 2002, 19 (1): 23-24.
[4] Nakajima Y, Yun YS, Kunugi A. Six new flavonolignans
from Sasa veitchii (Carr.) Rehder [J]. Tetrahedron, 2003, 59
(40): 8011-8015.
[5] Bouaziz M, Veitch NC, Grayer RJ, et al. Flavonolignans
from Hyparrhenia hirta [J]. Phytochemistry, 2002, 60 (5):
515-520.
[6] Xing CX, Xie N, Yang NY. Chemical constituents of Ainsli-
aea fragran [J]. Jiangsu Pharm Clin Res, 2006, 14 (2):
39-41.
[7] Li JB, Ding Y. Studies on the chemical constituents from
Myristica yunnanensis Y. H. L [J]. China J Chin Mater Med,
2001, 26 (7): 479-481.
[8] Kumarasamy Y, Byres M, Cox PJ, et al. Isolation, structure
elucidation, and biological activity of flavone 6-c-glycosides
from alliaria petiolata [J]. Chem Nat Comp, 2004, 40 (2):
122-128.
[9] Peng JY, Fan GR, Wu YT. Studies on chemical constituents
of Patrinia villosa [J]. China J Chin Mater Med, 2006, 31
(2): 128-130.
[10] Sun WX, Li X, Li N, et al. Chemical constituents of the ex-
traction of bamboo Leaves from Phyllostachys nigra
(Lodd.ex Lindl.) Munro var. henonis (Mitf.) Stepf. Ex
Rendle [J]. J Shenyang Pharm Univ, 2008, 25 (1): 39-43.
[11] Liu RH, Yu BY. Study on the chemical constituents of the
leaves from Crataegus Pinnatifida Bge. var. major N. E. Br.
[J]. J Chin Med Mater, 2006, 29 (11): 1169-1173.
[12] Pedras MSC, Chumal PB, Suchy M, et al. Phytoalexins from
Thlaspi arvense, a wild crucifer resistant to virulent Lep-
tosphaeria maculans: structures, syntheses and antifungal
activity [J]. Phytochemistry, 2003, 64 (5): 949-956.
[13] Zhang WD, Kong DY, Li HT, et al. Study on chemical con-
stituents of Erigeron breviscapus. Ⅲ [J]. Chin J Pharm,
2000, 31 (8): 347-348.
[14] Silvaa AMS, Alkorta I, Elguero J. et al. A 13C NMR study of
the structures of four cinnamic acids and their methyl esters
[J]. J Mol Struct, 2001, 595 (1-3): 1-6.

淡竹叶化学成分研究
张 靖 1, 王 英 2,3, 张晓琦 2,3, 张庆文 4, 叶文才 1,1,3*
1中国药科大学天然药物化学教研室, 南京 210009;
2暨南大学中药及天然药物研究所, 广州 510632
3中药药效物质基础及创新药物研究广东省高校重点实验室, 广州 510632
4澳门大学中华医药研究院
【摘 要】 目的:研究淡竹叶(Lophatherum gracile Brongn.)的化学成分。方法:采用各种色谱技术分离纯化, 通过理化常
数和光谱数据鉴定化合物的结构。结果:从淡竹叶中分离得到 14 个化合物, 其中包括 2 个黄酮木脂素类成分及 7 个黄酮
类成分, 结构分别鉴定为 salcolin A (1a)、salcolin B (1b)、苜蓿素(2)、木犀草素(3)、阿福豆苷(4)、苜蓿素 7-O-β-D-葡萄糖
苷(5)、当药黄素(6)、异荭草苷(7)、苜蓿素 7-O-新橙皮糖苷(8)、牡荆素(9)、异牡荆素(10)、对甲氧基肉桂酸(11)、β-谷甾
醇(12)和胡萝卜苷(13)。结论:化合物 1a, 1b, 3~4, 6~8 和 10~13 均为首次从该植物中分离得到。
【关键词】 淡竹叶; 黄酮木脂素; 黄酮

【基金项目】 国家杰出青年科学基金(No. 30625039); 广东省自然科学基金团队项目(No. 8351063201000003); 澳门特别行
政区科学技术发展基金(013/2008/A1)