全 文 :植物生理学报 Plant Physiology Journal 2016, 52 (4): 394–400 doi: 10.13592/j.cnki.ppj.2016.0014394
收稿 2016-01-14 修定 2016-03-07
资助 国家科技支撑计划(2014BAD16B06)。
* 通讯作者(E-mail: ypguo@nwsuaf.edu.cn)。
高等植物6-磷酸海藻糖信号调控研究进展
张雯, 王宇斐, 郭延平*
西北农林科技大学园艺学院, 陕西杨凌712100
摘要: 6-磷酸海藻糖(T6P)在植物体内广泛分布, 对植物的生长发育起着重要的调节作用, 其信号途径伴随植物胚胎发育直
至衰老的整个过程。T6P是海藻糖的代谢前体物质, 其主要通过抑制蔗糖非酵解相关激酶1 (SnRK1)的催化活性, 进而调控
植物生长代谢, 故称为T6P/SnRK1信号。在T6P/SnRK1信号调控植物代谢过程中, 转录因子bZIP11、己糖激酶HXK及PIF
信号途径也参与到植物T6P/SnRK1信号调控路径。
关键词: 植物生长; 逆境; 蔗糖非酵解相关激酶1 (SnRK1); 海藻糖; 6-磷酸海藻糖
海藻糖是2个葡萄糖分子以1,1-糖苷键构成的
非还原性二糖, 其代谢前体物质为6-磷酸海藻糖
(trehalose-6-phosphate, T6P)。T6P主要存在于植物
的细胞质, 液泡和叶绿体中也少量存在(Marina等
2013)。T-6-P的主要代谢途径(图1)为: 尿苷二磷酸
葡萄糖(UDPG)和6-磷酸葡萄糖(G6P)经6-磷酸海
藻糖合成酶(TPS)催化合成T6P, T6P被6-磷酸海藻
糖磷酸酶(TPP)进一步催化合成海藻糖(trehalose),
海藻糖又可被海藻糖酶(TRE)催化分解形成两分
子的葡萄糖(glucose) (Eastmond和Graham 2003)。
间的基因结构类似, 其中拟南芥TPPA和TPPB基因
可影响TPP的活性。
由于海藻糖在高等植物中较难分离、提取,
且在植物体内含量很低, 因此测定比较困难, 而植
物体中T6P的含量更低, 测定更困难。直到Lunn等
(2006)建立串联四极杆-液质联用方法测定T6P后,
有关高等植物中T6P的生物学功能分析逐渐成为
研究热点。从近年的研究报告看, 关于T6P的研究
多集中在T6P/SnRK1信号途径, T6P与蔗糖、淀粉
等代谢物质间的相互关系, T6P的抗逆性功能等方
面(Wingler等2012; Yadav等2014; Kretzschmar等
2015)。本文对近年来有关T6P的研究报告进行了
系统分析, 旨在探讨T6P对植物的生长调控作用,
生物、非生物抗逆功能, T6P与SnRK1信号通路以
及与HXK、IAA、bZIP11的生理调节作用等, 为今
后T6P的研究提供借鉴。
1 T6P及关键酶对植物生长发育的调控
10多年来, 对T6P的研究日渐深入, 取得了不
少成果。早先, Romero等(1997)在TPS转基因烟草
上发现T6P可提高植物抗旱性。之后, Pellny等
(2004)进一步发现T6P与烟草叶面积及光合作用相
关。还有研究表明植物体内T6P含量与蔗糖含量
存在一定比例, 并能影响淀粉合成等多个植物生
理活动(Kolbe等2005; Yadav等2014)。
1.1 T6P与植物生长发育的关系
在碳代谢中, 维持T6P含量与碳含量比例平衡
对植物生长十分重要(Yadav等2014)。当植物处于
在上述的代谢途径中, TPS基因所编码的TPS
蛋白是催化T6P的生物合成酶, 而TPP基因所编码
的TPP是催化T6P生物分解的蛋白酶。研究发现,
拟南芥TPS基因家族有11个基因, TPP基因家族有
10个基因。其中AtTPS基因家族可进一步划归为
AtTPS1~4 (具有编码TPS酶活性的结构)和AtTPS5~11
(不具有编码TPS酶活性的结构)两个亚族。虽然拟
南芥TPS基因家族成员间的基因序列和氨基酸序
列基本一致, 但由于基因特异性较大, 使得TPS
家族成员间的生物学功能有很大不同(Avonce等
2010)。目前仅AtTPS1基因被证实可以明显影响
TPS酶活性, 且AtTPS1也对植物生长代谢过程有影
响。而TPS2~4仅能推测出对十字花科植物的TPS
蛋白酶有作用。此外, TPS5~11基因的生物学功能
仍不明确(Lunn 2007)。拟南芥TPP基因家族成员
图1 6-磷酸海藻糖代谢途径示意图
Fig.1 T6P metabolic pathways
张雯等: 高等植物6-磷酸海藻糖信号调控研究进展 395
正常生长条件下, 若植物中T6P大量积累, T6P与碳
含量比例随之失衡, 此时植物会通过调节自身碳
积累使它们间比例失衡得以恢复。当植物体内碳
源大量积累而未被利用时, 植物正常生长便会被
抑制, 在过量的碳源中, 过量的蔗糖会引起植物中
T6P的大量积累, 其失衡比例得到恢复, 植物得以
正常生长(Wingler等2000; Zhang等2009)。可见,
T6P是碳源充足与否的信号物质。此外, 植物体内
积累过多T6P, 还会因激发UDPG脱氢酶上游基因,
而影响植物正常代谢(Klinghammer和Tenhaken
2007; Paul等2010)。
在植物胚胎发育中, T6P是种子萌发不可缺少
的物质。对于缺少TPS基因(T6P合成基因)的突变
体种子来说, 该种子在胚胎“鱼雷期”便已终止发
育, 但可以通过过量表达TPS基因解除种子萌发抑
制因素。当然, 即使种子萌发限制解除, 该种子萌
发植株的生长势依然不如野生型(Eastmond等
2002; Schluepmann等2003)。
植物淀粉代谢中, T6P与淀粉代谢息息相关。
叶片积累大量T6P后, 体内AGPase活性受到影响,
进而促进淀粉合成(Kolbe等2005)。但Marina等
(2013)研究认为T6P不是通过影响AGPase调节淀
粉合成与分解的, 而是通过影响植物生物钟进行
调节。可见, T6P调节淀粉代谢的机理仍不明了。
此外, T6P还有延缓叶片衰老、影响果实座果率等
其他植物生理功能(Wingler等2012; Botton等2011)。
1.2 TPS与植物生长发育的关系
TPS催化UDPG和G6P生成T6P的过程中, 低
浓度Ca2+、K+、Mg2+、Na+、果糖、6-磷酸果糖和
葡萄糖可增强TPS酶活性, 而脯氨酸对TPS蛋白酶
活性却有抑制作用(Elisa等2004)。拟南芥的TPS基
因家族包含基因AtTPS1~11, AtTPS1到AtTPS4为第
一类TPSS亚族, AtTPS5到AtTPS11为第二类TPSS亚
族。第一类TPSS亚族与酵母ScTPS1有高度同源
性, AtTPS1基因由于N末端延展区结构与其它第
一类TPSS亚族不同, AtTPS1的生物活性较低, 但可
以表达TPS蛋白酶活性(Van等2002; Zang等2011)。
AtTPS2~4目前只发现在长角果中存在(Paul等
2008), 而全部第二类TPSS亚族都缺少TPS活性
(Harthill等2006; Ramon等2009)。此外, TPS除了有
催化合成T6P的生物功能外, TPS蛋白在氧化戊糖
磷酸途径中对G6P和NADPH分别有感应和激活的
作用(Wilson等2010)。
目前对TPS的研究, 主要集中在基因功能评价
方面(Chary等2008; 付凤玲等2011)。史健志等
(2015)研究发现坛紫菜PhTPS基因在高温胁迫下呈
现先上调、后下降、再上调的起伏趋势。且在高
度失水条件下PhTPS1和PhTPS2-1基因表达显著上
调, 因此推测PhTPS基因在高度失水胁迫下发挥应
激调节作用。另有多种TPS研究是通过TPS1-GUS
检测花芽、角果、叶子与胚胎等的生理功能(Van
等2004; Gómez等2010)。
1.3 TPP与植物生长发育的关系
TPP催化T6P生成海藻糖。TPS和TPP酶基因
均广泛出现在高等植物中, 有着庞大的基因家族
(Leyman等2001; Schluepmann等2004)。在拟南芥
中现有10个TPP家族基因(AtTPPA~J), 其中拟南芥
TPPA和TPPB基因可表达TPP活性。
TPP对植物生长与发育均有一定的影响。Sa-
toh-Nagasawa等(2006)发现在TPP作用下玉米突变
体的花序结构发生了变异。Ge等(2008)发现水稻
中OsTPP1基因过量表达后, 水稻的耐盐性和耐冷
性均有明显提升。岳思思等(2014)也发现丹参
SmTPS基因有提升植物抵御干旱及低温胁迫能力
的作用。
2 T6P与SnRK1信号调控
Thevelein和Hohmann (1995)发现酵母中T6P
与己糖激酶(hexokinase, HXK)对植物进行协同调
控; 然而Eastmond等(2002)研究表明, T6P并没有通
过HXK对植物进行调节。在随后的研究中发现,
T6P与SnRK1在植物上存在拮抗作用(Zhang等
2009)。SnRK1是碳代谢和氮代谢的重要调控因子,
与养分胁迫等多个响应途径相关(Halford和Hey
2009; Smeekens等2010)。T6P与SnRK1能协同调
节植物的生长与发育(Baena-Gonzalez等2007)。在
植物的生长代谢过程中, HXK有可能参与了T6P/
SnRK1途径(Nägele等2014)。
2.1 SnRK1的植物功能特性
SnRK家族包含SnRK1、SnRK2和SnRK3三个
亚族。其中, SnRK1包含α亚基、β亚基和γ亚基, α
亚基是SnRK1的催化亚基。SnRK1的α亚基由
(KIN10和KIN11)编码, 另有基因编码β亚基和γ亚
植物生理学报396
基。此外, 在拟南芥中还发现了一个植物特有基
因, 可编码βγ亚基(Polge和Thomas 2007)。
SnRK1是植物糖信号调节通路上的关键激
酶。目前研究发现SnRK1与蔗糖磷酸合成酶、硝
酸还原酶和TPS酶等均有联系(Polge和Thomas
2007; Halford和Hey 2009)。虽然李光洁等(2009)
将编码平邑甜茶SnRK1的α亚基以及βγ亚基的基因
序列转入番茄中, 未发现果实糖含量、酸含量以
及淀粉含量有显著变化; 但Wang等(2012)将平邑
甜茶植株中的MhSnRK1基因转入番茄使其过量表
达, 发现该转基因番茄株系中叶片和未成熟果实
中的淀粉含量明显高于野生型, 叶片中蔗糖合酶
分解方向活性和AGPase活性均明显增加。此外,
植物在低糖条件下, 过量表达SnRK1基因, 可通过
依赖蔗糖氧化还原型AGPase促进淀粉合成(McK-
ibbin等2006; Tiessen等2003); 在低氧、黑暗、碳源
缺乏等条件下 , SnRK1也可以影响植物的生长
(BaenaGonzález等2007; Cho等2012)。可见, 当植
物的生长环境、生长时期或种类不同时, SnRK1对
植物有多种不同的生长调节响应方式。
2.2 T6P与SnRK1间作用及信号通路
T6P与SnRK1之间存在某未知中间因子(图2),
且仅存在于幼嫩器官或组织中。T6P对大麦谷粒中
的SnRK1活性抑制作用贯穿整个生长期(Martínez-
Barajas等2011)。Zhang等(2009)通过对拟南芥植
物中不同发育阶段SnRK1的活性测定, 也发现T6P
抑制幼嫩叶片中的SnRK1活性, 而对成熟叶片中的
SnRK1活性没有抑制作用; 该研究还通过在免疫
沉淀反应中添加无SnRK1的α亚基幼嫩组织悬浮
液于成熟组织液后, T6P开始对SnRK1活性表现出
抑制作用; 但将煮沸后的幼嫩组织悬浮液加于成
熟组织液后, T6P则对SnRK1的活性不再产生作
用。说明该未知因子不耐热, 很可能属于蛋白类
物质。今后, 对该因子仍有待进一步寻找和深入
探究。
T6P/SnRK1信号通路在植物糖代谢的信号调
节中起着极其重要的作用(陈素丽等2014)。如参
与了植物呼吸、淀粉合成、淀粉和蔗糖等代谢,
甚至还参与了ABA的积累(Liam等2013)。Baena-
González等(2007)通过AtKIN10基因过量表达, 不
仅观察到拟南芥花序结构受到了影响, 而且也观
察到花期延迟。Martínez-Barajas等(2011)通过研
究花后10 d大麦的生长情况, 指出T6P/SnRK1信号
途径参与到大麦多个生长与发育阶段, 其中包括
对谷粒、种皮以及胚胎等的生理调控。T 6 P /
SnRK1信号途径同样能调节土豆、甘蔗和黄瓜等
植物的“库”器官或细胞(Wu和Birch 2010; Debast等
2011; Zhang等2015)。此外, 研究还发现缺乏TPS6
基因的拟南芥突变体, 其花序分枝会增多(Chary等
2008)。不过, 有研究报告指出TPS6并不能表达有
活性的TPS蛋白, 我们分析认为TPS和TPP蛋白主
要通过信号调控途径而非生物催化功能来影响植
物生长与发育。
T6P/SnRK1信号通路还与植物生长素和PIF
光信号通路相关。Paul等(2010)通过微阵列技术分
析发现, 在拟南芥植株中T6P可下调Aux/IAA基因
表达, Aux/IAA是影响植物生长素含量的重要基
因。当过量表达TIR1 (植物生长素受体转运抑制
子1)时, 植物体内T6P含量增加, 通过抑制SnRK1活
性使TIR1亚基磷酸化, 进而保证植物的正常生长
(Farras等2001; Dos等2009)。此外, Paul等(2010)还
发现T6P可调控PIF4基因, PIF4基因是参与光信号
图2 高等植物T6P/SnRK1信号调控途径示意图
Fig.2 Three strategies of T6P/SnRK1 signal pathway to cope with different environment
张雯等: 高等植物6-磷酸海藻糖信号调控研究进展 397
调节的光敏色素相关基因。该基因能参与调节植
物多个生长与发育过程(Franklin 2008; Koini等
2009), 在胚胎处于弱光或高温条件下, 下胚轴在
PIF4信号调节下会伸长 , 诱导植物生长素合成
(Franklin等2011); 当植物内蔗糖含量增多后, 会导
致PIF4和PIF5基因轻微下调, 其中PIF4的下调则
与T6P增加有关(Paul等2010)。
3 T6P及其抗逆性
Schluepmann等(2004)利用基因芯片分析T6P
含量变化对植物的影响时, 发现T6P与植物生物逆
境和非生物逆境相关基因均存在一定的关联。所
以, 全面透彻地探究T6P对植物生物以及非生物逆
境的调节作用, 可以更清晰地理解植物对逆境的
多种适应性。
3.1 T6P与生物逆境
在大麦中海藻糖可诱导植物自身保护机制启
动, 从而抵抗白粉病(Blumeria graminis)对其侵害
(Reignault等2001; Renard-Merlier等2007)。当植物
内源海藻糖含量增加, 会使T6P含量也随之增加,
由此推测可能是T6P对大麦白粉病起到抵制作
用。此外, TPS1基因是稻瘟病(Magnaporthe grisea)
在植物体内繁殖所必需的基因。目前, T6P与生物
逆境的研究报告还很少。
3.2 T6P/ SnRK1的信号途径与非生物逆境
当碳源缺乏时, 植物体内T6P含量会减少, 随
之SnRK1活性增加, 进而降低植物碳源消耗, 增加
碳同化进程和光合作用, 最终使植物体内积累大
量碳水化合物(Baena-González等2007; Baena-
González和Sheen 2008)。在适度干旱条件下, 植物
体内会积累碳水化合物以适应干旱环境(Hummel
等2010; Muller等2011)。同样, 冷害也会使得植物
体内积累碳水化合物, 抵御低温胁迫(Fernandez等
2012)。因而在旱害和冷害时, 植物体内T6P含量
增加, 从而SnRK1活性降低, 促进碳水化合物的合
成积累。
3.3 bZIP11参与与T6P/SnRK1信号途径
T6P抑制SnRK1活性, 进而影响bZIP11启动子
调控相关基因表达(Smeekens 2015)。转录子bZIPs
在抗逆性方面的作用 , 通常与蔗糖含量变化有
关。蔗糖可通过调控bZIPs阅读框(SC-uORF)增强
其转录功能, 并同时抑制其翻译表达(Rook等1998;
Wiese等2004)。此后Baena-González和Sheen
(2008)在研究多个转录子功能时发现SnRK1与转
录子bZIP也存在一定关联。Delatte等(2011)表明
拟南芥的bZIP11基因过量表达时, 在体内积累大量
的T6P后, 植物不再出现生长抑制现象。此外, 研
究还发现bZIP11可以通过诱导一段基因片段, 而对
KIN10进行调控, 以致影响SnRK1活性。
4 结论与展望
糖不仅是代谢物质, 还能作为信号物质调节
植物生长与发育。T6P信号调节途径可直接参与
到种子萌发、幼苗生长、开花结实以及衰老等多
个植物生理活动中。在植物正常生长条件下, T6P
与蔗糖含量成一定比例, 存在相互调节的关系。
当植物体内蔗糖含量增加时, T6P与蔗糖含量比例
平衡被打破, 进而T6P含量随蔗糖含量增加而增加,
植物体内重新达到T6P与蔗糖含量比例的平衡
(Yadav等2014)。因而, 可以理解为T6P有调节养分
胁迫的生理功能。此外, T6P通过调节SnRK1活性,
作用于bZIP11、光敏色素以及植物生长激素等, 确
保了植物生长与发育的正常进行, 提高了植物对
环境的适应性。
近几年, 尽管高等植物中T6P信号物质的研究
日益增多, 但还有很多不足, 主要是由于T6P在植
物内含量低, 又与多个信号物质协同调节植物代
谢, 因而较难准确地阐明T6P的生理调控机制, 并
且T6P是植物生长代谢的重要物质, 难以在不影响
植物正常生长条件下对T6P进行分子生物学分
析。今后, 要通过双分子荧光互补、免疫共沉淀
等实验技术手段找出T6P与SnRK1中间未知的蛋
白因子, 明确T6P/SnRK1信号途径除了参与PIF4光
敏信号途径外, 是否还参与到其他信号调控中, 进
一步阐明T6P/SnRK1信号调控途径。
总之, 对T6P的研究仍需要不断创新和完善研
究手段和实验技术, 并结合多领域如细胞生物学,
植物生理学、遗传学和基因组学等进一步研究,
从而更加深入地了解T6P信号调节方式、分子机
理与植物信号响应等。
参考文献
Avonce N, Wuyts J, Verschooten K, Vandesteene L, Dijck PV (2010).
The cytophaga hutchinsonii ChTPSP: first characterized bifunc-
tional TPS–TPP protein as putative ancestor of all eukaryotic
植物生理学报398
trehalose biosynthesis proteins. Mol Biol Evol, 27: 359–369
Baena-González E, Rolland F, Thevelein JM, Sheen J (2007). A cen-
tral integrator of transcription networks in plant stress and ener-
gy signaling. Nature, 448: 938–942
Baena-González E, Sheen J (2008). Convergent energy and stress sig-
naling. Trends Plant Sci, 13: 474–482
Botton A, Eccher G, Forcato C, Ferrarini A, Begheldo M, Zermiani M,
Moscatello S, Battistelli A, Velasco R, Ruperti B, et al (2011).
Signaling pathways mediating the induction of apple fruitlet ab-
scission. Plant Physiol, 155: 185–208
Chary SN, Hicks GR, Choi YG, Carter D, Raikhel NV (2008). Treha-
lose-6-phosphate synthase/phosphatase regulates cell shape and
plant architecture in Arabidopsis. Plant Physiol, 146: 97–107
Chen SL, Peng Y, Zhou H, Yu B, Dong YJ, Teng S (2014). Research
advances in trehalose metabolism and trehalose-6-phosphates-
ignaling in plants. Plant Physiol J, 50 (3): 233–242 (in Chinese
with English abstract) [陈素丽, 彭瑜, 周华, 于波, 董彦君, 滕胜
(2014). 植物海藻糖代谢及海藻糖-6-磷酸信号研究进展. 植物
生理学报, 50 (3): 233–242]
Cho YH, Hong JW, Kim EC, Yoo SD (2012). Regulatory functions of
SnRK1 in stress-responsive gene expression and in plant growth
and development. Plant Physiol, 158: 1955–1964
Debast S, Nunes-Nesi A, Hajirezaei MR, Hofmann J, Sonnewald U,
Fernie AR, Börnke F (2011). Altering trehalose-6-phosphate
content in transgenic potato tubers affects tuber growth and al-
ters responsiveness to hormones during sprouting. Plant Physiol,
156: 1754–1771
Delatte TL, Sedijani P, Kondou Y, Matsui M, Jong JG, Somsen GW,
Wiese-Klinkenberg A, Primavesi LF, Paul MJ, Schluepmann H
(2011). Growth arrest by trehalose-6-phosphate: an astonishing
case of primary metabolite control over growth by way of the
SnRK1 signaling pathway. Plant Physiol, 157: 160–174
Dijck VP, Mascorro-Gallardo JO, Bus MD, Royackers K, Iturriaga G,
Thevelein JM (2002). Truncation of Arabidopsis thaliana and
Selaginella lepidophylla trehalose-6-phosphate synthase unlocks
high catalytic activity and supports high trehalose levels on ex-
pression in yeast. Biochem J, 366: 63–71
Dijcken AJHV, Schluepmann H, Smeekens SCM (2004). Arabidopsis
trehalose-6-phosphate synthase 1 is essential for normal veg-
etative growth and transition to flowering.Plant Physiol, 135:
969–977
Eastmond PJ, Graham IA (2003). Trehalose metabolism: a regulatory
role for trehalose-6-phosphate? Curr Opin Plant Biol, 6: 231–235
Eastmond PJ, van Dijken AJH, Spielman M, Kerr A, Tissier AF,
Dickinson HG, Jones JDG, Smeekens SC, Graham IA (2002).
Trehalose-6-phosphate synthase 1, which catalyses the first step
in trehalose synthesis, is essential for Arabidopsis embryo matu-
ration. Plant J, 29: 225–235
Farras R, Ferrando A, Jasik J, Kleinow T, Okresz L, Tiburcio A, Sal-
chert K, Pozo CD, Schell J, Koncz C (2001). SKP1–SnRK pro-
tein kinase interactions mediate proteasomal binding of a plant
SCF ubiquitin ligase. Embo J, 20: 2742–2756
Fernandez O, Vandesteene L, Feil R, Baillieul F, Lunn JE, Clément
C (2012). Trehalose metabolism is activated upon chilling in
grapevine and might participate in Burkholderia phytofirmans
induced chilling tolerance. Planta, 236: 355–369
Franklin KA (2008). Shade avoidance. New Phytol, 179: 930–944
Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu
P, Breen G, Cohen JD, et al (2011). PHYTOCHROME-INTER-
ACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high
temperature. Proc Natl Acad Sci USA, 108: 20231–20235
Fu HL, Yan Y, Liu WG, Li WZ (2011). Test of trehalose content
and sequence analysis of trehalose sephosphate synthase gene
(TPS) in maize. Acta Agric Nucleatae Sin, 25 (6): 1107–1116 (in
Chinese with English abstract) [付凤玲, 阎雨, 刘卫国, 李晚忱
(2011). 玉米海藻糖含量测定及其合成酶(TPS)基因序列分析.
核农学报, 25 (6): 1107–1116]
Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX (2008). Overex-
pression of the trehalose-6-phosphate phosphatase gene OsTPP1
confers stress tolerance in rice and results in the activation of
stress responsive genes. Planta, 228: 191–201
Gómez LD, Gilday A, Feil R, Lunn JE, Graham IA (2010).
AtTPS1-mediated trehalose 6-phosphate synthesis is essential
for embryogenic and vegetative growth and responsiveness to
ABA in germinating seeds and stomatal guard cells. Plant J, 64:
1–13
Halford NG, Hey SJ (2009). Snf1-related protein kinases (SnRKs) act
within an intricate network that links metabolic and stress signal-
ing in plants. Biochem J, 419: 247–259
Harthill JE, Meek SEM, Morrice N, Peggie MW, Borch J, Wong
BHC, MacKintosh C (2006). Phosphorylation and 14-3-3 bind-
ing of Arabidopsis trehalose-phosphate synthase 5 in response to
2-deoxyglucose. Plant J, 47: 211–223
Hummel I, Pantin F, Sulpice R, Piques M, Rolland G, Dauzat M,
Christophe A, Pervent M, Bouteillé M, Stitt M, et al (2010).
Arabidopsis plants acclimate to water deficit at low cost through
changes of carbon usage: an integrated perspective using growth,
metabolite, enzyme, and gene expression analysis. Plant Physiol,
154: 357–372
Klinghammer M, Tenhaken R (2007). Genome-wide analysis of the
UDP-glucose dehydrogenase gene family in Arabidopsis, a key
enzyme for matrix polysaccharides in cell walls. J Exp Bot, 58:
3609–3621
Kretzschmar T, Pelayo MF, Trijatmiko RK, Gabunada MLF, Alam R,
Jimenez R, Mendioro SM, Slamet-Loedin HI, Sreenivasulu N,
Bailey-Serres J, Ismail MA, et al (2015). A trehalose-6-phos-
phate phosphatase enhances anaerobic germination tolerance in
rice. Nat Plants, 1: 1–5
Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC,
Franklin KA (2009). High temperature-mediated adaptations in
plant architecture require the bHLH transcription factor PIF4.
Curr Biol, 19: 408–413
Kolbe A, Tiessen A, Schluepmann H, Paul MJ, Ulrich S, Geigenberg-
er P (2005). Trehalose 6-phosphate regulates starch synthesis
via posttranslational redox activation of ADP-glucose pyrophos-
phorylase. Proc Natl Acad Sci USA, 102: 11118–11123
Leyman B, Dijck VP, Thevelein JM (2001). An unexpected plethora
of trehalose biosynthesis genes in Arabidopsis thaliana. Trends
张雯等: 高等植物6-磷酸海藻糖信号调控研究进展 399
Plant Sci, 6: 510–513
Li GJ (2009). Cloning and expressing regulation of sucrose non-fer-
menting-1-related protein kinase-1 (SnRK1) from Pingyitiancha
(Malus hupehensis Rehd.) and researching of its function (Master’s
thesis). Taian: Shandong Agricultural University (in Chinese with
English abstract) [李光杰(2009). 平邑甜茶SnRK1基因的克隆、
表达及其功能的研究(硕士论文). 泰安: 山东农业大学]
Lunn EJ (2007). Gene families and evolution of trehalose metabolism
in plants. Funct Plant Biol, 34: 550–563
Lunn JE, Feil R, Hendriks JHM, Gibon Y, Morcuende R, Daniel O,
Scheible WR, Carillo P, Hajirezaei MR, Stitt M (2006) Sugar-in-
duced increases in trehalose 6-phosphate are correlated with
redox activation of ADPglucose pyrophosphorylase and higher
rates of starch synthesis in Arabidopsis thaliana. Biochem J,
397: 139–148
Maraschin FDS, Memelink J, Offringa R (2009). Auxin-induced,
SCFTIR1-mediated poly-ubiquitination marks AUX/IAA proteins
for degradation. Plant J, 59: 100–109
Marina MCM, Hejazi M, Fettke J, Steup M, Feil R, Krause U, Arriv-
ault S, Vosloh D, Figueroa CM, Ivakov A, et al (2013). Feedback
inhibition of starch degradation in Arabidopsis leaves mediated
by trehalose 6-phosphate. Plant Physiol, 163: 1142–1163
Martínez-Barajas E, Delatte T, Schluepmann H, Jong GJ, Somsen
GW, Nunes C, Primavesi LF, Coello P, Mitchell RAC, Paul MJ
(2011). Wheat grain development is characterized by remarkable
trehalose 6-phosphate accumulation pregrain filling: tissue distri-
bution and relationship to SNF1-related protein kinase1 activity.
Plant Physiol, 156: 373–381
McKibbin RS, Muttucumaru N, Paul MJ, Powers SJ, Burrell MM,
Coates S, Purcell PC, Tiessen A, Geigenberger P, Halford NG
(2006). Production of high-starch, low-glucose potatoes through
over-expression of the metabolic regulator SnRK1. Plant Biotech
J, 4: 409–418
Muller B, Pantin F, Génard M, Turc O, Freixes S, Piques M, Gibon
Y (2011). Water deficits uncouple growth from photosynthesis,
increase C content, and modify the relationships between C and
growth in sink organs. J Exp Bot, 62: 1715–1729
Nägele T, Weckwerth W (2014). Mathematical modeling reveals that
metabolic feedback regulation of SnRK1 and hexokinase is
sufficient to control sugar homeostasis from energy depletion to
full recovery. Front Plant Sci, 5: 1–11
O’Hara LE, Paul MJ, Wingler A (2013). How do sugars regulate plant
growth and development? New insight into the role of treha-
lose-6-phosphate. Mol Plant, 6: 261–274
Paul MJ, Jhurreea D, Zhang Y, Primavesi LF, Delatte T, Schluepmann
H, Wingler A (2010). Up-regulation of biosynthetic processes
associated with growth by trehalose 6-phosphate. Plant Signal
Behav, 5: 1–7
Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008). Trehalose me-
tabolism and signaling. Annu Rev Plant Biol, 59: 417–441
Pellny TK, Ghannoum O, Conroy JP, Schluepmann H, Smeekens S,
Andralojc J, Krause KP, Goddijn O, Paul MJ (2004). Genetic
modification of photosynthesis with E. coli genes for trehalose
synthesis. Plant Biotech J, 2: 71–82
Polge C, Thomas M (2007). SNF1/AMPK/SnRK1 kinases, global
regulators at the heart of energy control? Trends Plant Sci, 12:
20–28
Ramon M, De Smet I, Vandesteene L, Naudts M, Leyman B, Van Di-
jck P, Rolland F, Beeckman T, Thevelein JM (2009). Extensive
expression regulation and lack of heterologous enzymatic activi-
ty of the class II trehalose metabolism proteins from Arabidopsis
thaliana. Plant Cell Environ, 32: 1015–1032
Reignault PH, Cogan A, Muchembled J, Sahraoui ALH, Durand R,
Sancholle M (2001). Trehalose induces resistance to powdery
mildew in wheat. New Phytol, 149: 519–529
Renard-Merlier D, Randoux B, Nowak E, Farcy F, Durnad R, Reig-
nault P (2007). Iodus 40, salicylic acid, heptanoyl salicylic acid
and trehalose exhibit different efficacies and defense targets
during wheat/powdery mildew infection. Phytochem, 68: 1156–
1164
Romero C, Bellés JM, Vayá JL, Serrano R., Culiáñez-Macià FA (1997).
Expression of the yeast trehalose-6-phosphate synthase gene
in transgenic tobacco plants: pleiotropic phenotypes include
drought tolerance. Planta, 201: 293–297
Rook F, Gerrits N, Kortstee A, VanKampen MV, Borrias M, Weisbeek
P, Smeekens S (1998). Sucrose-specific signalling represses
translation of the Arabidopsis ATB2 bZIP transcription factor
gene. Plant J, 15: 253–263
Satoh-nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D
(2006). A trehalose metabolic enzyme controls inflorescence ar-
chitecture in maize. Nature, 441: 227–230
Schluepmann H, Dijken VA, Aghdasi M, Wobbes B, Paul MJ, Smeek-
ens S (2004). Trehalose mediated growth inhibition of Arabidop-
sis seedlings is due to trehalose-6-phosphate accumulation. Plant
Physiol, 135: 879–890
Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul M (2003).
Trehalose 6-phosphate is indispensable for car-bohydrate utili-
zation and growth in Arabidopsis thaliana. Prco Natl Acad Sci
USA, 100: 6849–6854
Shi JZ, Xu Y, Ji DH, Chen CS, Xie CT (2015). Cloning and expres-
sion analysis of trehalose-6-phosphate synthase (TPS) family
genes from Pyropia haitanensis. J Fisher China, 39 (4): 485–495
(in Chinese with English abstract) [史健志, 徐燕, 纪德华, 陈昌
生, 谢潮添(2015). 坛紫菜6-磷酸海藻糖合成酶(TPS)家族基因
的克隆及表达特征分析. 水产学报, 39 (4): 485–495]
Smeekens S (2015). From leaf to kernel: trehalose-6-phosphate sig-
naling moves carbon in the field. Plant Physiol, 169: 912–913
Smeekens S, Ma J, Hanson J, Rolland F (2010). Sugar signals and
molecular networks controlling plant growth. Curr Opin Plant
Biol, 13: 274–279
Thevelein JM, Hohmann S (1995). Trehalose synthase: guard to the
gate of glycolysis in yeast? Trends Biochem Sci, 20: 3–10
Tiessen A, Prescha K, Branscheid A, Palacios N, McKibbin R, Hal-
ford NG, Geigenberger P (2003). Evidence that SNF1-related
kinase and hexokinase are involved in separate sugar-signaling
pathways modulating post-translational redox activation of
ADP-glucose pyrophosphorylase in potato tubers. Plant J, 35:
490–500
植物生理学报400
Valenzuela-Soto EM, Marquez-Escalante JA, Iturriaga G, Figueroa-
Sotoa CG (2004). Trehalose 6-phosphate synthase from Selagi-
nella lepidophylla: purification and properties. Biochem Biophys
Res Commun, 313: 314–319
Wang XL, Peng FT, Li MJ, Yang, Li GJ (2012). Expression of a het-
erologous SnRK1 in tomato increases carbon assimilation, nitro-
gen uptake and modifies fruit development. J Plant Physiol, 169
(12): 1173–1182
Wiese A, Elzinga N, Wobbes B, Smeekens S (2004). A conserved up-
stream open reading frame mediates sucrose-induced repression
of translation. Plant Cell, 16: 1717–1729
Wilson RA, Gibson RP, Quispe CF, Littlechild JA, Talbot NJ (2010).
An NADPH-dependent genetic switch regulates plant infection
by the rice blast fungus. Proc Natl Acad SciI USA, 107: 21902–
21907
Wingler A, Delatte TL, O’Hara LE, Primavesi, LF, Jhurreea D, Paul
MJ, Schluepmann H (2012). Trehalose 6-phosphate is required
for the onset of leaf senescence associated with high carbon
availability. Plant Physiol, 158: 1241–1251
Wingler A, Fritzius T, Wiemken A, Boller T, Aeschbacher RA (2000).
Trehalose induces the ADP-glucose pyrophosphorylase gene,
ApL3, and starch synthesis in Arabidopsis. Plant Physiol, 124:
105–114
Wu L, Birch RG (2010). Physiological basis for enhanced sucrose
accumulation in an engineered sugarcane cell line. Funct Plant
Biol, 37: 1161–1174
Yadav UP, Ivakov A, Feil R, Duan GY, Walther D, Giavalisco P,
Piques M, Carillo P, Hubberten HM, Sititt M, Lunn JE (2014)
The sucros-trehalose 6-phosphate (Tre6P) nexus: specificity
and mechanisms of sucrose signalling by Tre6P. J Exp Bot, 4:
1051–1068
Yue SS, Yao W, Wang DH, Chen YQ, Wang ZZ (2014). Cloning and
expression analysis of trehalose-6-P synthase gene (SmTPS) in
Salvia miltiorrhiza Bunge. Genom Appl Biol, 33 (2): 357–364 (in
Chinese with English abstract) [岳思思, 姚伟, 王东浩, 陈玉芹,
王喆之(2014). 丹参海藻糖-6-磷酸合成酶基因(SmTPS)的克隆
及其表达分析. 基因组学与应用生物学, 33 (2): 357–364]
Zang B, Li H, Li W, Deng XW, Wang X (2011). Analysis of treha-
lose-6-phosphate synthase (TPS) gene family suggests the for-
mation of TPS complexes in rice. Plant Mol Biol, 76: 507–522
Zhang Y, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RAC,
Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ
(2009). Inhibition of SNF1-related protein kinase1 activity and
regulation of metabolic pathways by trehalose-6-phosphate.
Plant Physiol, 149: 1860–1871
Zhang ZP, Deng Yk, Song XX, Miao MM, (2015). Trehalose-6-phos-
phate and SNF1-related protein kinase 1 are involved in the first-
fruit inhibition of cucumber. J Plant Physiol, 177: 110–120
Review on crosstalk regulation involving in trehalose-6-phosphate signal in
plant
ZHANG Wen, WANG Yu-Fei, GUO Yan-Ping*
College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
Abstract: Trehalose-6-phosphate (T6P) is an essential signaling metabolite which is involved in the regulation
of plant growth and development. Developmental processes are regulated by T6P that range from embryo de-
velopment to leaf senescence. T6P is a substance of trehalose metabolism, and regulates metabolism of plant
growth mainly by inhibiting sucrose non-fermenting related kinase-1 (SnRK1) activity, which is called T6P/
SnRK1 signal. The transcription factor bZIP11, HXK and PIF signal pathway has been identified as a new play-
er in the T6P/SnRK1 regulatory pathway.
Key words: plant development; stress; sucrose non-fermenting related kinase-1 (SnRK1); trehalose; treha-
lose-6-phosphate; review.
Received 2016-01-14 Accepted 2016-03-07
This work was supported by the National Natural Science and Technology Support Program (Grant No. 2014BAD16B06).
*Corresponding author (E-mail: ypguo@nwsuaf.edu.cn).