免费文献传递   相关文献

Immobilization of recombinant nitrilase on metal chelating carriers

金属螯合载体固定重组腈水解酶



全 文 :!10
"!

#
2012
$

%
2
 
{
 
È
 

 
É
 
Ê
ChineseJournalofBioprocessEngineering
Vol.10No.4
Jul.2012
doi:10.3969/j.issn.1672-3678.2012.04.011
OPQI
:2011-05-03
KRS!

ËÌiuv7®ÐÑ
(863
ÐÑ

ҞÓÔ
(2009AA022203)
TU.V

6
 
–
(1986—),
ü

—‡ ìØ

ÿšuv2

uv=â

2{S.°v.

ÁTË

éêØ
),
‘¾
,Email:zhengyg@zjut.edu.cn
Rþž_)šŸ” ¸
Õ
 
Ö

×ØÙ

ÚÛ3

܌J5X7 \]JKABC

ÝW
310014)
7
 
h

aopÿð½DBCxqrésâ

Z¼s1ëáètä~Õ

fg²8

BCxqrésâÙéÙ¯x
qùãð
Zn2+。

Zn2+
ùã.Ó
03mol/L、
uÕÃ
156mg/g、
1ë_
pH80、
1ë_ÒÓ
40℃
E

BS¯1ë
_ÕÂ4ÙG

1ë_ÕÙÙvÑÒÓð
50℃、
ÙÙvÑ
pH
ð
70。
wxt.Óð
10mmol/L、

1h
E

1
ë_ÕÙM=“ð
0041mmol/(g·h);
$vÑ
12h
E


e.e.
y”_`
99%
a&

1ë_Õá¿z¼

Ja
å

Տ«{|$
45%。
ijk



ré

1ë_

wx,

tä~Õ
lmnop
:Q814.2    
6qrst
:A    
6u;p
:1672-3678(2012)04-0047-07
Immobilizationofrecombinantnitrilaseonmetalchelatingcarriers
WUYang,XUEYaping,ZHENGYuguo
(InstituteofBioengineering,ZhejiangUniversityofTechnology,Hangzhou310014,China)
Abstract:Metalchelatingcarierwithagarasthematrixwaspreparedandemployedtorecombinantni
trilaseimmobilization.Zn2+ wasselectedassuitablechelator.WhentheconcentrationofZn2+ was
03mol/Landenzymeloadwas156mg/g,theimmobilizednitrilaseshowedahighactivityatpH80
and40℃.Themaximumconversionofmandelonitrileto(R)()mandelicacidbytheimmobilizedni
trilasewasobservedatpH70and50℃.Whenthesubstrateconcentrationwas10mmol/Landthere
actiontimewas1h,theconversionreached70% with99% e.e.after12h.After8recyclesinbatch
operation,theactivityremainedat45%.
Keywords:cariers;chelator;immobilization;mandelicacid;nitrilase
  
£¤¥Q¦–⧖.ó²Ç£¤¥Qe
P+6£¤m.
(Cu2+、Zn2+、Ni2+、Co2+
(ÉU
£¤m.

°¹º|P+žè.kšlHš

²$
ó©kl


jn+¨©ª«
¬s§–1¦6P+

„õ§–.=,?s6
4àI)[1-3],
Azeš>g

ÿm9:sM

ì
si‰

¦#¨Û²Ç6²û

*nñ16ùñ
ù!"6*Ç

xWW(
[4]
<©G£¤¥Qݹ
Nµ] ¦

–⧖­X¹ºs

7•§–.
s6z96íU#V
684%,
X§–.s6w“[
–GM。Kuan
(
[5]
²Ç¥Q
Ni2+
6£¤¦?
pz
Histag
6

kšlL.sfg§–.uv

h§–.s6y[–G

Y·[–G_QÜ-BZ
mª«¬s
,¨
Û²Ç
20
–<®

7•szGH+
V1âãsz6
37%。
  
ª«¬sH+S.¹ºª

Žëª

Ñ®ª

¹
®ª(

2*AzisÈÞ6l

Az!b6Î
*Ç`a



<™mßGª«¬sS.[l2B
R()
[\l6uvM½
[6-9]。
Ô`m©
6HS.[\ª6ª«¬s45ü|z
Alcaligenes
faccalisATCC8750[7]、P.putidaMTCC5110[8]、Al
caligenesspECU0401[9]
(

cdê"¾¿ZCÉ?
ª«¬s45fg‰—š6¯mMnõ

Gñô5
izG6™mßGª«¬s45
A.faecalis
ZJUTB10,
‹²Çª«¬sfg62{S.‚ôB
[\ª2B
R()
[\l6uv
[10-11]。
Ç
PCR
=
,TÄæ
A.faecalisZJUTB10
ª«¬sš*

‹+ª
«¬sš*/01PV¦
pET28b(+)


%
IPTG
Öç®

ª«¬s"‰] 4hÃfg6zG
PV
[12]。
 6}iª«¬s6¨ÛhÇU

cdü|)
~ôõ–⧖6=,

h¨©ª«¬s§–"£
¤¥Q¦W

‹?§–.9:MS.ÉÊfg6
š06uv

<# £¤¥Q¦§–¨©s}ž
ô–6àpš­

1 
vw%xZ
1.1 
:hN€vw‘LM
  
š*Ê4ëcdê"¾¿Zä·

ݹÚ

“Y“´.Ž
),
:kš˜»l
(Ac
rosorganics
>?
IDA),^
_.œ
(Strem Chemi
cals),
[\ª
(Acrosorganics),
[\l

`a
),
®
Lr|™


,ZnCl2(N¦× ËBÿ˜ˆ。
  
~Û>«xtq

WbHyÿ˜{ózde
f
),
iwmúÓ


BeckmanCoulter),
è.ÿ˜
ƒ
(FA2004
Wbàº{ó{Pzdef
),
iT
b8Äç{
(SPD 20A
@”s„ef
),
«xtq
Sky 110WX(
WbúQzdef
),
…jøt{
FS 600(
Wb2˜…j{ózdef
),
sÙ©9
`aó

˪{ózdef
)。
1.2 
ž_©Ø
  
~
30g
ݹÚÈ0
1500mL
§lœeqb
(004mol/L、pH40)


-B©9`aóW`a

‹Ùæ
6h
IQeqb

–
,`
a
12h
®

«Ñl
G

~ëݹÚÈ0
1500mLNaCO3NaHCO3eq
b
(005mol/L、pH100),
Éb
,`
a
12h,
«Ñl
G

êñ6ëݹÚÕ|i°6‘É 
1g/mL
6iÈ01
15mol/L
6
NaOH
³b
(^ 5g
NaHB)


"Zs=È0|¡
50mL
M®Lr|™
90mL,
"©9`aó`a
12h,
ø*)c®ÇFm
.«ÑlG

+Ñn\6¦Õ|i°6‘
É 
05g/mL
È0
01mol/LNa2CO3(^ 10%6
IDA),
4Ç8
NaOH
Æ
pH
l
11,
"Zs=ø*
12h。
ø*)<®«ÑlG

¦Õ|i°6
‘É 
025g/mL
6iÈ01
005mol/L、pH60
6clœeqb
(^ 03mol/LZnCl2、05mol/L
NaCl)

,`
aø*
12h,
m®ÇFm.«Ñd

á
ñ1§–.£¤¥Q¦
[15-19]。
1.3 
¸d)\xZ
  
Zmª«¬sb6RS

+‰] 4
E.coli
BL21(DE3)/pET28bNIT
Sõ1
50mL
6
LB
;<
š
(^ 50μg/mLBçeoM01mmol/LIPTG),
î0
37℃
tq
150r/min
;<Éb

4~
1mL
õ.
bvS1
50mLLB
;<š

"
37℃
tq
150
r/min
;<

î468”
OD600V106~08Š,
È0
05mol/LIPTG10μL。m®-B28℃、150
r/min
6tqW;<
7h,
múíB4


085%
2àt«Ñ4

–

~
4g
4³01
50
mLKH2PO4NaOHeqb(pH80、005mol/L),
"
240W
6´U=øt
30min(
“Š,
1s,

Š,
1s),
+Âhøtb"vw 
16000r/min、
4℃
69:=mú
30min,
~W2báñZmª«
¬sb

  
s6§–.

~
1g
¦

È0
6mL
Zmª«
¬sb

8îBìs
156mg
6ª«¬s
),
B
40℃
=§µ
1h,
ÇFm.«Ñn

–<®lW2b+•
F1sz

áñ1§–.s

1.4 
¸¹d~xZ
  
sz•–)ÇiTb8Äç,

"ô–69:
=

<
1min
ÃS.[\ª2*
1μmol[\lê%
6si 

kgx

  
§–.sz96•–

~§–.s
05g
f0
1
10mL
clœeqb
(01mol/L、pH70)


4
È0
20mmol/L
[\ª

B
50℃
«xtqvw 
150r/min
9:=ø*
30min,
4È0
6mol/LHCl
20μLœ¶ø*,4"vw 12000r/min、4℃6
9:=mú
10min,
~W2b

Ç
HPLC


  
Zmª«¬sz96•–

~
05mL
Zmª«
¬s

ÕWL=,•–sz9

  
 àBŽ;i?sz6I)

+㩾¿
sz6—‰Þ‚– 
100%
fg&ðÿ˜

1.5 
n„xZ
  
B{[oË{8”6+•=,

Äçè 
HypersilODS(24.6mm×250mm
gU_^
5μm),
84
2
 
{
 
È
 

 
É
 
Ê
  
!
10
"
 
j$8 
V(¸
W
)∶V(NH4H2PO4,50mmol/L)=
35∶65,
ès
30℃,
jw
10mL/min。
  

CHIRALELODH
:G蕖B{
(R)
()
[\l6^i

* JG³¦H+ø@:G€
8è6gU

ê
~mú
ñ16N#

Ç8
HCl
Æl
pH
l
15,
È0(6
»l»¥H~

íBzÓ8m¬

¬­®+H1§
³¬BêÇ6j$8ÇBÄçÿ˜

AÄ
ç9:

Äçè 
CHIRALELODH
:Gè
(250
mm×460mm,5μm;DaicelChemicalIndustries),
j$ 8 © *  
V(
€ · ™
)∶V(
• | W
)∶
V(
Óh»l
)=90∶10∶01,
ès Zs

+•fZ
228nm,
j$8jw
08ml/L。(R)()
[\l6
 ±ˆ”CÉÐO?iÉiÞ
(e.e.)
ñno

e
>
:e.e.=[cR-cS]/[cR+cS]×100%,o,cRM cS
 

·M

·•468”

2 
…†%‡)
2.1 
)\¸d©Ø
2.1.1 
¥QF㣤m.6¦?s§–.6
I)
  
~¥Q
IDA
6ݹÚ

ÿ$¥QFã6£¤m
.
Cu2+、Zn2+、Ni2+、Co2+(

03mol/L,
|i°
6‘É 
025g/mL)
RS*¦

4Ǧ§–
¨©ª«¬s

•–§–.s6sz

m
1 
ÚÛRþÿ!dž_»¸)\dÄW
Fig.1 Efectsofdiferentchelatingmetalonrelative
activityofimmobilizednitrilase
  
ëR

#,

õ¦§–.s6szFã

¥
Q
Cu2+、Ni2+
6§–.sszMç

¥Q
Zn2+
M
Co2+
6szMi

ðúj²
[13]
6uv©

¥Q¦
°£¤m.6[–”j‰1\ 
Cu2+、Ni2+、Zn2+
M
Co2+,
ê<"j®6¾¿m~
Zn2+
 ¦

Ç

2.1.2 Zn2+
8”?s§–.6I)
  
~¥Q
IDA
6ݹÚ

ÿ$È0Fã8”6
Zn2+(
|i°6É 
025g/mL),
RS*¦

4
Ǧ§–¨©ª«¬s

•–§–.s6sz

O“éR
2。
jR

#<@æ

î
Zn2+
68” 
03
mol/L
Š

s6z9V1—i

ƒcd
Zn2+
8”6Ä
È

sz\]aç

„ó* ô=+
Zn2+
8”ĉ
z²Bs6ìs

éô=+
Zn2+
“ £¤m.

Ä
‰o8”

b"ô–Ê”WR6s6zG

*
y


03mol/L
6
Zn2+


m
2 Zn2+
ê뻸)\dÄW
Fig.2 EfectoftheconcentrationofZn2+onrelative
activityofimmobilizednitrilase
2.1.3 
ksi?s§–.6I)
m
3 
¸·»¸)\dÄW
Fig.3 Efectofenzymeamountonrelative
activityofimmobilizednitrilase
  
~
1g
¦

È0Fãi6ª«¬s³b

ñ1
§–.s

•–sz

O“éR
3。
jR

#<@æ

îÈsiV1
156mg/g
Š

§–.s6z9—i

cdÈsi6ÄÈ

§–.s6z9zê=a

„ó
* ¦W6
Zn2+
xû6&ÔóF;6

"{Mx
û‘`

§–.s6szcdÈsi6ÄÈnÄÈ

îV1{Mxû<®

iZÄÈsb

ç8³bÒ
,xöĉ

ønh§–.s6z9=a
[20-21],
*y
ÄÈsi‹FH}i§–.s6sz

94 
!

# 6
 
–(

£¤¥Q¦§–¨©ª«¬s
2.1.4 pH
?s§–.6I)
  
~
1g


³B
125mL

pH
6
KH2PO4
NaOH
eqb
(0.05mol/L)


=,ã
1.3,
RñZ
mª«¬s

È0¦

Õ|i°6É 
0166
g/mL),
ñ1§–.s

•–sz

O“éR
4。
j
R

#<@æ

cd
pH
6ÄÈ

§–.sszbc
‘ĉ

î
pH
V1
80
Š

§–.s6sz—i

* ª«¬s°
Zn2+
6¥QóCÉsP+6©k
lW6kè.2.6»?è.°
Zn2+
W6Òl©
OQnË*

ƒ"eqb_b#<}žÒl©

°
Zn2+
Åƪ«¬sP+6»?è.

*y
pH
ù
‰
,H+
ÅÆõ_™

ª«¬sb°
Zn2+
6OQõÄ
æ

ƒcd
pH
iZÄÈ
,pH
#H5;s6zG

j
nç8szaç
[6]。
m
4 pH
»¸)\dÄW
Fig.4 EfectofpHonrelativeactivityof
immobilizednitrilase
2.1.5 
s”?s§–.6I)
m
5 
R뻸d)\ÄW
Fig.5 Efectofimmobilizationtemperatureon
relativeactivityofimmobilizednitrilase
  
~
0.5g
¦

4È0ª«¬s³b

Õ|i°
6É 
0166g/mL,
8îBìs
15.6mg
6ª«
¬s
),
"Fã6s”=§–

•–sz

O“éR
5。
jR

#<@æ

cds”6fi

§–.s6
szùñùi

îs” 
40℃
Š

szV1—i

s”iZfi

szöaç

„óëBs”fi

I
)6§–.s6zG

*y—¤§–s” 
40℃。
2.1.6 
¦M§–.s6è.ܵ¾ÀÁP
  
R

ܺ6£¤¥Q¦[§–.s6
SEM
¡
Õ

ëR

#<@æ

ƒm£¤¥Q¦P+MQ¥

no6ô…Ë̗ö6{|

%@Qó¥Q6£¤m
.

„m6§–.sP+°¦P+6¹ÄF8ã

zûe…

:Q¦H+ìsô–i6¨©ª«¬s

m
6 
ž_

ˆ

‘)\¸

‰

Fig.6 SEM imagesofAgrEPIIDAZn(left)and
immobilizednitrilase(right)
2.2 
)\¸œéd#$
2.2.1 
§–.s6—¤s”°y[–G
  
~
05g
§–.sM8*6Zmª«¬s

ÿ$
È0
20mmol/L
6Ë{

BFãs”=S.
30min,
•–sz

O“éR
7。
jR
7(a)
#<@æ

§–.
s"
50℃
Š

sz9—i

nZmª«¬s—¤ø*
s” 
40℃,
„ó* ¦°sÿ.Sp<®[–
6s6ÿ.4à

}i6s6y[–G

ƒîs”f
i1
70℃
Š

Ìd6sz9_aç1Mƒ„

  
~
05g
§–.sM8*6Zmª«¬s

"F
ãs”=äs
30min,
m®È0
20mmol/L
6Ë{
S.

4ÿ$•–sz9

O“ôR
7(b)
êº

j
R
7(b)
#<@æ

îs”fil
50℃
Š

Zmª«
¬s6zGO;V
75%

ns”?§–.s6
I)M,
†O;6
20%
ƒ„

:Q§–.s6y
[–GiBZmª«¬s

2.2.2 
§–.s6—¤
pH
  
~
05g
§–.sM8*6Zmª«¬s

È
0
20mmol/L
6Ë{

ÿ$"Fã6
pH
9:=S
.
30min,
•–sz9

O“ôR

êº

ëR

#
,

§–.s—¤
pH
 
70,
nZmª«¬s—¤
pH
 
75。
2*#Hó¦%z.<®

P+6£
¤m.
Zn2+
#h³b6Em.

²$ó
OH-)
ì
sB¦P+

„#‚ϳb6
pH
õSlG

õ#

h§–.sP•æM‰z9

05
2
 
{
 
È
 

 
É
 
Ê
  
!
10
"
 
m7 
R뻸¹×‘¸¡@œdÄW
Fig.7 Efectoftemperatureonrelativeactivityandthermalstabilityoffreeand
immobilizednitrilase
m
8 pH
»¸¹×dÄW
Fig.8 EfectofpHonrelativeactivityoffree
andimmobilizednitrilase
2.2.3 
$9±v&6•–
  
~
05g
§–.sM8*6Zmª«¬s

"
pH70、50℃
9:=

È0Fã8”6Ë{

ÐO8
*6âwU

Ç&q&“R,

SoÆîv&M—
‰wU

O“ôP

êº

ëP

#,

Zmª«¬
s6Æîv& 
474mmol/L,
n§–.s6Æî
v& 
8139mmol/L,
:Q§–.s?Ë{6¿M
9PçBZmª«¬s

X§–.s6Æîv&°
¦6pèG|z9

¦°Ë{êp6èÐ8
ã

*y§–.s%|Mi6Ë{8”ÙHV1—
‰w”

ˆ
1 
¢ÿŸ” ¸‘)\¸d1׃{N
Table1 Kineticsconstantsoffreeand
immobilizednitrilase
sõ¢
Km/
(mmol·L-1)
Vmax/
(μmol·min-1·mg-1)
§–.s
81.39 2.15
Zmª«¬s
4.74 15.85
 
2.2.4 
§–.sMÂh6w“[–G
  
~
0.5g
§–.sM8*6Âh

È0
20
mmol/L
6Ë{

ø*
30min,
•–sz

ø*)®

Çclœeqb
(pH7.0)
Ñn§–.s
,¨
Û}4

‹YZw“

–

ÿ$•–§–.s6sz

O“ôR

êº

R

PQ



–<®

§–.
sr16szGH+V1
45%
ƒ„

§–.sw
“[–GçBÂh

#Hó* ¦W6ª«¬s
"¨Û²ÇÉʐ-Ð

jnç8szO;

ƒ?
Bª«¬sñ:

§–.<®hAs#<¨Ûh
Ç

}i6ª«¬s6²ÇU

m
9 
)\¸‘£Æd¤T@œBC
Fig.9 Comparisionofrelativeactivityofimmobilized
nitrilaseandcelindiferentoperationrecycle
2.3 
)\¸¥\`¾¦§Ó
  
~
05g
§–.s

È0Fã8”6Ë{

m
®"
10mL
clœeqb
(pH70、01mol/L)

、35℃
6«xtq9:=fgS.ø*

O“é
R
10
MR
11。
jR
10
#<@æ

cdË{8”
6ÄÈ

v.Uøn=a

îË{8” 
50
mmol/L
Š

ø*
12h
®

v.Usz
20%
ƒ„

15 
!

# 6
 
–(

£¤¥Q¦§–¨©ª«¬s
m10 
ÚÛ¨Åêë»Ð\ÑdÄW
Fig.10 Efectsofsubstrateconcentrations
onconversion
m
11 
ÚÛ¨Åê뻸¹

©Që‘
e.e.
ªdÄW
Fig.11 Efectsofthesubstrateconcentrationon
relativeactivity,initialrateande.e.
n"ã(9:=
10mmol/L
6Ë{8”

v.U#
6882%,
îË{8” 
10mmol/L
Š

F
ãø*Š,§–És6BUéP
2。
ëP

#,

ø*Š, 
1h
Š

§–És6—‰BU 
0041
mmol/(g·h)。
:Q"Ë{8”ÄÈ6Éʐ

?
§–.s6RŒ‰

ƒjR
11
#<@æ

î
Ë{8”V1
30mmol/L
Š

8?szMâw”_
8?Mi

ƒR
10
êܺ6v.UMç

nË{
8” 
20mmol/L
Š

sz

âw”M
e.e.
ÞM
i

‹Xv.Ubi

é‚B{
e.e.
Þ"FãË
{8”ø*êãœäY"
99%

3 
…
 
)
  
‰WêL

”¢"hÇ£¤¥Q¦§–¨©
ª«¬sŠ

§–.s6ø*9:sM
、pH
¤

§
–.s6y[–GQÜ}i6¯½

§–.s#½
–¨Û²Ç

X2B*Ӎ

"S.2B[\l


—¤ø*s”
、pH
_óÉMsM6ø*9:

ã
Š
e.e.
ÞH+V1
99%

êô=+}i6s6²ÇU

éô=+ÔYM7®6
      ˆ2 ¨Åêë«10mmol/LGd)\¸¾Ñ
Table2 Theimmobilizednitrilaseproductivitywith
substrateconcentrationof10mmol/L
B{8”

(mmol·L-1)
ø*
Š,


m(
§–
.s
)/

V(
ø*
ê
)/

§–.s
BU

(mmol·g-1·h-1)
0.94 0.5 0.5 0.01 0.038
2.05 1 0.5 0.01 0.041
3.60 2 0.5 0.01 0.036
5.58 4 0.5 0.01 0.028
6.45 6 0.5 0.01 0.021
6.61 8 0.5 0.01 0.017
6.79 10 0.5 0.01 0.014
6.88 12 0.5 0.01 0.011
 
s6–⧖.àp

ƒGzF*‘Ú

*yqz
wfô}6uv

Mª6q

[1] GaberePV,MenartV.Perspectivesofimmobilizedmetalafinity
chromatogr[J].JBiochemBiophysMeth,2001,49:335360.
[2] GutirezaR,MartndelVEM,GalnaMA.Immobilizedmetalion
afinitychromatography:statusandtrends[J].SepPurifRev,
2007,36:71111.
[3] SchmidEL,KelerTA,DienesZ.Reversibleorientedsurface
immobilizationoffunctionalproteinsonoxidesurfaces[J].Anal
Chem,1997,69(11):19791985.
[4] 
xWW

Á9t

xF

(

£¤¥Q¦–⧖.­X¹
ºs6uv
[J].
2{ʱ
,2005,21(5):789793.
[5] KuanI,LiaoR,HsiehH,etal.PropertiesofRhodotorulagracilis
Daminoacidoxidaseimmobilizedonmagneticbeadsthroughhis
tag[J].JBiosciBioeng,2008,105(2):110115.
[6] KaulP,StolzA,BanerjeeUC.Crosslinkedamorphousnitrilase
aggregatesforenantioselectivenitrilehydrolysis[J].AdvSynth
Catal,2007,349(13):21672176.
[7] YamamotoK,KazuhikoO,IsaoF,etal.ProductionofR()
mandelicacidfrommandelonitrilebyAlcaligenesfaecalisATCC
8750[J].ApplEnvironMicrobiol,1997,57(10):30283032.
[8] BanerjeeA,KaulP,BanerjeeUC.Enhancingthecatalyticpoten
tialofnitrilasefromPseudomonasputidaforstereoselectivenitrile
hydrolysis[J].ApplMicrobiolBiotechnol,2006,72(1):7787.
[9] ZhangZJ,XuJH,HeYC,etal.Cloningandbiochemicalprop
ertiesofahighlythermostableandenantioselectivenitrilasefrom
Alcaligenessp.ECU0401anditspotentialfor(R)()mandelic
acidproduction[J].BioprocessBiosystEng,2011,34:315322.
[10] XueYP,XuSZ,LiuZQ,etal.Enantioselectivebiocatalytichy
drolysisof(R,S)mandelonitrileforproductionof(R)()
25
2
 
{
 
È
 

 
É
 
Ê
  
!
10
"
 
mandelicacidbyanewlyisolatedmutantstrain[J].JIndMicro
biolBiotechnol,2011,38:337345.
[11] XueYP,LiuZQ,XuM,etal.Enhancedbiotransformationof
(R,S)mandelonitrileto(R)()mandelicacidwithinsitupro
ductionremovalbyadditionofresin[J].BiochemEngJ,2011,
53:143149.
[12] LiuZQ,DongLZ,ChengF,etal.Genecloning,expression,and
characterizationofanitrilasefromAlcaligenesfaecalisZJUTB10
[J].JAgrFoodChem,2011,59(21):1156011570.
[13] 
új²

§–.£¤¿M¦6RS[*Ç
[D].
Wb

Wb
2©ò±uv
,2005.
[14] 
Iu

v¥Q¿MÕ|6RS[o"w®©klxQ¹ºˆ
.6*Ç
[D].
Ö]

և‰±
,2008.
[15] 
µyD

IË

øzz

£¤¥Q¦ô}ˆ.°§–.
GL7ACA
¨.s
[J].
±Ö¬ý‰±±

ümò±‰
,2008,
32(5):549554.
[16] GongBL,BoCM,WangFQ.Preparationofimmobilizedmetal
afinitychromatographypackingsbyimmobilizationofcarboxym
ethylatedasparate(cmasp)basedonmonodispersehydrophilic
nonporousbeadsandtheirapplication[J].ChinJChem,2010,
28:11711176.
[17] KeYM,ChenCI,KaoPM,etal.Preparationoftheimmobilized
metalafinitymembranewithhighamountofmetalionsandpro
teinadsorptioneficiencies[J].ProcessBiochem,2010,45:
500506.
[18] 
ÁYï

¨<

{®Ns6
DEAE
ÁÂo§–.°G|u
v
[J].
.±C
,2004,67:15.
[19] ChagaG,HoppJ,NelsonP.Immobilizedmetalionafinitychro
matographyonCo2+carboxymethylaspartateagarosesuperflowas
demonstratedbyonesteppurificationoflactatedehydrogenase
fromchickenbreastmuscle[J].BiotechnolApplBiochem,1999,
29:
櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒
1924.
,012
¬£Æ­d¬`®}¯ð°^±©²
|T‰±{ౝM({|uvúÿÏ#‘¾}%ç
·
Ÿ~4·—r[7æôõš®2{©5Ã
Âh,Q=>6¾ê¡

Aê¡HÇBj2{¤*G.c•1Øש5Ê(½õÎ2B

"2{


Âh,6Q?©5O46)3Gl9¨|

Âh{|ÕñòQ"ôð

ÙHË*²–´H6©5

uv\©‚Ð6„õ2ã®2Û¦Hšò2{©5Âh‘,Q6ü|²

CɚòÓk¾9ôV
I)Âh,¹º|M¹º|6Q

€1ôõH4•2{©5

²³
”´
H6=,

89uv*“7P"=
Ë

ËÌò±

W

5ð$`ÅK’~³¯\£`Åãw¾A(Ñ
=ËéQ2{H9uvê
(JBEI)
uvØáÿm6ôõ"yp¯ø‚7•6] 4¤Â4
SCF1,
>
?Hÿ¬ã{­|ÁÂ

‹X"8?i8”6t³bZU<。
uvØáCɾ6¾¿=,Mš*•ò
ÿ˜

7•6Â4ƒFzNt³b62àÓR

z„‰‰}iµ2{Mƒ2{TU2BÉʐêhÇ6t
³bNG6H9

Auv#“ ƒm.bµ2{š*Ê6š­

pñIiT62{TU2B€

89
uv*“7P"=Ë

ËÌò±

ßRW

Ò´µ¶·ld¸bù ºw
Ã24ó2z"ã{ÃÏ©56µ2{

FŽh>?6…üP•æ?VQÜ61ÿÌ

>?"ã{
³®726a¬ÉʐvST9»ÔÄ

†~‰±uvØá"

*Ç°®Rµ2{±

#W‡¢:
:“
A
?jˆX½í¯íB6ô…ã{6‰

m®ŠÃ24j‹+ÿmæñ

A?uv6„…zӁa¬®k
¥6H9

—®¯@oõzӁ

äô\HòŒ½ðH6

õFã6ÿm4

>?F†AzŒæ6a¬H9

q"cL&=2ZŠŠ®k¥î0ô

9
”。

#r.

35 
!

# 6
 
–(

£¤¥Q¦§–¨©ª«¬s