免费文献传递   相关文献

Combined effect of water stress and pathogen infection on wheat

干旱与条锈病复合胁迫对小麦的生理影响



全 文 :第 26卷第 6期
2006年 6月
生 态 学 报
ACTA ECOLOGICA SINICA
Vo1.26.No.6
Jun.,2006
干旱与条锈病复合胁迫对小麦的生理影响
冯汉青 ,吴 强 ,李红玉 ,万东石 ,贾秋珍 ,李敏权。,梁厚果
(1.兰州大学生命科学院,甘肃,兰州 730000;2.甘肃省农科院植保所,甘肃,兰州 730070;
3.甘肃农业大学植保系,甘肃,兰州 730070)
摘要:以抗旱性和抗病性不同的小麦为材料,以正常生长为对照,观察了病原菌和水分复合胁迫对小麦叶片相对含水量、活性氧
代谢以及对抗氰呼吸的发生、运行的影响。讨论了在干旱与病原菌侵染复合胁迫下,抗氰呼吸在植物抗逆机制中所扮演的角
色。复合胁迫下 ,抗病小麦显然具备更强的水分调控能力 ,而感病品种不能有效控制病叶水分散失。水分胁迫能引起抗氰呼吸
的下降,但不能抵消因病原菌侵染引起的抗氰呼吸的增强,条锈菌侵染对小麦抗氰呼吸的影响远远大于水分胁迫。病原菌侵染
和水分复合胁迫下,活性氧产生的速率表现出累加效应 ,而抗氰呼吸表现出和基质抗氧化酶的活性互补。植物交替氧化酶在干
旱与病原菌侵染复合胁迫中具有重要的抗氧化功能 ,并可能调节着逆境下物质与能量需求间的矛盾。
关键词:小麦;条锈病;水分胁迫 ;复合胁迫;活性氧;抗氰呼吸;抗氧化酶
文章编号:1000-0933(2006)06-1963—12 中图分类号:$314,$432.1 文献标识码:A
Combined efect of water stress and pathogen infection on wheat physiology
FEGN Han-Qing ,wU Qiang ,LI Hong-Yu 一 ,WAN Dong-Shi ,JIA Qiu.Zhen ,LI Ming-Quan3,LIANG Hou.Guo
(1.School ofLifeSciences,Lanzhou University,Lanzhou 730000,China;2.GansuAcademy ofAgriculturalSciences,Lamhou 730070,China;3.Dept ofPlant
Protection,Gansu Agricultural University,lamhou 730070,Ch/na ).ActaEcologica Sinica,2O06,26(6):1963~1974.
Abstract:Relative water content(RWC),operation and development of alternative pathway。the changes in active oxygen species
(AOS)and activities of antioxidant enzymes,and the role of alternative pathway participating in the protection mechanism against
environment stress were studied and discussed in wheat seedlings leaves under combined intimidation of water stress and pathogen
infection.Experiments showed that the disease—resistant cuhivars had more powerful ability to regulate moisture content than the
disease·susceptible cultivars under combined intimidation of water stress and pathogen infection.The efects of stripe rust oil
cyanide-resistant respiration were very larger tha n that of water stress.Th e decrease in cyanide.resistant respiration caused by
water stress couldn’t counteract the increasing cyanide-resistant respiration aroused by stripe rust infecting
. Combined intimidation
resulted in AOS accumulation,and cyanide-resistant respiration and the activities of antioxidant enzymes presented upon the
completion of lowing AOS production,to some extent.It was proposed that cyanide-resistant respiration participates in the anti.
oxidation mechanisms and regulate the ambivalence and balance of requirement of the energy and substance for combined
intimidation conditions.
Key words:wheat;pathogen infection;water stress;comb ined intimidation;active oxygen species;cyanide.resistant respiration;
antioxidant enzymes
基金项目:国家自然科学基金资助项目(301702383和30471133)
收稿日期:2005.0l—l8:修订 日期:2006—0l一20
作者简介:冯汉青(1978~),男,甘肃兰州人,硕士,主要从事逆境与发育中植物生理与分子生物学研究 .E-mail:fenghanq03@st
. 1。 .edu.c
*通讯作者Coresponding author
Foundation item:The pmject was supported by the National Natural Science Foundation of China(No.301702383&30471133)
R麒 hed date:2005-01一l8:Accepted date:200(>01—20
Biography:FENG Hart—Qing,Master,mainly engaged in plant physiology and molecular biology on environmental StI~$S and plants development.E-mail:E-mall:
fenghanq03@st.1zu.edu.cn
维普资讯 http://www.cqvip.com
生 态 学 报 26卷
病原侵染与干旱分别是植物在自然环境中最常遇到的生物与非生物性的外界胁迫。条锈病是我国小麦
最主要的病害,在其发生时常常伴随有水分胁迫的危害l1]。故在生物与非生物性因素复合胁迫下植物生理状
况与抗逆机制的研究对于理论与实践生产都有重要的意义。
首先,在许多不良环境(如病原侵染、干旱、低温、损伤等)下,植物需要增加代谢底物(如碳骨架等)与 ATP
的供应以满足与逆境耐受相关的生物合成与能量的需求 。同时,干旱与病原菌侵染均会诱导植物组织活性
氧的积累b ],而高浓度的活性氧会导致植物毒害 j,并引发细胞程序性死亡(PCD)[63。所以,如何满足植物
对于逆境耐受相关的物质与能量的需求,同时如何降低细胞氧化损伤是抗逆生理的重要研究内容。
植物线粒体呼吸链具有一条抗氰呼吸途径(cyanide—resistant pathway)或称为交替途径(alternative pathway,
AP)[7 3,它在高等植物、真菌、藻类、酵母和原生动物中均有存在 。多种逆境都可以诱导抗氰呼吸各个水平上
的变化:病原菌侵染可诱导植物交替途径运行水平上升 ;小麦叶片的抗氰呼吸在水分胁迫初期增加,随着
胁迫的延长又表现为下降n ,干旱能引起水稻 AOX1a和AOX1 b mRNA的稳定增长Ll 。暗示,抗氰呼吸在逆
境胁迫下可能扮演着一定 的角色。
Zagdaaska等 认为,水分缺失会造成细胞蛋白质代谢与离子转运的增加,而此时需要呼吸为其提供能
量;Mackenziea和 McIntosh认为 ¨,交替途径的运行可以保证逆境胁迫下细胞对于碳骨架的需要。依照能量
溢流理论,交替途径水平的降低有利于氧化磷酸化的能量供应,但从细胞对碳骨架等代谢底物的需求上讲,抗
氰呼吸又应该保持在一定水平。所以,抗氰呼吸的运行可能从某种程度上代表了植物在逆境下对物质与能量
的调节;从抗氧化上讲,抗氰呼吸的生理功能之一在于象抗氧化酶系(如 SOD,CAT等)一样清除活性氧,维持
植物体内活性氧产生和清除系统之间的动态平衡 ¨ ],可见,抗氰呼吸在植物耐受不良环境中扮演着重要的
生理角色。
大量研究表明活性氧与抗氰呼吸关系密切。活性氧作为逆境信号分子可诱导抗氧化及其它保护机制的
激活使植物减轻逆境损伤 (如脱落酸作为水分胁迫的重要信号,其合成可被活性氧诱导 ;病原侵染下,
活性氧积累是植物抗病反应的早期特征之一 j,一些工作证明了活性氧也参与了抗氰呼吸的诱导 ]。所
以在氧化压力下,交替途径的运行水平与活性氧的代谢水平紧密相连:一方面活性氧对抗氰呼吸有一定的调
控作用,另一方面,抗氰呼吸可以降低活性氧的产生,两者之间存在着应答平衡。所以水分和病原侵染复合胁
迫下的相关研究不仅有利于解释活性氧与抗氰呼吸的运行规律与调节机制,而且对了解逆境胁迫下抗氰呼吸
在抗氧化中所扮演的角色以及它的生理学意义均具有一定的参考价值。
鉴于抗氰呼吸与活性氧之间应答理论的研究基本属于空白,抗氰呼吸与基质抗氧化酶系在抗氧化作用上
的关系也缺少必要的探讨;相信对植物处于生物与非生物性复合胁迫下的上述研究将使得抗氰呼吸与活性氧
之间的代谢调控以及抗氰呼吸对植物的保护作用更加明了。同时,人们对多种胁迫之间,尤其是生物与非生
物因素之间会彼此如何相互影响知之甚少 ,然而,植物生长环境中往往是多种胁迫同时存在,以往对单一
胁迫的抗性生理研究常常不能为生产提供充分与准确的理论依据。因此,该项研究对农业生产同样具有重要
的意义。
1 材料与方法
1.1 植物材料培养方法与处理
供试小麦(Triticum aestivum L.)品种为定西 24,铭贤 169,98SN146和会宁 18。定西 24和铭贤 169为小麦
条锈菌(Puccinia striformis West)高感品种(3.4型);会宁 18和98SN146为小麦条锈菌(PucciniⅡstn’iform/s West)
抗病品种(1—2型)。其中,98SN146与铭贤 169为水地 品种;定西 24与会宁 18为抗旱品种。小麦条锈菌
(Puccinia striformis West)菌种为条中31号生理小种(CY一31)。以上材料均为甘肃省农业科学研究院提供。
小麦种子经 1%次氯酸钠消毒,自来水冲洗,室温吸涨 12h后,于 26~C恒温培养箱中萌发24h,选露白一致
的种子种入消毒的石英砂盘中,于(26±1)oC恒温培养箱培养,每天光照 12h,光强 100 umol/(m2·s),待幼苗长
到 7d龄时,进行胁迫处理 。
维普资讯 http://www.cqvip.com
6期 冯汉青 等:干旱与条锈病复合胁迫对小麦的生理影响
用条锈菌夏孢子分批涂抹接种 7天龄的小麦叶片,分别将接种后生长 0、4、8、12、16d的小麦幼苗从石英
砂盘中小心拔出,洗净根部,吸干表面水分,移入 一0.5M Pa PEG6000蒸馏水溶液中 副分别保持 Oh,12h,24h,
以未接种的蒸馏水培幼苗为对照。对照与胁迫处理的材料均在上述温度和光照条件下生长。
1.2 组织相对含水量(RWC)的测定
叶片的相对含水量(RWC)的变化按何军贤等人 的方法进行测定。Rwc(材料鲜重.干重/水饱和材料鲜
重.干重)
1.3 组织呼吸参数的测定
小麦叶片切成 3mm长的片段,用 Clark型氧电极测定其呼吸耗氧速率。反应介质为 20mmol/L(pH 6.8)
的磷酸钾缓冲液,呼吸参数的测定和计算按 Bingham与 Farrar 的方法。无任何呼吸抑制剂时测得总呼吸活
性( ),同时加入 KCN和 SHAM测得剩余呼吸( ,),仅加入 KCN时的呼吸活性减去 得交替途径容量
( ), 减去仅加入 SHAM时得呼吸活性的交替途径实际活性(p )。所得呼吸速率均以 O nmol/(gb-~~-·h)
为单位表示。结果为 6次以上测定平均值。
1.4 超氧阴离子和过氧化氢的测定
叶片超氧阴离子 自由基 的测定采用王爱国,罗广华 ¨ 的方法。过氧化氢的抽提和含量的计算依
Mukherhuri和 Choudhuri_3 的方法。结果为6次以上测定平均值。
1.5 抗氧化酶活性的测定
超氧化歧化酶(SOD)活性的测定:按 Dhindsa 的方法。过氧化氢酶(CAT)活性的测定:按曾韶西 的方
法。过氧化物酶(POX)的测定:按 Bergmeyer 的方法。蛋白含量测定按照 Bradford的考马斯亮蓝 G250法口 。
结果为 6次以上测定平均值。
2 结果
2.1 条锈病侵染和水分胁迫对小麦幼苗叶片相对含水量(RWC)的影响
总体上,植物在遭受胁迫后表现出了相对含水量的下降。在抗旱品种中,无论是单独的水分胁迫与病原
侵染,还是对接种后的植物进行水分胁迫,抗病品种的相对含水量下降较慢,感病品种相对含水量下降较快;
同样地,在不抗旱品种中,在上述的胁迫条件下,仍然是抗病品种更能控制水分散失。比较同为感病品种或同
为抗病品种的小麦,在单独的水分胁迫与病原侵染下,以及对接种后的植物进行水分胁迫下,在感病性相同的
品种中,不抗旱品种的相对含水量较之抗旱品种下降更快。说明维持植物含水量在植物逆境耐受中扮演着重
要角色,而控制水分散失的能力可能是抗病与抗旱机制中的共同部分。
2.2 水分胁迫和条锈病侵染对小麦幼苗叶片总呼吸速率的影响
如图2,感病品种的呼吸速率均在接种 8d后剧烈上升,复合水分胁迫明显抑制了该上升趋势;抗病品种
的呼吸速率随病程深入较慢地上升,除接种 16d后抗病品种的呼吸速率随水分胁迫而降低,在其余时间里,水
分胁迫均导致了接种后抗病品种呼吸速率的上升。
同为感病品种,接种后,抗旱品种呼吸速率的上升幅度小于不抗旱品种,水分复合胁迫对不抗旱品种呼吸
速率的降低作用比抗旱品种明显;在同为抗病品种但抗旱性不同的小麦中,整体上,水分胁迫对接种后抗旱的
会宁 18呼吸速率的升高作用也较接种后不抗旱的 98SN146明显。
2.3 水分胁迫和条锈病侵染对小麦幼苗叶片交替途径容量的影响
接种后,感病品种定西24和铭贤 169的 在侵染初期上升缓慢,8d后迅速上升,16d时分别为对照的
41.7倍与 31.2倍;抗病小麦的 在侵染下平稳增长,到 16d时98SN146与会宁 18的 分别为对照的 13.9
倍与 11.2倍。复合水分胁迫降低了接种 12d后的感病品种的 ;病程中抗病品种 值在复合水分胁迫下
的降低较稳定(图3)。
同为感病品种,接种后不抗旱的铭贤 169的 值大于同期抗旱的定西 24;抗病品种中,除接种的第 16
天不抗旱的 98SN146的 值高于同期的抗旱的会宁 18,其余时间内,抗旱品种的 值高于同期不抗旱品
维普资讯 http://www.cqvip.com
l966 生 态 学 报 26卷
种。 , 与 值变化趋势基本相似(图4)。
V





一 -一0h水分胁迫Water stressfor0h
一 ·一12h水分胁迫 Water$tleSS for 12h
侵染时问Time after inoculation(d)
V





— -▲一24h水分胁迫Water stress for24h
一 口一对照 Control
侵染时间Time afterinoculation(d)
图 1 条锈病侵染和水分胁迫对小麦幼苗叶片相对含水量(RWC)的影响
Fig.1 Efects of water stress on relative water content(RWC)of wheat seedling leaves infected with stripe rust
(a)定西 24 dingxl 24,(b)铭贤 169 mingxian 169,(c)会宁 18 huining 18,(d)98SN146
一 -一Oh水分胁迫Water stressfor0h
一 ·一12h水分胁迫 Water StrOSSfor 12h
侵染时间 Time afterinoculation(d)
— .▲一24h水分胁迫Water stress for24h
一 口一 对照 Control
侵染时问Time after inoculation(d)
图2 条锈病侵染和水分胁迫对小麦幼苗叶片总呼吸速率的影响
Fig.2 Efects ofwater 【n ontotal respirationrate ofwheat seedlingleaves infected with stripe rust
(I事 v\ _lo目 v 丹磺整管爝
【蛊事 010目 丹磺整管爝
维普资讯 http://www.cqvip.com
6期 冯汉青 等 :干旱与条锈病复合胁迫对小麦的生理影响 1967
500
400
300
r--a Oh水分胁迫Water stressfor0h
12h水分胁迫 Water stressfor 12h
2 0 2 4 6 8 10 12 14 16 18
- 2 0 2 4 6 8 10 12 14 16 18
侵染时间Time after inoculation(d)
目 24h水分胁迫Water stressfor24h
1 对照 Control
500
400
300
200
lO0
0

500
400
300
200
100
0
2 0 2 4 6 8 10 12 14 16 18
— 2 0 2 4 6 8 10 12 14 16 18
侵染时间Time after inoculation(d)
图3 条锈病侵染和水分胁迫对小麦幼苗叶片交替途径容量的影响
Fig.3 Efects of water stress on h of wheat seedling leaves infected with stripe rust
- Q-Oh水分胁迫Water stressfor0h
一 _一12h水分胁迫 Water☆e鼹for 12h
侵染时间 Time after inoculation(d)
一 ·一24h水分胁迫Water stressfor24h
一 ▲一 对照 Control
侵染时间 Time after inoculation(d)
图4 条锈病侵染和水分胁迫对小麦幼苗叶片 / 的影响
Fig.4 Efects of water stress on v h}vt of wheat seedling leaves infected with stripe rust
2.4 水分胁迫和条锈病侵染对小麦幼苗叶片交替途径实际运行量和运行系数的影响
交替途径容量的存在并不意味着将全部运行,同时测定了交替途径的实际运行量和运行系数。如图 5,
在 4种小麦中,病原侵染,水分胁迫,以及复合胁迫所导致的交替途径实际运行量的变化与前文交替途径容量
((丑事 v 010目Ⅱ){ 哪肄 缸
瑚 m 。l湖 枷 姗 枷 m 。
(丑事 v\ 010目Ⅱ)芎 瓢肄 缸
^v 、 瓣域餐誊锄\捌肄 魈氍
口^石v 哥域 誊锄\栅肄 瓤
维普资讯 http://www.cqvip.com
1968 生 态 学 报 26卷
的的变化基本一致。
500
400
300
2oo
l00
0
口 对照 Control
Oh水分胁迫Water stressfor0h
- 2 0 2 4 6 8 10 12 14 16 l8
侵染时间Time af时 inoculation(d)
臣盔囫 12h水分胁迫 Water stressfor12h
臣盔囫 24h水分胁迫Water stress for24h
300
200
l00
0
2 0 2 4 6 8 lO 12 14 16 18
侵染时间Time afler inoculation(d)
图 5 条锈病侵染和水分胁迫对小麦幼苗叶片交替途径实际运行量的影响
Fig·5 Effects of water stress on p h of wheat seedling leaves infected with stripe rust
接种后,感病品种的交替途径运行系数在侵染初期上升较快,在 8d后上升有所减缓
。 抗病小麦交替途径运
行系数上升慢于感病品种,而且上升较为稳定。水分复合胁迫降低了4种小麦的交替途径运行系数(图6)

q

1I{5


一 ·一Oh水分胁迫 Water stressfor0h
- 0-12h水分胁迫Water stressfor 12h
侵染时间 Time after inoculation(d)
q


1.0
0.8
0.6
0.4
0.2
0
2 0 2 4 6 8 lO 12 14 16 18
侵染时间 Time afler inoculation(d)
图6 条锈病侵染和水分胁迫对小麦幼苗叶片交替途径运行系数的影响
Fig·6 Efects ofwater stress on D ofwheat seedling leaves infected with stripe rust
2.5 水分胁迫和条锈病侵染下小麦幼苗叶片 O 和 H 0 产生的动力学
(( 事 v、 一窨 Ⅱ) 捌船 崆林 和
(q§ 0一窨 Ⅱ) 捌船 崆林 和
维普资讯 http://www.cqvip.com
6期 冯汉青 等 :干旱与条锈病复合胁迫对小麦的生理影响 l969
图7显示:接种后,感病小麦 O 含量在病程中基本维持在同一水平;抗病小麦接种后 O 含量有所上升,
会宁 18号于 12d左右达到高峰,随后有所下降;98SN146呈现波动变化。对接种后的小麦进行水分复合胁
迫,O 含量均表现为上升。总体上,接种后干旱敏感的小麦叶片随水分胁迫 O 含量增加较多,抗旱的小麦
O 含量增加相对较少。
口 对照 Control 呸盔 12h水分胁迫Water stressfor12h
—V/_d—d2 Oh水分胁迫 Watcr stressfor0h mlm 24h水分胁迫Water stressfor24h







聿L



侵染时间Time after inoculation(d)
图 7 条锈病侵染和水分胁迫对小麦幼苗叶片 含量的影响
Fig.7 Efect of water 8tre88 on o2-content of wheat seedling leaves infected with stripe rust
图8,接种后,随着病程的发展,感病小麦 H2 o2含量持续升高:到接种 16d后,定西 24和铭贤 169分别为
对照的 1.8倍与 2.7倍。抗病小麦的 H2O 含量随着病程的发展没有明显的变化。未接种小麦处于轻度水分
胁迫时,H2 o2含量均有一明显上升,接种后的小麦在水分胁迫下 H2 o2含量有不同程度的上升。但在侵染 16d
时,抗旱品种在 24h的水分胁迫下,较之 12h的水分胁迫,H O 含量又开始下降。
2.6 水分胁迫和条锈病侵染下小麦幼苗叶片抗氧化保护酶活性的变化
如图9,接种后感病小麦 SOD活性大于抗病品种,水分复合胁迫整体上引起了接种后小麦SOD活性上升。
接种后不抗旱小麦 SOD活性大于抗旱品种。对接种后的小麦进行水分复合胁迫,不抗旱的小麦品种中 SOD
活性有不同程度的上升;接种后前 8d抗旱品种的 SOD活性在水分复合胁迫下略有上升,但接种 12d后的SOD
活性在水分胁迫下保持不变或呈现下降趋势。
感病小麦接种后第4天 CAT活性达到峰值,此后逐渐下降,但大于同期接种后的抗病品种(图 l0)。水分
复合胁迫使得随病程深入的感病不抗旱的铭贤 169的 CAT活性上升,而在其他接种后的小麦中,水分复合胁
下 CAT活性有时也表现出下降趋势。
抗病小麦 POX活性变化与感病小麦类似,在接种后第 8天时达到峰值,在以后的病程中逐渐下降,但感
病小麦 POX活性始终大于抗病品种(图 11)。水分复合胁迫在大部分时间上导致了接种后小麦 POX活性的
下降。
3 讨论
实验表明,病原侵染和水分胁迫都导致了植物组织水分散失;水分胁迫所导致的小麦叶片水分散失明显
u^l目.誊 葺),Io目Ⅱ) 0 o。 已 ul BJ。I。0
^^口薯 v 冒【) o。甚 暑Ⅱ 昌。Ⅱa0
维普资讯 http://www.cqvip.com
1970 生 态 学 报 26卷
口 对照 Control
0h水分胁迫Water s~ressfor0h





一 2 O 2 4 6 8 10 12 14 16 18
侵染时间 Time after inoculation(d)
_ 12h水分胁迫Water s~ress for 12h
_ 24h水分胁迫Water stress for24h
侵染时间Timeafterinoculation(d)
图 8 条锈病侵染和水分胁迫对小麦幼苗叶片H O 含量的影响
Fig.8 Efects of water stress on H202 content of wheat seedling leaves infected with stripe rust
口 对照 Control
0h水分胁迫Water stressfor0h
700
600
500
400
300
200
100
O
一 2 0 2 4 6 8 10 12 14 16 18
12h水分胁迫 Water s~ress for 12h
_ 24h水分胁迫Water s~ressfor 24h

{




700
600
500
400
300
200
100
侵染时间Time afterinoculation(d) 侵染时间 Time afterinoculation(d)
图9 条锈病侵染和水分胁迫对小麦幼苗叶片 SOD活性的影响
Fig.9 Efects of water stress on SOD activities of wheat seedling]eaves infected with stripe rust
强于病原侵染。可见,水分状况是病原侵染和水分胁迫进行程度的某种反映。抗旱与抗病小麦分别较之不抗
旱和感病小麦无论是在水分胁迫、病原侵染,还是在复合胁迫下均能更为有效的控制水分散失,表现出了更强
的水分调控能力。Rizhsky等发现,干旱可以引起与抗病相关基因的表达 ” 。Xiong 弛 等认为,植物在不良环
参^ ∞,IoⅧ 苗alIo。0H}I棚如埔 辩捌
∞ 加 :2 m 5 O
事^ 昌- IⅡ暑oo 0H}I一如埔 竣
维普资讯 http://www.cqvip.com
6期 冯汉青 等:干旱与条锈病复合胁迫对小麦的生理影响 l97l
r--3对照 Control
0h水分胁迫Water sfessfor0h
- 2 0 2 4 6 8 10 12 14 16 l8
侵染时间Timeafterinoculation(d)
一 12h水分胁追Water stres for 12h
一 24h水分胁迫Water stressfor24h
侵染时间Time after inoculation(d)
图 1O 条锈病侵染和水分胁迫对小麦幼苗叶片 CAT活性的影响
Fig.10 Efects of water stress ON CAT activities of wheat seedling leaves infecmd with stripe rust
口 对照 Control
Oh水分胁追Water stresfor0h
侵染时间Time after inoculation(d)
一 12h水分胁迫Water stress for 12h
一 24h水分胁迫Water stressfor24h
一 2 0 2 4 6 8 10 12 14 16 l8
侵染时间Time after inoculation(d)
图 11 条锈病侵染和水分胁迫对小麦幼苗叶片POX活性的影响
Fig·11 Efects of water stress oN POX activities of wh eat seedling leaves infected with stripe rust
境下维持一定水分是保证正常的细胞活性所必须的,体内水分状况的变化会影响多种的代谢与细胞信号路
径㈨ 。可见,小麦的抗病与抗旱机制之间确实存在某些联系
。 结果显示,控制机体的水分散失可能是小麦的
抗病与抗旱机制重要的共同部分。
u^l oJ d.鼬Ⅲ,已 《u掣螟髓埔 捌
Ⅱ^l 呈d1 Ⅲ,已 od掣螟髓霉 捌
维普资讯 http://www.cqvip.com
生 态 学 报 26卷
前人的研究表明,植物在病原侵染下抗氰呼吸上升 ,而在持续的干旱下抗氰呼吸下降 ¨。本文实验表
明,病原侵染导致抗氰呼吸上升,而对病原侵染的小麦进行水分胁迫导致了抗氰呼吸下降。但是总体上,复
合胁迫下小麦的抗氰呼吸仍表现为升高;水分胁迫改变了病原侵染引起的交替呼吸途径的反应 ,但水分胁迫
不能抵消因病原菌侵染引起的抗氰呼吸的增强。Mackenziea和 McIntosh认为 ¨,替代途径的运行可以保证病
原侵染等胁迫下细胞对于碳骨架的需要。Zagdaaska认为n引,水分缺失会加强细胞蛋白质代谢与离子转运,而
此时需要呼吸为其提供能量。依据这些结论推测,病原侵染下,植物更需要增加与抗病机制相关的生物合成
所需的碳骨架,而在复合胁迫下要适度降低抗氰呼吸以增加氧化磷酸化供能来适应附加的水分胁迫。交替途
径的运行水平可能调节着逆境下物质与能量需求间的矛盾。然而,水分胁迫也导致了接种后抗病品种呼吸速
率一定程度的上升(图2)。所以,在总呼吸速率上升(及能为呼吸链提供更多电子供体)的前提下,交替途径
运行水平适当程度的下降可以同时满足物质与能量的需求,呼吸与抗氰呼吸如何共同调节着物质与能量的供
应还需要更为细致的研究。 ’
同样,病原菌侵染和水分胁迫都能引起活性氧的产生。活性氧水平也是病原侵染和水分胁迫进行程度的
反映之一。将病原菌侵染后的小麦处于水分胁迫时,活性氧表现出进一步的积累。但是,抗病性小麦较之感
病品种在水分胁迫下没有表现出更强的对 O 含量的控制;小麦抗旱性的差异也没有影响到病原侵染对 O
含量的影响,暗示干旱与病原侵染在活性氧积累上相互影响较小。研究表明,被侵染的植物可以通过主动增
强被侵染部位活性氧的释放来控制病原的蔓延,而在干旱下植物体内活性氧的积累主要是细胞器功能受损所
导致的电子渗漏造成的_5]。可见,病原菌侵染和水分胁迫产生活性氧的机制可能是相对独立的。本文实验也
验证 了这一点 。
随病程发展,交替途径的运行呈现持续上升,而无论是 O 还是 H:0:,在接种后呈波动变化;干旱复合胁
迫导致交替途径运行下降,却导致了活性氧的升高。抗氰呼吸的水平与活性氧的变化没有始终保持一致性。
可见,逆境下植物体内活性氧增加并非一定会诱导交替途径的上升,因此推测:(1)逆境下交替途径运行的上
升不仅限于活性氧诱导这单一途径;(2)对交替途径的诱导应当控制在较低的活性氧水平,随着胁迫的深入,
AOX直接面临较高水平活性氧的攻击而活性降低,这将打破活性氧对抗氰呼吸的诱导与抗氰呼吸清除活性
氧之间的平衡。
SOD、CAT和POX是体内活性氧的重要清除剂H ,交替氧化酶同样可以清除活性氧,但它们之间的关系
并不清楚。以前在玉米中观察到氧化压力下 SOD酶活性变化迟钝的现象 。用 NO处理拟南芥悬浮细胞可
以强烈诱导 AOX1 n的转录,但 CAT与SOD基因的表达并不显著 。在实验中,病原侵染下,抗氰呼吸显著增
加,伴随的是 SOD、CAT和 POX活性的下降。而当水分复合胁迫降低了小麦抗氰呼吸的同时,却观察到 SOD
与 CAT活性在许多时间点上不同程度的上升,或保持在未水分胁迫时的水平,表现出交替氧化酶和基质抗氧
化酶的活性互补。线粒体是氧化压力下植物活性氧释放的主要部位之一 J,交替氧化酶主导的抗氰呼吸直
接位于呼吸链上,可以直接与经济地降低线粒体活性氧的生成,使细胞不必调动过多的基质抗氧化酶的活性;
而在交替氧化酶受到过多自由基损伤而活性下降时,基质抗氧化酶的激活可以继续维持抗氧化能力。最近。
在叶绿体上也发现了与交替氧化酶有很高同源性的末端氧化酶 J,相信细胞器膜的抗氧化酶在抗氧化中的
功能将得到更广泛的注意。
同时,在实验中观察到,对比在 0—16d内仅进行病原侵染的对照小麦,仅用 PEG渗透胁迫的对照小麦很
难在0—16d内维持相对正常的生长,常常在中早期就萎蔫坏死。这导致无法采用仅用 PEG渗透胁迫的对照
来进行更多的分析。但上述的实验结果表明,呼吸状态和路径的改变在植物适应复合胁迫所导致的氧化压力
和其它生理变化的过程中扮演着重要的角色。为此,今后的大田实验中有待为复合胁迫对小麦的生理影响进
行更多的研究。
[1] Li Y R,Shang H S.The~sponses of wheat plants iM~ted with stripe rust to water stress.Acts phytophysiologiea Sinica,2000,26(5):417 421
维普资讯 http://www.cqvip.com
6期 冯汉青 等:干旱与条锈病复合胁迫对小麦的生理影响 1973
[2]
[3]
[4]
[5]
[10]
[12]
[13]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
Plaxton,W C.Metabolic Flexibility Helps Plants to Survive Stress.In:Plant Physiology Online.Sinauer Associates.Sunderland,MA.U.S.A.,2002.
Hasegawa P M,Bresan R A,Zhu J K,Bohnert H J.Plant celular and molecular responses to higl salinity.Annu.Rev.Plant Mo1.Plant Physio1.,
2000.51:463~499.
Ge X C,S0Ilg M F,Zheng Z.Active oxygen production in rice seedlings infected by magnaporthe sea is involved in the blast resistance.Acta
Phytophysiologica Sinica,2OOO,26(3):227~231.
Dat J,Vandenabeele S,Vranova E,Van Montagu M,Inze D,Van Breusegem F.Dual action of the active oxygen species during plant stres responses.
CMLS,20OO,57:779~795.
Fleury G。Migote B,Vaysiene J L.Mitochondrial reactive oxygen species in cel death signaling.Biochimie.,2002,84(2-3):131—41.
Vaulerberghe G C,Mclntosh L.Alternative oxidase:from gene to function.Ann Rev Plant Physiol Plant Mo1.,1997,48:703—734.
Milenarr F F,Iambef8 H.TheAlternative oxidase;in vivoregulationandfunction.Plant boil.,2003,5:2—15.
Simons B H,Millenaar F F,Mulder L,Van Loon L C,Iambers H.Enhanced expression and activation of the alternative oxidase during infection of
Arabidops~ with Pseudomonas syr/ngae pv tomato.Plant Physio1.,1999,120:529~38.
Maxwel D,Nickels R,McIntosh L.Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with
pathogen attack and senescence.Plant J.,2002,29:269—79.
Ontog S H,HiggiI8 V J,Vanhrberghe G C.Mitochondrial alternative oxidase is not a critical component of plant viral resistance but may play a role in the
hypersensitive respo nse .Plan t Physio1.,2002,129:1858—65.
Zhang N H,Wei N H,He G X,et a1.Responsers of the cynanide—resistant respiration to mild water stres in wheat leaves.Acta Bat.Borea1.-Occident.
Sin.。2001,21(1):21~25.
Ohtsu K,ho Y,Saika H ,Nakazono M ,Tsutsumi N,Hirai A.ABA—independent expresion of rice alternative oxidase genes under environmental stresses

P1an tBiotechno1.,2002,19:187~ 190.
Zagdanska B.Respiratory energy demand for promin turnover and ion transport in wheat leaves upon water deficit.Plant Cel1.,1999,11:571~586

Mackenzie S,Mclntosh L.Higher Plant Mitochondria.Plant Cel,1999,11:571—586.
Purvis A C,Shewfeh R L.Does the alternative pathway ameliorate chiling injury in sensitve plant tisues?Physilo Plant,1993,88:712~718.
Wanger A M.A role for active oxygen speices as second messengers in the induction of alternative oxidase gene expresion in petunia hybrida cels.FEBS.
Lett.,1995,368:339—342.
Popov V N,Simonian R A,Skulachev V P,Starcov A A.Inhibition of the AOX stimulation H2O2 production in plant mitochondria.FEBS Let.,1997,
415(1):87~90.
Maxwel D P,Wang Y,Mclntosh L.Th e alternative oxidase lowers mitochondrial reactive oxygen production in plant cel1.PNAS J.,1999,96:8271~
8276.
Prasad T K,Anderson M D,Martin B A,Steward C R.Evidence for chiHing-induced oxidative stress in maize seedlings and a regulatory role for hydrogen
peroxide.Plant Cel,1994,6:65—74.
Guan L M,Zhao J,Scadalios J G.Cis-elements and trans-factors that regulate expression of the maize Catl antioxidant gene in response to ABA and osmotic
stres:H202 is the likely intermediary signaling molecule for the response.Plant J.,2000,22:87—95.
Pei Z M,Murata Y,Benning G,Th omi ne S,Klusener B,Allen G J,Grill E,Schroeder J I.Calcium channels activated by hydrogen peroxide mediate
abseisic acid signaling in guard cels.Nature,2000,4O6:731~734.
Zhang X,Zhang L,Dang F,Gao J,Galbraith D W,Song C P.Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in V/c/afab口.
P1an t Physil.,2001,126:1438—1448.
Ochsendorf F R.Infection and reactive oxygen species.Andrologia,1998,30(1):81—6.
Bama B,Fedor J,Pogany M,Kiraly Z.Role of reactive oxygen species and antioxidants in plant disease resistance
. Pest Manag Sci.,2003,59(4):459.
64
[26] Minagawa N,Minagawa N,Koga S,Nakan。M,S~kaj。S,Yoshimot。A.Posible inv。lvement of superoxide ani。n in the induction 0f cyanide-resistant
respiration is Hansenula anomala.FEBS Lett.,1992,302:217—219

[27]
[28]
[29]
Zeng S X,Wang Y R·Comparison of the changes of membrane protective system in rice seedlings during the enhancement of chiling resistance by diferent
stress pretreatment.Acta Botanica Sinica,1997,39(4):308—314.
Money N P.Osmotic pressure of aqueous polyethylene glycols.Relationship between molecular weight and vapor pressure deficit
. Plant Physio1.,1989,91:
766~769.
He J X,Wei Z Q,un H H,et a1.Efects of water stle8 on the cyanide—resistant respiration and expresion of the alternative oxidase ne in wheat
seedlings.Acta Botanica Sinica,1999,41(3):340 342.
维普资讯 http://www.cqvip.com
1974 生 态 学 报 26卷
[3O]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[加]
[41]
[42]
[43]
[44]
[45]
[46]
Bingham I J,Farrar J F.Activity and capacity of respiration pathways in barley roots deprived of inorganic nutrients.Plant Physiol Biochem.,1989,27
(6):847~854.
Wang A G,Luo G H.Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plant.Plant Physiology Communication,
1990,(6):55~57.
Mukherhuri S P,Choudhuri M A.Implication of water stresss-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in V/gna
seedlings.Physiologia Plantarum.,1983,58:166~170.
Dhindsa R S,Dhindsa P P,Thorpe T A.Leaf senescence:correlation with increased levels of membrane permeability and lipid peroxidation and increased
levels of superoxide dismutase and catalase.J Exp Bot.。1981,32:93~101.
Wang A G,Leo G H.Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plant.Plant Physiology Com unication,
1990,(6):55.57.
Kochba J,Lavee S,Spigel-Roy P.Diferences in peroxidase activity and isoenzyme in emb ryogenic and nonemb ryogenic’Shamguti’orange ovular callus
lines.Plan t and Cell Physio1.,1977,18:463~466.
Brandford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Analytical
Biochemi stry,1976,72:248-25.
Rizhsky L,Liang H,Mitler R.The Comb ined Efect of Drotlght Stress and Heat Shock on Gene Expresion in Tobacco.Plant Physio1.,2002 130(3):
l143.1l51.
Xiong L,Zhu JK.Molecular and genetic aspects of plant responses to osmotic stress.Plant,Cel and Environment,2002,25:131-139.
Bray E A.Molecular responses to water deficit.Plant Physio1.,1993,103:1035-1040.
Simon B H,Milenaar F F,Mulder L,Van Loon L C,LambePs H.Enhanced expresion and activation of the alternative oxidase during infection of
Arabidopsis with Pseudomonas syr/ngaepv tomato.Plant Physio1.,1999 120,529-538.
McCord J M,Ffidovich L.Superoxide dismutase:an enzyme function for erythrocuprein(Hemocuprein).J.Bio.,1969,244:6049~6055.
Ren H X,Chen X,Wang Y F.Changes of antioxidative enyzem and pelyam ines in wheat seedlings with diferent drought resistance under drought and salt
stres.Acta Phytoccologica Sinica.2001,25(6):709~715.
Wang J,Li D Q,Gu L S.Theresponse ofwater stress ofthe antioxidant systeminmaize seedling roots with diferent drought resistance.Acta Bot Boreal—
Occident Sin.,2002,22(2):285~290.
Huang X,Van-Red U,Durner J.Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arab/dops/s suspension cel1.
Planta.,2002,215:914~923.
Carlos G B,Facundo G,Dana E M,Juan J G.Mitochondria are the main target for oxidative dam age in leaves of wheat(Triticum aestivum L.).J.Exp.
Bot.,2004,55:1663—1669.
Cournac L,Latouche G,Cerovic Z,Redding K,Ravenel J,Pehier G.In Vivo Interactions between Photosynthesis,Mitorespiration,and Chlororespiration
in Chlamydomonas reirthardtii.Plant Physiology Preview.,2002,129:1921~ 1928.
参考文献 :
李珥仁,商鸿生.小麦条锈病罹病植株对水分胁迫的响应.植物生理学报 ,2000,26(5):417~421.
葛秀春,宋鸣风,郑重.稻瘟病侵染水稻活性氧的产生与抗病性的关系.植物生理学报,2000,26(3):227~231.
张年辉 ,韦振泉,何军贤 等.小麦幼苗叶片抗氰呼吸对轻度水分胁迫的响应.西北植物学报,2001,21(1):21~25.
曾韶西 ,王以柔.不同胁迫预处理提高水稻幼苗抗寒性期间膜保护系统的变化比较.植物学报,1997,39(4):308~314.
何军贤,韦振泉,林宏辉,梁厚果.水分胁迫对小麦幼苗抗氰呼吸和交替氧化酶基因表达的影响.植物学报,1999,41(3):340~342
王爱国,罗广华.植物的超氧化物自由基与羟胺的定量关系.植物生理学通讯.1990,(6):55 57.
任红旭,陈雄,王亚馥.抗旱性不同的小麦幼苗在水分和盐胁迫下抗氧化酶和多胺的变化.植物生态学报,2001,25(6):709~715
王娟,李德全,谷令坤.不同抗旱性玉米幼苗根系抗氧化系统对水分胁迫的反应.西北植物学报,2002,22(2):285~290.
● 4 凹 舵 躬
维普资讯 http://www.cqvip.com