免费文献传递   相关文献

Effect of Water Conditions on Carbon Isotope Composition, Photosynthesis and Branch Growth of Reaumuria soongorica

水分条件对红砂叶片碳同位素组成与光合特性和分枝生长的影响



全 文 :书!"#$%&
,2016,36(6):1190-1198
犃犮狋犪犅狅狋.犅狅狉犲犪犾.犗犮犮犻犱犲狀狋.犛犻狀.
  !"#$:10004025(2016)06119009               犱狅犻:10.7606/j.issn.10004025.2016.06.1190
%&(
:20160114;)*&%+(:20160527
,-./

()*+,-(./01
(2014030483);23456.7891:(2013GS05907)
0123

; <(1991-),=,>?@A/BC,DEFGH$IJKLH/B。Email:panj14@lzu.edu.cn
MNHO:PQR,ST,@ACUV,DEFGW(.%、H$IJKXY/B。Email:huxw@lzu.edu.cn
456789:;<=>?@ABC
DEFGH5IJKLMN
! ",# $,%&

Z[6% W\(.7%]W\(C^_`ab5cdef

Z[730020)
O P:>gIhij,/Bklmnopqrst(犚犲犪狌犿狌狉犻犪狊狅狅狀犵狅狉犻犮犪)uvmwxyz、{|},~oC
€‚ƒ

„…†‡ˆ‰kŠ‹hijlmŒŽstW\‘’n“

oC€

uvmwx”•9_

–
—˜™
:(1)>gIhij,š‘’n“›œ,stžCoC$“、†Ÿo€、 Ÿo¡”•u¢£{
|¤¥

¦§U~¨©¤¥ª«¬­Q

®u¢vmwxyz
(δ13C)~no¯°±¥²š‘’n“›œ®«
¬³´

µu¢δ13CKžCoC$“、†Ÿo€、 Ÿo¡、u¢£{|¤¥、¦§U~¨©¤¥¶«¬
·¸99_
。(2)>¹ºŠ‹hij,stu¢δ13CK»\30~60cm”60~100cm¼‘’n“、½w¾
¿ÀÁC$“

½w¾¿ÀÁo¡¶«¬·¸99_

/BÂÃ

>gI~¹ºhij

stu¢δ13CÄÅƕ
CÇnoÈɁÊËÅÌ

stDE¯°‘Í¼no

•>‘’n“¸rΜÏŒÐno¯°±¥
ѐ‘’n“¸rÎҁ5ŒÐÓÒ

Ԇ–ÕrÖq×ØÙCÇÚstno¯°ÛÜݔstW\
Þq~ßàáâ†ãÅUäå

QRS

st

vmwxyz

ØÙæç

{|},

no¯°±¥
TU5V$
:Q945.79 !WXYZ:A
犈犳犳犲犮狋狅犳犠犪狋犲狉犆狅狀犱犻狋犻狅狀狊狅狀犆犪狉犫狅狀犐狊狅狋狅狆犲犆狅犿狆狅狊犻狋犻狅狀,犘犺狅狋狅狊狔狀狋犺犲狊犻狊
犪狀犱犅狉犪狀犮犺犌狉狅狑狋犺狅犳犚犲犪狌犿狌狉犻犪狊狅狅狀犵狅狉犻犮犪
PANJia,LIRong,HUXiaowen
(ColegeofPastoralAgricultureScienceandTechnology,Lanzhouuniversity,StateKeyLaboratoryofGrasslandAgroecosys
tems,Lanzhou730020,China)
犃犫狊狋狉犪犮狋:Presentstudydeterminedtheeffectofsoilmoistureconditiononleafcarbonisotopecomposition
(δ13C),photosynthesisandcurrentyearbranchgrowthof犚犲犪狌犿狌狉犻犪狊狅狅狀犵狅狉犻犮犪inthepotexperiment.
Thebranchgrowthandδ13Cof犚.狊狅狅狀犵狅狉犻犮犪growingindifferentdegradedareawereinvestigated,and
theirrelationshipwithsoilmoisturecontentthatplantstandwereanalyzed.Theresultsshowedthat:(1)
Thecurrentyearbranchbiomass(DM),lengthoffirstgradebranches(LFG),numberofsecondgrade
branches(NSG),netphotosynthesisrate(犘n),stomatalconductance(犌s)andtranspirationrate(犜狉)of
犚.狊狅狅狀犵狅狉犻犮犪werelargelyreducedaswatersuppliesdecreasedinthepotexperiments.δ13Candwateruse
efficiency(WUE)increasedaswatersuppliesreduced,andasignificantnegativecorrelationwasobserved
betweenδ13CandDM,LFG,NSG,犘n,犌sand犜狉.(2)Inthefield,δ13Cdecreasedfromlightdegradedsites
toseveredegradedoneandsignificantlynegativelycorrelatedwithsoilwatercontentatadepthof30-60
cmand60-100cm.Anegativerelationshipwasalsoobservedbetweenδ13Candbiomassperunitcanopy
area(BCA)andnumberoffirstgradebranchperunitcanopyarea(NCA).Theseresultssuggestedthat
δ13Cisagoodindicatorof犚.狊狅狅狀犵狅狉犻犮犪responsetowaterstressbothunderpottedandfieldconditions
and犚.狊狅狅狀犵狅狉犻犮犪mainlyutilizewaterindeepersoilandutilizewatermoreefficientlyinlightdegradedar
eathanthatinseveredegradedarea.Thisconclusionmayimproveunderstandingwaterusestrategiesof
犚.狊狅狅狀犵狅狉犻犮犪inthearidenvironments,andhavepracticaluseingrasslandmanagementandrestoration.
犓犲狔狑狅狉犱狊:犚犲犪狌犿狌狉犻犪狊狅狅狀犵狅狉犻犮犪;carbonisotopecomposition;droughtstress;photosynthesis;wateruse
efficiency
  ØÙæçÄèé#$êëC€ìXDEí
x

€îC€>ØÙïØÙЁ#$

MërØÙC
Çáâ†ãðñ,

ò†óÙC#$áâìô
õ_ÝF‘Úö÷øùno

®âó#$²ú
ÝMûCqˆüý›œŠþÿ!"

…®#…no
$%
[1]。
&

>noæçhij

#$úMû›œ
¦§Uý(éno¨©¤¥

ԆûŽMëâ
¯Ö#$)*Îҁno¯°±¥
(wateruseeffi
ciency,WUE),+ ) # $ > Ø Ù , Ç Ú ê ë

[2]。
r#$-.®/
,WUEÄÅ>†01º2Ø
$3Á4“~5n“Ñ6

r#$u¢®/

ÄÅ
>78~7o92£{|¤¥~¨©¤¥Ñ
6
[3],
:;<1no¯°±¥
(instantaneouswater
useefficiency,WUEi)。=Ö WUEú>?@A#
$rno¯°Èɔ•rnoBCDE,

í
®úHÃ}ã,ÇFG|ð$Y5EÅÌ
[45]。
€îÝý

HI#$no¯°”•K,Ç

JK9
_LMk6“NH
[4,67]。
O•ÄŠvmwx7
PQRÝý
,δ13CSTUVzÃWX#$ WUE
â±Ná
。δ13C)o÷YÖu¢Zº [v
\K6¦,Ç [v\Ñ6
(犆i/犆a),]>
†ãŽ^@AkCO2 _`~añ9_,®ÔY
9_bDE=#${|cdݔ¦§U
eb®fg

Ô OebºhYãk#$
WUE[5]。δ13CK WUE、#iC€Ý”noæçC
q@ñjº9_Uâ6“/B
[3,6,89],
kDEl
Ú>H$~mn

®â9(éhijopqn
/B²¸rÎr
[1011]。
st
(犚犲犪狌犿狌狉犻犪狊狅狅狀犵狅狉犻犮犪)stu.,Ãv
ÙCwžCïqn

opWxy"Y

DEoz>!
{¯|

Ú|

}~)~Ú)ݔÚa€\Ð

>
ÚaÇ2

F‚wƒ!)

„…†‡p

ˆ!‰Š



Œông\Žng\~‘‚g\’â
oz
[1213]。
stáⓔDÙ

D•,

r–*
opC^_`—ã,~*˜,áâ5EH°

&


st™’bš~›Cœ$_žo

UzÝ
\5EŸ H$

O•Ä>ØÙ¡ü

=&ú¢

stáâÎҁC^~£¤¥6
[14]。
k¦óžý

=Ö¦§Øٍݔ¨©ªœ

oz>Úa!"o
pWx6w¡stU«5Œ¬O¶R†ãŒ
­"

í®

stW\ßà5®~)XUzÃ
\¯°Ý”¸9±²)³´µ×Y†-5E
C^¶·

#$Y¸r,Çí¹@ñDE˜R>Y¸-
.~-.ºi^

ò#iҏ

o¡:

h€

¾¿ÀÁ€
[15],
>ºin»^/BY¸~,Çí¹
9_

r¼Æ#$¸½–º¾zâ5Eäå
[16]。
¿¨/B
[1213,15]
˜™

stDE=’Àuoy
z

žCoC€Á@Ak½i#$C€hi
:Yãkj†¡ü#$C€

í®stžCo
C€Ä˜Â•C€È^5EÅÌ

†ÃÂ
Ã

st»\hinoÈÉúcÄYã•oC
€9Ä,Çí¹

ÅK• WUEÆǸ9,òž
›È“³´1mm,stu¢vmwxyz›œ
0.01‰~0.015‰[11,1718]。‹®,>Š‹hijS“
vmwxyzÉÉEàÊ,ÇhiÒè
é
[11],
ò›È“

ˏ

W\ŒÈɀ’úc‚ƒ
•ÌCÇ

…®Í•C€K WUE¶RlmÈ^。
ÎÖ&

Ï/B–|gIK¹ºÐe

Ñ>+ã
:(1)
ØÙæçrstC€

{|H°~u¢vmwxy
z‚ƒ
;(2)u¢vmwxyzK•{|H°、C
€~‘nojº9_
;(3)Š‹hijstn
o¯°ÛÜ

ÔóNÒÓâÔÖÂÕ~q×ØÙ,
ÇÚstno¯°Ö×

…®ñ°ÖstWx
Þq~ßà

1 Ø ~ÙÚ
1.1 [\]^
1.1.1 _`[\ stY¹Ö2002ž11ÛÜl
19116î         ; <,€:nohirstu¢vmwxyzK{|},~oC€‚ƒ
ք…†opWx
(105°34′E,39°05′N,ÝÞ
1360m),ØßàFáÖ4 ℃hijâãµ°。
2003ž6Û,ÓstY¹äYÖXåæÚ,øoa
n

fçhi
(18~25℃)jJž。30dáÓ6Q†
èéåêI30cm×26cm(ҏ×ë×)ì
gڄíîÖZ[6%ïð2
(103°52′E,36°03′N,
ÝÞ1517m),ñg6i,ò20g。‘Î3Ü°
tKóôõ2∶1ö|®z(t÷Š„…†o
p

ó÷ŠZ[6%ïð
)。
éåC€îºñ2d
÷1øn,Ý+)anøù,C€ùøž5Û5ú…
-ØÙæçpq

ØÙpq¿

ñìg)û3i€
"†è#i

õü¿îlm÷nÞqjstC
€ÈÉ

Ðeýî4-nopqþ,oÿÃñ!4
(W4)、8(W8)、12(W12)~16d(W16)÷n1ø,ñø
÷n“2.5L(¸ Ö47mm›È),Ðeîº"p
qnoañ“oÿÃ

#$›È
)720.2(W4)、444.2
(W8)、303.2(W12)~256.2mm(W16),ñpq5-


•Ú
,W4¸Öøùanhi,HÃrõ,®
•]pq²¸ÖlmŽnoæç

=ÖÐe
‹›È“%%QÖpq÷qn“

•‚ƒú
Ý&Ül

í®(Ü÷)È*+

,1)。
1.1.2 ab[\ ¹ºÐe-\wք…†op
Wx
(105°34′E,39°05′N,ÝÞ1360m)。.\О
»ª¦ç8℃,ž›È“80~150mm,DE›Èo
z>/¡

ž0>¨ì“3000~4000mm。.Ёy"Y¸Äst~123¹W
(犆犾犲犻狊狋狅犵犲狀犲狊
狊狅狀犵狅狉犻犮犪)。ÐeÐ4Š1995žÝý=Öí¯,W
\#567¥~Y©yz¾zkݚ8~9nc:
;ÃÚ<=>oz?@

A.^¶R;š8~9
nc:;B¦

#567¥Bœ

CÊWÑDBҁ
­"

õü¿¨/B

ÔY#567~yz^
EF

ÉÉÅ.R>‘’n“”•oz^
[19]。
Î
,1 2004ž5Û14úù7Û9úZ[G
›ÈHÉ

ú

Û

Fig.1 RainfalinLanzhouCityduringtheexperimental
periodof14Mayto9July2004(day/month)
Ö&

Ï/BF÷k;š8:;oÿÃ30m(5
Œ
)、300m(ڏŒ)、800m(ϏŒ)p9
I25m×20mHJQÐ,ñpq3IQÐ。
1.2 cdeXfgh
1.2.1 ijk4l gIÐeÖ2004ž5Û5ú
~7Û11úîº,ñ10~20dSã"pq‘’n
“1ø。‘’n“SãÜ°ŠKýë×Ã
1.5cm LŠìgÚÜ÷M-¼‘á,
80℃hijNØ48hùO5,„T‘’n“。
¹ºÐeñžC€¡1ˆ‰#567¥~#5CP
d

„°Y¹noSãQ
(503,CPNCorp.USA)R
(0~100cm‘no>C€¡üœ^b,ñ
QÐ3-5à,ñ10cmHÆ-S“¼。=ÖY
¹noSãQ>SãS¼‘’n“^@è,
,0
~20cm¼’n“Ü°L÷á,80℃hij
NØ48hùO5,„T‘’n“。
1.2.2 I6DEmnH;op >gIdeÚÖ
2004ž6Û14ú^T9:00~11:00°UVW{|
QCI301PS(CID,USA),S“stžC Ÿo
£{|¤¥~¨©¤¥

ñøF÷#i^)X
ÀYZžC Ÿo…-S“

ñiSã†-
o

ñoSã3ø([3ø?¡)。S“û 
Ÿo°\]\já

Ü°uÀÁQ
(Model3100,
LICORU.S.A.)^ _Sã•uÀÁ,…®T{
|¤¥

no¯°±¥
(WUE)Ý£{|¤¥K¨
©¤¥Ñ6˜Æ
[20]。
1.2.3 JKeX >gIÐeÚÖ2004ž7Û
11ú,\jñiâžCo„ô†Ÿo~ 
Ÿooÿ¡

†ŸoÃ2003žFÎ`^oQ
h

 ŸoƟo^aoCQý
h
);
m1

ñioÿšbF÷10-†Ÿo~ Ÿ
o

°ëcS“•o€

šá

Óñiâ
žCoîÖ80℃hijNØ48hùO5,Sã
C$“

>¹ºÐeÚ

Ö2004ž8Û17ú,>ñ
-QÐF÷6i6Q†è#i,dS“¾¿~i
Ò

á\jâžCo„¡

â½iª(¢
žC Ÿo
);
‹á

ñišbF÷60-oý
S“o€„T•»ª6



ӝâo>
80℃hijNØ48hùO5,TC$“。
1.2.4 qd=>?@ ÓgI~¹ºÐeØu


oÿ°ŠýnfgØ£
,80℃NØùO5,/
h

û0.1mmi¹。Ópqˁ-jklZ[6
%mn,Ç%]—ãmwxdefSãδ13Cm
wx6

S“o0.05%。gIÐeñ-pqS5
2911 ! " # $ % &                   36p
-5à

¹ºÐeñ-pqS6-5à。
1.3 nr5s
¡üw5ÑÎoqÜ° DuncanÚ,¡ü«¬
,oqÜ°SPSS19.0rz。lmpqb“jº
9_°Pearsons¸9_¡ýT+ã。
2 –—Koq
2.1 t>uvwxHyz{|}ijk4l~
gIÐelmpqº‘’n“˜RQ†ãE
F

}ÿÄ>Ðe¿î
(5Û20úù6Û4ú),
âpqº‘’n“ª˜RQ«¬EF

®>Ðe
áî

s W8 K W12pq>‘’n“^(˜RQ
«¬EF

•tpqº‘’n“ªEF«¬

,
2)。M.®/,4YØÙæçpqjº¾zkFu
vØفnoþ

W4、W8、W12~ W16oÿ˜Æñ!4、8、12、16d÷1ønpq;
m†1îlmwx˜Æpqº>0.05n»ã>«¬,EF;jm
,2 gIÐeÚlmanhij‘’n“œ^b
W4,W8,W12andW16standforthetreatmentsirrigatedevery4,
8,12or16days;Thedifferentlettersatthesamedateindicatea
significantdifferenceamongthetreatmentsat0.05level;
Thesameasbelow
Fig.2 Thedynamicsofsoilwatercontentoffourpotted
treatmentswithdifferentwatersupply
  6¹ÐelmŒÐº‘’n“(SWC)š
y¼Í³´ª˜RQd³´á›œ­"

"ŒÐ¼‘no’“ozáâ†ãEF

O
•ÄϏŒÐ

,3)。•Ú,0~30cm¼‘
’n“
(Swc30)>ϏŒÐ«¬ÒÖڏŒÐ
~5ŒÐ
(犘<0.05);®40~60cm‘’n
“
(Swc60)>lmŒÐjºEFl«¬(犘>
0.05);70~100cm¼‘’n“(Swc100)zÝ
ϏŒÐeœ

®Ý5ŒÐeÒ

µÏŒ
ÐKڏ~ҏŒÐºEF«¬
(犘<0.05),k
ڏ~ҏŒÐºEFl«¬
(犘>0.05)。
2.2 t>uvwxHyz{|89:5IJKL
MN
  gIÐeÚ,ØÙæ竬‚ƒkst#iÒ


žCoC$“

†Ÿo€

 Ÿo¡~
 Ÿo€
(犘<0.05),kr†Ÿo¡‚ƒl
«¬

˜1)。•Ú,> W16ØÙæçpqj,sti
Ò

žCoC$“

†Ÿo€~ Ÿo¡o
,3 6¹ÐeÚlmŽŒÐ"¼
‘’n“
Fig.3 Soilwatercontent(SWC)ateachsoildepthof
differentdegradedsites
€1 uvwx}9:‚Hƒ„J5IJKFG
Table1 Effectofdroughtstressonplantheightandcurrentyearbranchgrowthtraitsof犚.狊狅狅狀犵狅狉犻犮犪
ØÙæçpq
Droughtstress

Plantheight
/cm
žCoC$“
Currentyear
branchbiomass
/g
†Ÿo¡
Numberoffirst
gradebranches
†Ÿo€
Lengthoffirst
gradebranches
/cm
 Ÿo¡
Numberofsecond
gradebranches
 Ÿo€
Lengthofsecond
gradebranches
/cm
W4 18.9±2.1a 20.36±1.30a 46±9.3a 24.6±1.14a 143±63.1a 3.5±0.22a
W8 18.9±1.5a 17.36±1.18b 54±1.8a 24.6±2.86a 89±30.0b 2.8±0.17b
W12 19.2±2.1a 16.08±1.12b 49±14.5a 19.5±0.70b 83±43.2b 3.0±0.17b
W16 15.5±1.2b 8.31±0.76c 50±19.5a 15.7±2.36c 29±18.6c 3.6±0.61a
{

m|lmwx˜Æpqº>0.05n»jã>«¬,EF
Note:Numberswithdifferentletterswithinthesamecolumn,aresignificantdifference(犘<0.05)
39116î         ; <,€:nohirstu¢vmwxyzK{|},~oC€‚ƒ
ÿ«¬­r17.9%、59.2%、36.2%~79.7%,® 
Ÿo€²1«¬b

>6¹Ðe

˜2)Ú,FϏŒÐ5Œ
Ð

st#is†Ÿo€

½w¾¿ÀÁC$“
¶³´­"

•tC€Å̪¶lmŽj›
­"

µ6wô«¬n»
(犘<0.05)。•Ú,i
Ò

†Ÿo¡~½w¾¿ÀÁo¡>lmŒ
жj›­"µEF«¬
(犘<0.05);stδ13C、½
ioC$“>lmŒÐº¶j›­"k1«
¬EF
(犘>0.05);K&¸@,5ŒÐsti
Ò

½wÀÁ¾¿C$“
(BCA)™«ÒÖϏŒ
Ð~ڏŒÐ
(犘<0.05)。
2.3 uvwxHyz{|89:DEFGH=>
?@~…LMN
  >gIÐeÚ(˜3),šyØÙæ灴},s
tu¢£{|¤¥
、¨
©¤¥~¦§Uª¶~
«¬j›­"
,W16pqoÿÑ W4 pq«¬›œ
75%、78%~83%(犘<0.05);£{|¤¥>"ØÙ
pqºªã>«¬EF

®¨©¤¥

¦§U>
W12K W16pqjº€â«¬EF。K^‚Ob
lm

stu¢ WUEšnoañ“›œ¶R
d^ƒ®áj›­"

„> W12pqjôeÒ
6

„«¬Ò֕„pq

stu¢vmwx
(δ13C)
yz6>gIÐeښØÙæ灴}d³´á›
œ

„> W12~ W16pqj«¬ÒÖ W4 K W8 p
q

® W12~ W16pqº1«¬EF(˜3);>¹º
ÐeÚ

stu¢δ13CFϏŒÐ5ŒÐ
Î϶j›­"

kۉ`%EF

˜2)。
2.4 t>4567}9:;<δ13犆C†JK、D
Efijk4lbLQ‡
  ˜4«Æ,gIÐestu¢δ13CK•£{
|¤¥
、¨
©¤¥

¦§U

žCoC$“

 
Ÿo¡~ Ÿo€jº¶…«¬·¸9
(犘<
0.01),®K WUE¶«¬ê¸9(犘<0.05),K•„
€2 t>yz{|ˆ‰9:;=>?@ABf†JKFG
Table2 Carbonisotopecompositionandgrowthtraitsof犚.狊狅狅狀犵狅狉犻犮犪inincreasinglydegradedgrasslands
C€ÅÌ
Indicatorofplantgrowth
QÐSite
ϏŒÐ
Lightdegraded
ڏŒÐ
Moderatedegraded
5ŒÐ
Severedegraded
uvmwxyzδ13C/‰ -25.05±0.18a -25.59±0.15a -25.66±0.23a
iÒPlantheight/cm 32.0±1.06a 22.2±1.35b 16.0±1.48c
¾¿ÀÁCanopyarea/cm 3453±347.3a 3113±317.6a 1733±223.5b
oC$“Currentyearbranchbiomass/g 37.6±1.62a 36.9±1.70a 36.6±2.20a
†Ÿo¡ Numberoffirstgradebranch 2325±59.9a 1796±153.6b 846±63.0c
†Ÿo€Lengthoffirstgradebranch/cm 3.0±0.07b 3.3±0.09b 5.0±0.39a
½w¾¿ÀÁo¡
Numberofbranchperunitcanopyarea/(No.·cm-2) 71±6.6a 61±7.8b 53±7.9c
½w¾¿ÀÁC$“
Biomassofbranchperunitcanopyarea/(g·m-2) 114.5±11.7b 125.2±14.0b 220.6±17.4a
{

m-lmwx˜Æpqº>0.05n»jã>«¬,EF
Note:Differentletterswithinarowindicatesignificantdifference(犘<0.05)
€3 uvwx}9:DEŠ‹(犘狀)、ŒŠ‹(犜狉)、45Ž‹(犠犝犈)、‘’“|(犌狊)”f;=>?@(δ13犆)AB
Table3 Effectofdroughtstressonphotosynthesisrate(犘n),transpirationrate(犜狉),wateruseefficiency(WUE),
stomatalconductance(犌s)andδ13Cof犚.狊狅狅狀犵狅狉犻犮犪branch
nopq
Treatment
£{|¤¥
Netphotosynthesis
/(μmol·m-2·s-1)
¨©¤¥
Transpirationrate
/(mmol·m-2·s-1)
¦§U
Stomatalconductance
/(mol·m-2·s-1)
no¯°±¥
Wateruseefficiency
/(μmol·mmol-1)
uvmwxyz
δ13C
/‰
W4 2.57±0.26a 2.34±0.27a 0.30±0.061a 1.17±0.21c -27.37±0.24c
W8 2.17±0.13b 0.86±0.07b 0.11±0.010b 1.93±0.13b -26.36±0.19b
W12 1.26±0.09c 0.50±0.03c 0.06±0.004c 2.52±0.16a -24.54±0.21a
W16 0.63±0.09d 0.52±0.06c 0.05±0.004c 1.22±0.09c -24.76±0.24a
{

m|lmwx˜Æpqº>0.05n»jã>«¬,EF
Note:Numberswithdifferentletterswithinthesamecolumn,aresignificantlydifferent(犘<0.05)
4911 ! " # $ % &                   36p
€4 uvwx}9:L•–—HJ˜—eXL™QG(_`[\)
Table4 Therelationshipsbetweenmorphologicalandphysiologicaltraitsof犚.狊狅狅狀犵狅狉犻犮犪under
droughtstressinthepotexperiments
ÅÌ
Index δ
13C/‰
WUE
/(μmol·
mmol-1)
犘n
/(μmol·m-2
·s-1)
犜r
/(mmol·m-2
·s-1)
犌s
/(mol·m-2
·s-1)
DM/g NFG NSG LFG/cm
WUE 0.505
犘狀 -0.779 -0.060
犜狉 -0.844 -0.516 0.835
犌狊 -0.815 -0.460 0.849 0.991
DM -0.662 0.153 0.843 0.632  0.650
NFG -0.037 0.418 0.042 -0.232 -0.232  0.166
NSG -0.544 0.018 0.517 0.421  0.392  0.727 -0.057
LFG -0.496 0.010 0.441  0.383  0.381  0.486  0.118 0.558
LSG -0.040 -0.216 0.035  0.088  0.076 -0.163 -0.447 -0.149 -0.201
{
:δ13Cuvmwxyz;WUE.no¯°±¥;犘n.£{|¤¥;犜r.¨©¤¥;犌s.¦§U;DM.žoC$“;NFG~LFGoÿ
˜Æ†Ÿo¡:~†Ÿo€
;NSG~LSGoÿ˜Æ Ÿo¡:~ Ÿo€.~oÿ˜Æ0.05~0.01n»«¬,¸9
9_

jm
Note:δ13C.Carbonisotopecomposition;WUE.Wateruseefficiency;犘n.Netphotosynthesis;犜r.Transpirationrate;犌s.Stomatalcon
ductance;DM.Currentyearbranchbiomass;NFGandLFG.Numberandlengthoffirstgradebranch,respectively;NSGandLSG.Number
andlengthofsecondgradebranch,respectively.andindicatesignificantcorrelatedat0.05and0.01level,respectively.Thesameasbelow
€5 š›JKFG、δ13犆Hijk4lL™QG(ab[\)
Table5 Therelationshipsamongplantgrowthtraits,carbonisotopecomposition(δ13C)andsoilwatercontentinthefield
ÅÌ
Index δ
13C/‰ Swc30/% Swc60/% Swc100/% PH/cm CA/cm2 DM/g NFG LFG/cm NCA

(No·dm-2)
Swc30  0.145
Swc60 -0.552 -0.430  
Swc100 -0.548 -0.664  0.896
PH/cm  0.219  0.612 -0.634 -0.786
CA/cm2  0.679 0.141  -0.417   -0.439   0.486
DM/g -0.124 0.031  0.102  0.036  0.184  0.092 
NFG  0.122 0.580 -0.498  -0.714  0.875 0.434   0.243
LFG/cm  0.004 -0.451   0.370  0.525 -0.633 -0.300    0.214 -0.808
NCA/(No·dm-2) -0.544 0.324  -0.164   -0.257   0.352  -0.543  -0.058 0.407  -0.450
BCA -0.725 -0.227   0.289   0.698 -0.357   -0.872 -0.101 -0.413    0.257 0.586
{
:Swc30、Swc60、Swc100oÿ˜Æ0~30、40~60、70~100cm¼Í‘’n“;PH.iÒ;CA.¾¿ÀÁ;NCA~BCAoÿ˜Æ½wÀÁ¾¿¡
~¾¿C$“
Note:Swc30,Swc60,Swc100standforsoilwatercontentatdepth0-30,40-60,70-100cm,respectively;PH.Plantheight;CA.Canopyarea;NCAand
BCAstandfornumberandbiomassofbranchperunitcanopyarea,respectively
Å̶l«¬·¸9

m1

stu¢ WUEK¨©
¤¥~¦§U¶«¬·¸9

®£{|¤¥K¨
©¤¥

¦§U

žCoC$“

 Ÿo¡

¨©¤¥K¦§U

žCoC$“

ݔ¦§
UKžCoC$“ª¶«¬ê¸9

†


žCoC$“K Ÿo¡

†Ÿo€¶…«
¬ê¸9

®†Ÿo€~ Ÿo¡¶«¬ê¸
9

k Ÿo€~†Ÿo¡¶«¬·¸9

†


F˜5ú݇Q,¹ºÐestu¢δ13CK
½w¾¿ÀÁo¡

½w¾¿ÀÁC$“
、Swc60
~Swc100¶«¬·¸9,kK¾¿ÀÁ¶«¬ê
¸9

&

†Ÿo¡~iÒKSwc30¶«¬ê
¸9

kKSwc60、Swc100¶«¬·¸9;®†Ÿo
€~½wÀÁ¾¿C$“KSwc100¶«¬ê¸
59116î         ; <,€:nohirstu¢vmwxyzK{|},~oC€‚ƒ
9;
†Ÿo¡~†Ÿo€jº¶…«¬·¸9
,

Ý^–—ˆ™

st#ino¯°±¥DE
EÍ¼‘no‚ƒ

oC€DE‰Š‘
ͼnoañ

3 ‹ Õ
3.1 _`67}9:DEFGf†5IJKFœ
>Ï/BÚ

Fpq W4  W12st£{|
¤¥~¨©¤¥¶j›­"
,WUE¶^ƒ­",Ô
K¿¨>‡Cqn^/B–Õ†è
[2124],
[>Ø
Ùhije6£{|¤¥~¨©¤¥šno›œ®
›œ

ØÙæçfg#${|¤¥›œúc=¦
§¬}¦§íxòmH°®è
[25],
ò>Ï/BÚ

šØَ´}

¦§U«¬›œ

¦§9Œ¬
L›œ>†ãŽ^¤èénCO2 añ,
F®fg{|¤¥›œ

ÔYHÉj¦§èéÉ
ÉÄUè#${|¤¥›œDExí

km1
ŽÅ{ä
,W12~ W16pq>£{|¤¥^ã>«
¬EF

k>¦§U^ Oz1™«EF

Ԙ™
>…ØÙæçhij

sk¦§Ub

•
tbéò{|H°_`mcd

u¢noÈ
ɀ}¦§íxÅúc¤‚ƒ#${|¤
¥
[2627]。
򏐑
[28]、
’“”
[29]
€/BìRØÙ
æçÍu•.–ºìCb

#$–E—˜

–
™û[´}ÍPCv[Š=Î

{|šx›×Í
{|›¹Kœ_`žŸ

…®Í|z ª,j
›

n× ª,^ƒ

F®Uè{|¤¥j›

†


st£{|¤¥KoC$“~ Ÿo¡¶
«¬ê¸9

úcä¡y{|H°PCm$6
)o5°Ö ŸoC€

¢‹†Ÿo€5Â
ÃÄ#$C€_`Úe5E)o
[15],
kÏ/B„
€âìR£{|¤¥K†Ÿo€”†Ÿo¡j
ºã>«¬¸9,

ÔúcÄ=Ö>S“{|j
¿

6w¡†ŸoUV£¤C€

K#$oC
€lm

íÃ{|H°¥¡>“6Ž^¦Ä#$
<1CqÈ^.R

  FgI~¹ºÐeú݇Q,Fpq W4 p
q W12,stu¢ WUE~δ13Cª¶³´­",µ
δ13CK WUE¶«¬ê¸9,Ԇ–—K§¨€[30]
r©ªÒx20Yqnéå WUEKu¢δ13C¸9
,/B–—†è

í&°u¢δ13C ˜Â#$
WUEáâd«äå。ÔÄíÃ,>ØÙæçhi
j

#$úMû›œ¦§U

­r¨©ý¬Ò•
WUE[31]。kԆ–Õ„lð° W16pq,íÃK
W12¸Ñ,W16pq WUE~δ13C’›œk,Ôú
cÄ=Ö«5ØÙæçl­‚ƒ¦§9Œ

®ru
¢{|_`¯z—˜…®°éC@ñ

{|¤
¥
),
F®>“6Ž^›œk£{|¤¥~
WUE[2425]。&®ìR,stδ13CKØÙæçŽ


£{|¤¥

žCoC$“

 Ÿo¡

 
Ÿo€¶«¬·¸9

˜™δ13C6>†ãŽ^
ú°ÖÅÆ#$C€,c”•pnohi
[32]。
3.2 t>yz9:L5IJKH45ŽFœ
>gIÐeÚ

stu¢δ13CšØÙæç´}
®³´

µ"pqºâ«¬EF

í&δ13CKØÙ
æçpqÆǸ9

®>¹ºÐeÚ

stu¢δ13C
K60~100cm ¼‘’n“¶·¸9,kK
30cm¼‘’n“€â«¬¸9,,Ôºh˜™ WUEDEE30cmÝj‘’n“‚ƒ,
Kd¿&±–Õ†è
[33]。
>•tqn$Y^Å
â†ó©²&±
[34]。
¸@
,Ma€[11]&±,st
u¢δ13CK30cḿ‘’n“«¬¸9,³
Q–ÕstDE¯°noýŠ0~30cm‘
n

Ô>†ãŽ^úcÄíÃHO€âS“
45cmÝj‘’n“,®úc³†-l|ð
–Õ

õü€îˆ‰/B

>„…†‡pÚ
30cmÝ^‘’n“ÑΜ,lc–*#$ê
ëC€

k>60~100cm͏‘Úâ¸r—ã
nw

††-´*Ô-?c–ÕÄstìôõ
_úݵ¶100cmÝj‘Ú[35]。kÅâ/B
˜™
[3637]
>·‚¸M·}‡pX¹stÃSõ#
$

DE¯°0~80cm‘n,®>ºˆÚ»st
úMûõ_¼€C€¯°185cmÝj‘no,í
&>lmCÇhijstúˆüõ_¾^}Âý¯
°lmnnÝðñ•,Ç
。Wang€[19]ÅìR,F
ϏŒÐ5ŒÐstu¢ WUE›œ。Ï
/B˜™

FϏŒÐ5ŒÐδ13C›œ,
k€âô«¬n»

KgIÐe¸Ñ

uvmwx
yzÃ-24.76‰~-27.37‰),¹ºÐeuv
mwxyz
(-25.05‰~-25.66‰)bEQ
³w

ÔúcÄ=Ö>gIÐeÚnoþEFÓ
6

®>¹ºÐe3-QÐځnohiEF¸
rÎQ

††-xíúcÄ>⯁hijzžî
stÑéåîstÓ½¾)*no»¿„â±\¯
°no

«‹

ÀHÁQÐ

òϏŒÐ

Óâ
¯Ö#$Ò±¯°nmn~¬Ò#$P“

3.3 žŸ ¡89:ˆ‰¢˜H£¤L¥¦
Ï/B˜™

stiÒ

†Ÿo¡Ý”uδ13C
6911 ! " # $ % &                   36p
K100cm͐¼‘’n“¶…«¬·¸9,˜™
stDE¯°Í¼‘no

®FlmŒW\
noozÈÉý‡

ϏŒÐͼno’“¸r
Μ

í®¸Ñ5ŒÐ

•½w¾¿ÀÁo¡
Îr

C$“Îœ

Ԙ™€îHÁÍϏŒÐs
t>‘ͼU¾zkrno:;ÂÃ

…®r
•žCC€¯zk°éH°

l¯Ö#5ÓÄ

úÅÆð´Ý¯°ýe†RÈ

®rÖ5Œ
Ð

¢‹•½ioC€ÎË

k•½iM.ÎÃÇ
Q

¾5ȚžŸ

í®ñɘHÁýßà•-.
ÊËC€

m§!W

[1] KOZLOWSKITT,PALLARDYSG.Acclimationandadap
tiveresponsesofwoodyplantstoenvironmentalstresses[J].
犅狅狋犪狀犻犮犪犾犚犲狏犻犲狑,2002,68:270334.
[2] WHITEHEADD,BEADLEC.Physiologicalregulationof
productivityandwateruseinEucalyptus:areview[J].犳狅狉犲狊狋
犈犮狅犾狅犵狔犪狀犱犕犪狀犪犵犲犿犲狀狋,2004,193:113140.
[3] WRIGHTGC,HUBICKKT,FARQUHARGD.Discrimi
nationincarbonisotopeofleavescorrelatedwithwateruseef
ficiencyoffieldgrowneanutultivars[J].犃狌狊狋狉犪犾犻犪狀犑狅狌狉狀犪犾
狅犳犘犾犪狀狋犘犺狔狊犻狅犾狅犵狔,1988,15,815825.
[4] ÌÍÎ,PÉv,ÏÐÑ,€.,Çí¹rnÒu¢no¯°
±¥‚ƒ
[J].ÓÔ(.%,2014,42(5):7982.
WUYZ,HUJCH,ZHANGXS,犲狋犪犾.Environmentalfac
torsinfluencewateruseefficiencyonriceleaf[J].犑犻犪狀犵狊狌犃犵
狉犻犮狌犾狋狌狉犪犾犛犮犻犲狀犮犲狊,2014,42(5):7982.
[5] FARQUHARGD,OLEARYMH,BERRYJA.Onthere
lationshipbetweencarbonisotopediscriminationandtheintra
celularcarbondioxideconcentrationinleaves[J].犃狌狊狋狉犪犾犻犪狀
犑狅狌狉狀犪犾狅犳犘犾犪狀狋犘犺狔狊犻狅犾狅犵狔,1982,9:121137.
[6] LICY.Carbonisotopecomposition,wateruseefficiencyand
biomassproductivityof犈狌犮犪犾狔狆狋狌狊犿犻犮狉狅狋犺犲犮犪populationsun
derdifferentwatersupplies[J].犘犾犪狀狋犛狅犻犾,1999,214:
165171.
[7] ZHANGX,WUN,LIC.Physiologicalandgrowthresponses
of犘狅狆狌犾狌狊犱犪狏犻犱犻犪狀犪ecotypestodifferentsoilwatercontents
[J].犑狅狌狉狀犪犾狅犳犃狉犻犱犈狀狏犻狉狅狀犿犲狀狋狊,2005,60:567579.
[8] Õ »,ÏÖÑ,× »,€.—ãvmwxSãno¯°±
¥ÝY™¹ÃD[J].C^%&,2014,34(19):5453
5459.
CHENP,ZHANGJS,MENGP,犲狋犪犾.Feasibilityanalysis
onthedeterminationofWUEbystablecarbonisotope:犆犪狊狊犻犪
狅犫狋狌狊犻犳狅犾犻犪犔.asanexample[J].犃犮狋犪犈犮狅犾狅犵犻犮犪犛犻狀犻犮犪,
2014,34(19):54535459.
[9] ZHENGSX,SHANGGUANZP.Spatialpatternsoffoliar
stablecarbonisotopecompositionsofC3plantspeciesinthe
LoessPlateauofChina[J].犈犮狅犾狅犵犻犮犪犾犚犲狊犲犪狉犮犺.2007,22:
342353.
[10] LLORENSL,PENUELASJ,ESTIARTEM,Ecophysiological
responsesoftwoMediterraneanshrubs,犈狉犻犮犪犿狌犾狋犻犳犾狅狉犪and
犌犾狅犫狌犾犪狉犻犪犪犾狔狆狌犿,toexperimentalydrierandwarmercondi
tions[J].犘犺狔狊犻狅犾狅犵犻犪犘犾犪狀狋犪狉狌犿,2003,119:231243.
[11] MaJY,CHENK.,XIADS.Variationinfoliarstablecar
bonisotopeamongpopulationsofadesertplant,犚犲犪狌犿狌狉犻犪
狊狅狅狀犵狅狉犻犮犪(Pal.)Maxim.indifferentenvironments[J].
犑狅狌狉狀犪犾狅犳犃狉犻犱犈狀狏犻狉狅狀犿犲狀狋狊,2007,69:365374.
[12] Ø ¤,Øّ.Úی(犚犲犪狌犿狌狉犻犪狊狅狅狀犵狅狉犻犮犪)\^#$“
ÜSÝÞ
[J].ØÙÐ/B,1996,13:3641.
LIUS,LIU X Y,Theestimating modelofupperplant
weighton犚犲犪狌犿狌狉犻犪狊狅狅狀犵狅狉犻犮犪semishrub[J].犃狉犻犱犣狅狀犲
犚犲狊犲犪狉犮犺,1996,13:3641.
[13] MA M H,KONGLS.Thebioecologicalcharacteristicsof
犚犲犪狌犿狌狉犻犪狊狅狅狀犵狅狉犻犮犪 ontheborderofoasisat Hutubi,
Xingjian[J].犃犮狋犪犘犺狔狋狅犲犮狅犾犵犻犮犪犛犻狀犻犮犪,1998,22(3):
237244.
[14] YJß,à á,Ôâ»,€.st3-\qY¸{|}
,”•‚ƒíx
[J].C^%&,2010,30(4):914922.
ZHONGPF,LIY,SUSP,犲狋犪犾.Photosyntheticcharac
teristicsandtheireffectfactorsof犚犲犪狌犿狌狉犻犪狊狅狅狀犵狅狉犻犮犪
threegeographicalpopulations[J].犃犮狋犪犈犮狅犾狅犵犻犮犪犛犻狀犻犮犪,
2010,30(4):914922.
[15] ã ä,å æ,ç ™,€.ÄèéËopstY¸ºi
–ºK,Çí¹êš9ëoq
[J].#$C^%&,
2003,27(6):742749.
XUL,WANGL,YUEM,犲狋犪犾.Analysisofgreyrelated
nessbetweenthemodularstructureof犚犲犪狌犿狌狉犻犪狊狅狅狀犵狅狉犻犮犪
populationinthedesertoffukang,xinjiangandtheenviron
mentalfactors[J].犃犮狋犪犘犺狔狋狅犲犮狅犾狅犵犻犮犪犛犻狀犻犮犪,2003,27
(6):742748.
[16] ì‘í,Øîz,9ïz.#$Y¸C^%ځºiqÕ
[M].C^%Êð,1995,14(6):3541.
LIYX,LIU YC,ZHONGZC.Modulartheoryinplant
populationecology[M].犆犺犻狀犲狊犲犑狅狌狉狀犪犾狅犳犈犮狅犾狅犵狔,1995,
14(6):3541.
[17] Õ ñ,òóô,ãâ®,€.op#$u¢vmwxyz
”•no¯°±¥
[J].Úa‡p,2002,22(3):288291.
CHENT,FENGHY,XUSJ,犲狋犪犾.Stablecarbonisotope
compositionofdesertplantleavesandwateruseefficiency
[J].犑狅狌狉狀犪犾狅犳犇犲狊犲狉狋犚犲狊犲犪狉犮犺,2002,22(3):288291.
[18] MAJY,CHENT,QIANG W Y,犲狋犪犾.Correlationsbe
tweenfoliarstablecarbonisotopecompositionandenviron
mentalfactorsindesertplant犚犲犪狌犿狌狉犻犪狊狅狅狀犵狅狉犻犮犪 (Pal.)
Maxim[J].犑狅狌狉狀犪犾狅犳犐狀狋犲犵狉犪狋犻狏犲犘犾犪狀狋犅犻狅犾狅犵狔,2005,47
(9),10651073.
79116î         ; <,€:nohirstu¢vmwxyzK{|},~oC€‚ƒ
[19] åõö,÷õø,Ïùú,€.lmŒstopW\n
ooû?@
[J].ñ°C^%&,2002,13(8):962966.
WANGYR,ZENGYJ,ZHANGBL,犲狋犪犾.Waterdistri
butionpatternsindifferentdegradeddesertgrasslandof
犚犲犪狌犿狌狉犻犪狊狅狅狀犵狅狉犻犮犪[J].犆犺犻狀犲狊犲犑狅狌狉狀犪犾狅犳犃狆狆犾犻犲犱犈犮狅犾
狅犵狔,2002,13(8):962966.
[20] SINCLAIRTR,TANNERCB,BENNETTJM,Wateruse
eficiencyincropproduction[J].犅犻狅犾狅犵狔犛犮犻犲狀犮犲犃犵狉狅狀狅犿狔犛狅
犮犻犲狋狔狅犳犖犲狑犣犲犪犾犪狀犱犛狆犲犮犻犪犾犘狌犫犾犻犮犪狋犻狅狀,1984,34:3640.
[21] FILELLAI,LIUSIAJ,PIOLJ,犲狋犪犾.Leafgasexchange
andthefluorescenceof犘犺犻犾犾犵狉犲犪犾犪狋犻犳狅犾犻犪,犘犻狊狋犪犮犻犪犾犲狀狋犻狊
犮狌狊and犙狌犲狉犮狌狊犻犾犲狓samplingsinseveredroughtandhigh
temperatureconditions[J].犈狀狏犻狉狅狀犿犲狀狋犪犾犪狀犱犈狓狆犲狉犻犿犲狀狋犪犾
犅狅狋犪狀狔,1998,39:213220.
[22] ZHENGWJ,ZHENGXP,ZHANGCL.AsurveyofPho
tosyntheticcarbonmetabolismin4ecotypesof犘犺狉犪犵犿犻狋犲狊
犮狅犿犿狌狀犻狊innorthwestChina:leafanatomy,ultrastructure,
andactivitiesofribulose1,5bisphosphatecarboxlase,phos
phoenopyruvatecarboxylaseandglycolateoxidase[J].犑狅狌狉
狀犪犾狅犳犘犾犪狀狋犘犺狔狊犻狅犾狅犵狔,2000,110:201208.
[23] ü ý,þ ÿ.lm‘noj4Y‡Cqn{|{ƒ
ñ},
[J].C^%&,2010,30(15):40194026.
HANG,ZHAOZ.Lightresponsecharacteristicsofphoto
synthesisoffourxerophilousshrubsunderdifferentsoilmois
tures[J].犃犮狋犪犈犮狅犾狅犵犻犮犪犛犻狀犻犮犪,2010,30(15):4019
4026.
[24] àR!,Ï"#,$%õ,€.ØÙæçj&ì(õ_¾
^b”Kno¯°9_
[J].C^%&,2010,30(19):
51405150.
LIWR,ZHANGSQ,DINGSY,犲狋犪犾.Rootmorphological
variationandwateruseinalfalfaunderdroughtstress[J].
犃犮狋犪犈犮狅犾狅犵犻犮犪犛犻狀犻犮犪,2010,30(19):51405150.
[25] )Ô*,+,~,ò»-,€.noæçr6æì{|H°、
¨©~¦§U‚ƒ
[J].Úa%M&,2011,27(8):
119122.
FANSL,WANZH,FENGLJ,犲狋犪犾.Effectsofwater
stressonphotosynthesis,transpirationandstomatalconduct
ancein犇犪犺犾犻犪犾犲犪狏犲狊[J].犆犺犻狀犲狊犲犃犵狉犻犮狌犾狋狌狉犪犾犛犮犻犲狀犮犲犅狌犾
犾犲狋犻狀,2011,27(8):119122.
[26] EARLHJ.Stomatalandnonstomatalrestrictionstocarbon
assimilationinsoybean(犌犾狔犮犻狀犲犿犪狓)linesdifferinginwater
useefficiency[J].犈狀狏犻狉狅狀犿犲狀狋犪犾犪狀犱犈狓狆犲狉犻犿犲狀狋犪犾犅狅狋犪狀狔,
2002,48:237246.
[27] LIUMZ,JIANGGM,LIYG,犲狋犪犾.Gasexchange,pho
tochemicalefficiency,andleafwaterpotentialinthree犛犪犾犻狓
species[J].犘犺狅狋狅狊狔狀狋犺犲狋犻犮犪,2003,41(3):393398.
[28] ‘.‘noæçr./Cq},‚ƒ[J].01
(
,2004,6:1112.
YANGFY.Theinfluenceofsoilwaterstressonthepear
treephysiologicalcharacteristics[J].犃狀犺狌犻犃犵狉犻犮狌犾狋狌狉犲,
2004,6:1112.
[29] ’“”,7Í2,3ð4,€.ØÙæçr5/CqC}
,‚ƒ
[J].6(.%,2004,30(2):117122.
JIXL,GAIYP,MOUZM,犲狋犪犾. Effectofwaterstress
onphysiologicalandbiochemicalcharacterofmulberry[J].
犃犮狋犪犛犲狉犻犮狅犾狅犵犻犮犪犛犻狀犻犮犪,2004,30(2):117122.
[30] § ¨,; 7,à89.©ªÒx20YqnéåC$“o
û

no¯°±¥”u¢δ13CÑÎ[J].!"ú%]%&,
2014,29(4):814.
QIUQ,PANX,LIJY.Comparisononbiomassalocation
andleafwateruseefficiencyandδ13Cof20shurbseedlingsin
Tibetanplatesu[J].犑狅狌狉犪犾狅犳犖狅狉狋犺狑犲狊狋犉狅狉犲狊狋狉狔犝狀犻狏犲狉狊犻
狋狔,2014,29(4):814.
[31] ½»‹,à á,0:;,€.stéåõ_¾^}Â~n
o¯°±¥r‘nobƒñ
[J].!"#$%&,
2014,34(6):11981205.
SHANLS,LIY,DUANYN,犲狋犪犾.Responseofrootmor
phologyandwateruseefficiencyof犚犲犪狌犿狌狉犻犪犛狅狅狀犵狅狉犻犮犪to
soilwaterchange[J].犃犮狋犪犅狅狋.犅狅狉犲犪犾.犗犮犮犻犱犲狀狋.犛犻狀,
2014,34(6):11981205.
[32] <=Í,Õìó,/>?,€.op#$st—ãvmwx
yz@ºoz}Â
[J].ABC/B,2006,26(6):
947954.
MAJY,CHENFH,XIADS,犲狋犪犾.Spatialdistribution
characteristicsofstablecarbonisotopecompositionsindesert
plant犚犲犪狌犿狌狉犻犪狊狅狅狀犵狅狉犻犮犪[J].犙狌犪狋犲狉狀犪狉狔犛犮犻犲狀犮犲狊,2006,
26(6):947958.
[33] YODERCK,NOWAKRS.Soilmoistureextractionbyev
ergreenanddroughtdeciduousshrubsintheMojaveDesert
duringwetanddryyears[J].犑狅狌狉狀犪犾狅犳犃狉犻犱犈狀狏犻狉狅狀
犿犲狀狋狊,1999,42:8196.
[34] DARROUZETNARDIA,D’ANTONIOCM,DAWSONT
E.Depthofwateracquisitionbyinvadingshrubsandresident
herbsinaSierraNevadameadow[J].犘犾犪狀狋犛狅犻犾,2006,285:
3143.
[35] OLIVEIRARS,BEZERRAL,DAVIDSONEA,犲狋犪犾.
Deeprootfunctioninsoilwaterdynamicsincerradosavannas
ofcentral Brazil[J].犉狌狀犮狋犻狅狀犪犾 犈犮狅犾狅犵狔,2005,19:
574581.
[36] XUH,LIY.WaterusestrategyofthreecentralAsiandes
ertshrubandtheirresponsetorainpulseevents[J].犘犾犪狀狋
犪狀犱犛狅犻犾,2006,285:517.
[37] „DR,EŠF,GHa,€.°D、18Omwx+㺈Ú
»IJ\Ð#$noýn
[J].Úa‡p,2012,32(3):717
723.
YUSW,SUNZY,ZHOU AG,犲狋犪犾.Determinationof
watersourcesofGobiplantbyDand18Ostableisotopesin
middlereachesoftheHeiheRiver[J].犑狅狌狉狀犪犾狅犳犇犲狊犲狉狋犚犲
狊犲犪狉犮犺,2012,32(3):717723.

!"

#$%
)  
8911 ! " # $ % &                   36p