免费文献传递   相关文献

The protective effects on the brain by pharmacological preconditioning

药理性预适应的脑保护作用



全 文 :Chinese Bulletin of Life Sciences
17 2
2005 4
Vol. 17, No. 2
Apr., 2005
201203
3 -
A T P
R 9 7 1 Q 4 2 7 A
The protective effects on the brain by pharmacological preconditioning
XIAO Liang, ZHU Xing-Zu*
(Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences,
Chinese Academy of Sciences, Graduate School of CAS, Shanghai 201203, China)
Abstract: Based on endogenous protective mechanisms of ischemic preconditioning, pretreatment of some
chemical agents was found to be capable of inducing protective effects in brain tissues in recent years. This
phenomenon was defined as pharmacological preconditioning. The chemical agents include endotoxin and its
analogs, 3-nitropropionic acid, volatile anesthetics, adenosine and its mimetic agents, the openers of ATP-
sensitive potassium channels, morphine and desferroxamine, et al. The time course, potency and mechanisms
of the protective effects vary among the different chemical agents. New drugs that could induce pharmacologi-
cal preconditioning may be useful in protection of the brain in neurosurgery or in prevention of ischemic brain
damages.
Key words: pharmacological preconditioning; brain; protective effects
1004-0374(2005)02-0165-05
2004-06-18 2004-07-09
(30128004); (2004CB720305)
( 1 9 7 4 ) ( 1 9 4 6 ) *
[1]
[1~2]: (1)
(trigger) (sensor) (2)
(transducer)
(3)
(effector)
166
(pharmacological preconditioning)
1
1997 [3]
48 72
4
48 72 4
22.8 25.9 20.5%[3]
[4]
[4]
15
4 24
24
(PMNs)
PMNs
[4]



[5] 6
48 TNF-α
TNF-α
[ 5 ]
ω-
-L- (nitro-L-arginine methyl ester L-
NAME) [6]
-
β1 -β1
-β1
-β1
[7]
[8]
A
24
A
[ 9 ]
2 3- (3-nitropropionic acid 3-NPA)
3-NPA
II
3-NPA
3-NPA
3-NPA
[10] 1
3 [10] 3-NPA
1~6 3-NPA
8
[10] 3-NPA
(20 mg/kg) 1 15
45 90%[11] 3-NPA
24
48 3-NPA 3
[12] 3 3 -NPA
(20mg/kg) 70%
ATP 3
3 120
4 16%
23%
3
3-NPA
20
3-NPA
[13]
3-NPA
[10] ATP
5-hydroxydecanoate (5-HD)
3-NPA [14] 3-
NPA ATP
3-NPA
ATP
[14]
24 3-NPA 15 96
3-NPA bcl-2 bax mRNA
3-NPA
15 3 bcl-2
bax
[15] 3-NPA
CA1 c-Jun (c-Jun NH2-terminal kinases
JNK ) N- -D-
(NMDA) [11]
3
3
12~24 3
0 12 24
31% 35% 34%[16] (2.25%)
1 5 24
[17]
24
49
(1%)
30 [18]
- A NMDA
[16]
[16]
ATP
ATP
[17]
[18]
DL-threo-β-hydroxyaspartic acid (THA)
[18]
4
A1 8- -1,3-
(8-cyclopentyl-1,3-dipropylxanthine DPCPX)
(theophylline)
A1
[19~20] (propentofylline)
[21]
R-
(R-phenylisopropyladenosine R-PIA) 15
10 [22]
3 [23] R-PIA
3
[24]
3 70
[24]
ATP [22~23]
5 ATP
(cromakalim
10 mM ) 15 10
[22] 3
[24] (diazoxide) ATP
[25] ATP
ATP [22]
[25]
168
3 70
[24]
C C
(chelerythrine)
[ 2 5 ]
6
24
(pentylenetetrazol)
CD50 ( 50%
) [26]
[27]
κ µ nor-binaltorphimine
(nor-BNI) cyprodime
U-69 593 DAMGO
κ µ [26]
δ
ATP [27]
7 (desferroxamine)
Fe3+
[28]
300 mg/kg 48
72 22
35 100 300 1 000 mg/kg 72
17 35 16
(300 mg/
kg) 72 40
(cycloheximide)
48
47
-1 DNA
mRNA
-1
mRNA [28]
8
ATP
[1]: (1) (2)
(3)
(4)
[1] Dirnagl U, Simon R P, Hallenbeck J M. Ischemic tolerance
and endogenous neuroprotection. Trends Neurosci, 2003,
26: 248~254
[2] Bolli R. The late phase of preconditioning. Circ Res, 2000,
87: 972~983
[3] Tasaki K, Ruetzler C A, Ohtsuki T, et al. Lipopolysaccha-
ride pre-treatment induces resistance against subsequent focal
cerebral ischemic damage in spontaneously hypertensive rats.
Brain Res, 1997, 748: 267~270
[4] Ahmed S H, He Y Y, Nassief A, et al. Effects of lipopolysac-
charide priming on acute ischemic brain injury. Stroke, 2000,
31: 193~199
[5] Zimmermann C, Ginis I, Furuya K, et al. Lipopolysaccha-
ride-induced ischemic tolerance is associated with increased
levels of ceramide in brain and in plasma. Brain Res, 2001,
895: 59~65
[6] Puisieux F, Deplanque D, Pu Q, et al. Differential role of
nitric oxide pathway and heat shock protein in precondi-
tioning and lipopolysaccharide-induced brain ischemic
tolerance. Eur J Pharmacol, 2000, 389: 71~78
[7] Boche D, Cunningham C, Gaulidie J, et al. Transforming
growth factor-β1-mediated neuroprotection against
excitotoxic injury in vivo. J Cereb Blood Flow Metab, 2003,
23: 1174~1182
[8] Bordet R, Deplanque D, Maboudou P, et al. Increase in
endogenous brain superoxide dismutase as a potential mecha-
nism of lipopolysaccharide-induced brain ischemic tolerance.
J Cereb Blood Flow Metab, 2000, 20: 1190~1196
[9] Toyoda T, Kassell N F, Lee K S. Induction of tolerance
against ischemia/reperfusion injury in the rat brain by pre-
conditioning with the endotoxin analog diphosphoryl lipid
A. J Neurosurg, 2000, 92: 435~441
[10] Aketa S, Nakase H, Kamada Y, et al. Chemical precondition-
ing with 3-nitropropionic acid in gerbil hippocampal slices:
therapeutic window and the participation of adenosine
receptor. Exp Neurol, 2000, 166: 385~391
[11] Kasischke K, Ludolph A C, Riepe M W. NMDA-antago-
nists reverse increased hypoxic tolerance by preceding chemi-
cal hypoxia. Neurosci Lett, 1996, 214: 175~178
[12] Weih M, Bergk A, Isaev N K, et al. Induction of ischemic
tolerance in rat cortical neurons by 3-nitropropionic acid:
chemical preconditioning. Neurosci Lett, 1999, 272: 207~210
[13] Maruoka N, Murata T, Omata N, et al. Hypoxic tolerance
induction in rat brain slices following 3-nitropropionic acid
pretreatment as revealed by dynamic changes in glucose
metabolism. Neurosci Lett, 2002, 319: 83~86
[14] Horiguchi T, Kis B, Rajapakse N, et al. Opening of mito-
chondrial ATP-sensitive potassium channels is a trigger of
3-nitropropionic acid-induced tolerance to transient focal
cerebral ischemia in rats. Stroke, 2003, 34: 1015~1020
[15] Brambrink A M, Schneider A, Noga H, et al. Tolerance-
inducing dose of 3-nitropropionic acid modulates bcl-2 and
bax balance in the rat brain: a potential mechanism of chemi-
cal preconditioning. J Cereb Blood Flow Metab, 2000, 20:
1425~1436
[16] Kapinya K J, Lowl D, Futterer C, et al. Tolerance against
ischemic neuronal injury can be induced by volatile anes-
thetics and is inducible NO synthase dependent. Stroke,
2002, 33: 1889~1898
[17] Xiong L, Zheng Y, Wu M, et al. Preconditioning with
isoflurane produces dose-dependent neuroprotection via
activation of adenosine triphosphate-regulated potassium
channels after focal cerebral ischemia in rats. Anesth Analg,
2003, 96: 233~237
[18] Zheng S, Zuo Z. Isoflurane preconditioning reduces purkinje
cell death in an in vitro model of rat cerebellar ischemia.
Neuroscience, 2003, 118: 99~106
[19] Nakamura M, Nakakimura K, Matsumoto M, et al. Rapid
tolerance to focal cerebral ischemia in rats is attenuated by
adenosine A1 receptor antagonist. J Cereb Blood Flow
Metab, 2002, 22: 161~170
[20] Hiraide T, Katsura K, Muramatsu H, et al. Adenosine
receptor antagonists cancelled the ischemic tolerance phe-
nomenon in gerbil. Brain Res, 2001, 910: 94~98
[21] Kawahara N, Ide T, Saito N, et al. Propentofylline potenti-
ates induced ischemic tolerance in gerbil hippocampal neu-
rons via adenosine receptor. J Cereb Blood Flow Metab,
1998, 18: 472~475
[22] Reshef A, Sperling O, Zoref-Shani E. Opening of ATP-
sensitive potassium channels by cromakalim confers toler-
ance against chemical ischemia in rat neuronal cultures.
Neurosci Lett, 1998, 250: 111~114
[23] Reshef A, Sperling O, Zoref-Shani E. Opening of K(ATP)
channels is mandatory for acquisition of ischemic tolerance
by adenosine. Neuroreport, 2000, 11: 463~465
[24] Blondeau N, Plamondon H, Richelme C, et al. K(ATP)
channel openers, adenosine agonists and epileptic precondi-
tioning are stress signals inducing hippocampal neuropro-
tection. Neuroscience, 2000, 100: 465~474
[25] Kis B, Rajapakse N C, Snipes J A, et al. Diazoxide induces
delayed pre-conditioning in cultured rat cortical neurons. J
Neurochem, 2003, 87: 969~980
[26] Rubaj A, Gustaw K, Zgodzinski W, et al. The role of opioid
receptors in hypoxic preconditioning against seizures in
brain. Pharmacol Biochem Behav, 2000, 67: 65~70
[27] Lim Y J, Zheng S, Zuo Z. Morphine preconditions Purkinje
cells against cell death under in vitro simulated ischemia-
reperfusion conditions. Anesthesiology, 2004, 100: 562~568
[28] Prass K, Ruscher K, Karsch M, et al. Desferrioxamine in-
duces delayed tolerance against cerebral ischemia in vivo and
in vitro. J Cereb Blood Flow Metab, 2002, 22: 520~525
AGF
2005 3 21
AGF
AGF AGF
2 30
50 AGF
AGF 2 8
24
AGF
http://www.yomiuri.co.jp/science/news/20050321i301.htm
· ·