免费文献传递   相关文献

Effects of Terrain on Stand Structure and Vegetation Carbon Storage of Phyllostachys edulis Forest

地形条件对毛竹林分结构和植被碳储量的影响


Data for this study were collected from 105 standard plots of moso bamboo (Phyllostachys edulis) forests in Anji County and Longquan City, Zhejiang Province. Effects of altitude, slope aspect, slope position, and slope degree on stand structure and vegetation carbon storage (VCS) of moso bamboo forests were studied by using covariance analysis and partial correlation analysis methods. Results showed that stand structure and vegetation carbon storage of moso bamboo forests are different on different terrain factors. Variation in mean diameter at breast height (DBH) was relatively small while variations in mean stand density and vegetation carbon storage were relatively large; Covariance analysis revealed that the slope degree had significant (P<0.01) effect on mean DBH, and altitude also had significant (P<0.05) effect on mean DBH. The altitude and slope degree had obviously interaction on vegetation carbon storage, while the slope aspect and slope degree had significant interaction on mean DBH. However, the other terrain factors had no interaction on vegetation carbon storage or/and DBH; Partial correlation analysis showed that there were significant partial correlation coefficients between altitude and slope degree with mean DBH (P<0.01). There was significant partial correlation between slope degree and vegetation carbon storage (P<0.05). The impact of terrain factors to stand density successively was slope aspect, altitude, slope position, and slope degree. The importance of these factors to mean DBH was in turn slope degree, altitude, slope aspect, and slope position. The importance of terrain factors to vegetation carbon storage is followed by slope degree, slope aspect, slope position and altitude. vegetation carbon storage decreased with increasing altitude and slope degree. vegetation carbon storage on sunny slope was greater than that on shade slope, and vegetation carbon storage at low altitude was greater than that at high altitude. These results suggest that moso bamboo should be planted on land with low altitude, gentle slope, and sunny slope to increase carbon sequestration.


全 文 :第 49 卷 第 11 期
2 0 1 3 年 11 月
林 业 科 学
SCIENTIA SILVAE SINICAE
Vol. 49,No. 11
Nov.,2 0 1 3
doi:10.11707 / j.1001-7488.20131125
收稿日期: 2012 - 08 - 14; 修回日期: 2013 - 08 - 22。
基金项目: 国家自然科学基金重大项目 ( 61190114 ) ; 国家自然科学基金项目 ( 31370637 ) ; 浙江省重点科技创新团队资助项目
(2010R50030)。
* 施拥军为通讯作者。
地形条件对毛竹林分结构和植被碳储量的影响*
范叶青 周国模 施拥军 杜华强 周宇峰 徐小军
(浙江农林大学 浙江省森林生态系统碳循环与固碳减排重点实验室 临安 311300)
关键词: 毛竹; 林分结构; 碳储量; 海拔; 坡向; 坡位; 坡度
中图分类号: S757. 9 文献标识码: A 文章编号: 1001 - 7488(2013)11 - 0177 - 06
Effects of Terrain on Stand Structure and Vegetation Carbon
Storage of Phyllostachys edulis Forest
Fan Yeqing Zhou Guomo Shi Yongjun Du Huaqiang Zhou Yufeng Xu Xiaojun
(Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration Zhejiang A & F University Lin’an 311300)
Abstract: Data for this study were collected from 105 standard plots of moso bamboo (Phyllostachys edulis) forests in
Anji County and Longquan City,Zhejiang Province. Effects of altitude,slope aspect,slope position,and slope degree
on stand structure and vegetation carbon storage ( VCS) of moso bamboo forests were studied by using covariance
analysis and partial correlation analysis methods. Results showed that stand structure and vegetation carbon storage of
moso bamboo forests are different on different terrain factors. Variation in mean diameter at breast height ( DBH) was
relatively small while variations in mean stand density and vegetation carbon storage were relatively large; Covariance
analysis revealed that the slope degree had significant (P < 0 . 01) effect on mean DBH,and altitude also had significant
( P < 0 . 05) effect on mean DBH. The altitude and slope degree had obviously interaction on vegetation carbon storage,
while the slope aspect and slope degree had significant interaction on mean DBH. However,the other terrain factors had
no interaction on vegetation carbon storage or / and DBH; Partial correlation analysis showed that there were significant
partial correlation coefficients between altitude and slope degree with mean DBH ( P < 0 . 01 ) . There was significant
partial correlation between slope degree and vegetation carbon storage (P < 0 . 05) . The impact of terrain factors to stand
density successively was slope aspect,altitude,slope position,and slope degree. The importance of these factors to
mean DBH was in turn slope degree,altitude,slope aspect,and slope position. The importance of terrain factors to
vegetation carbon storage is followed by slope degree,slope aspect,slope position and altitude. vegetation carbon
storage decreased with increasing altitude and slope degree. vegetation carbon storage on sunny slope was greater than
that on shade slope,and vegetation carbon storage at low altitude was greater than that at high altitude. These results
suggest that moso bamboo should be planted on land with low altitude,gentle slope,and sunny slope to increase carbon
sequestration.
Key words: moso bamboo ( Phyllostachys edulis); stand structure; carbon storage; altitude; slope aspect; slope
position; slope degree
在积极实施森林应对气候变化背景下,森林的
固碳特征、储碳能力和环境影响机制颇受关注
(Schmid et al.,2006; Thürig et al.,2010; Werner,
2010)。光照、温度、水分等多个自然因子共同影响
着森林的碳汇功能,而海拔、坡向、坡位等地形因子
又通过温度、降水等气候作用,在一定程度上限制了
陆地生态系统植被碳储量和碳密度变化 (吕超群
等,2004; 赵敏等,2004; 陈茂铨等,2010)。许多
研究表明,立地条件是影响林木生长和森林碳汇功
能的重要环境因素。坡向直接关系到祁连山青海云
林 业 科 学 49 卷
杉(Picea crassifolia)林分布 (何志斌等,2006); 坡
向、坡位对东北水曲柳(Fraxinus mandshurica)中龄
林林分生长与生物量分配有重要影响; 坡向对林分
平均胸径和优势木高影响更大(于顺龙,2009; 王
向荣等,2011)。
毛竹(Phyllostachys edulis)是我国南方重要的森
林资源。2008 年全国毛竹林面积达 386. 83 万 hm2,
竹林碳储量达 2. 0 亿 t(李海奎等,2010)。近 20 年
来,全球森林屡遭破坏,森林面积急速下降,我国毛
竹林面积却以每年 6. 94%的速度递增。可以预见,
未来 50 年,毛竹林仍将是一个不断增大的重要森林
碳库(Chen et al.,2009)。据初步研究,集约经营毛
竹 林 的 年 固 碳 能 力 是 杉 木 ( Cunninghamia
lanceolata)人工林、热带山地雨林、马尾松 ( Pinus
massoniana)林和粗放经营毛竹林的 2 ~ 4 倍 (周国
模等,2004; 2006; Yen et al.,2010; 2011)。毛竹
林特殊而优良的固碳能力引起国内外学者强烈关
注,但是不同林分结构、不同地形条件下的毛竹林储
碳能力及其影响机制研究还少见报道。
研究和探讨地形条件对毛竹林分生长、林分结
构和植被碳储量的影响,对于准确评估区域竹林的
整体碳汇功能、科学指导竹林增汇减排经营、提高竹
林生态系统固碳能力都具有重要意义。本研究对浙
江省 105 块毛竹林标准样地调查,利用协方差分析
和偏相关分析方法,研究海拔、坡向、坡位和坡度 4
个地形因子及交互作用对毛竹林分结构和植被碳储
量的影响,以期对今后竹林的碳汇经营提供指导。
1 研究区概况
研究区位于浙江省西北部的安吉县(119°14—
119°53 E,30° 23—30° 53 N)和西南部的龙泉市
(118°42—119°25 E,27°42—28°20 N)。安吉地
势自西南山区向东北丘陵平原成喇叭形倾斜展开,
中部谷地平原,海拔 500 ~ 1 000 m; 全县有竹林面
积 6. 967 万 hm2,其中毛竹林 5. 53 万 hm2,毛竹林
立株数 1. 71 亿株,素有“中国竹乡”之称。龙泉境
内地形地貌复杂、多山,海拔相对高度差异较大
(186 ~ 1 929 m),1 000 m 以上的山峰 730 余座; 全
市有竹林面积 3. 667 万 hm2,森林覆盖率达 84. 2%,
林地面积和森林蓄积量位居浙江省首位。两地植被
区划属中亚热带常绿阔叶林,自然环境、气候条件、
主要土壤类型等具有相似性(表 1)。
表 1 研究区概况(浙江省统计局,2009)
Tab. 1 General situation of the studied area (Statistics Bureau of Zhejiang Province,2009)
研究地
Studied area
气候类型
Climate type
年平均气温
Annual mean
temperature /℃
无霜期
Frost-free
period / d
年降水量
Annual
rainfall /mm
主要土壤类型
Main soil,type
森林覆盖率
Forest
coverage(% )
安吉县
Anji
亚热带季风气候
Semi-tropical monsoon climate
15. 6 231 1 400 红壤
、黄壤
Red soil,yellow soil
71. 1
龙泉市
Longquan
亚热带季风气候
Semi-tropical monsoon climate
17. 6 263 1 700 红壤
、黄壤
Red soil、yellow soil
84. 2
2 研究方法
2. 1 样地调查与因子水平设计 2008 - 06 - 10—
09 - 13,采用随机抽样和典型抽样法,共调查 105 块
不同立地条件下的毛竹林标准样地,其中安吉县样
地 55 块、龙泉市样地 50 块。利用罗盘仪确定标准
样地边界,闭合差控制在样地周长的 1 /200 以内,样
地大小设为 30 m × 30 m。详细记录每块样地的经
纬度、海拔、坡向、坡位、坡度、样地经营状况和林下
植被生长情况; 并对样地内胸径大于 5 cm 的毛竹
进行每木检尺,精确记录胸径、年龄 (度)、树高、株
数等实测数据。
根据调查样地统计特征(表 2)和毛竹林实际经
营情况,以海拔、坡向、坡位和坡度 4 个地形因子为
控制变量,分析各因子及其交互作用对毛竹林林分
结构(主要是立竹度和平均胸径)和植被碳储量的
影响。各地形因子的水平设计过程为: 以实际调查
样地的地形分布情况为基础,首先划分出多个水平,
再利用 SNK 法做统计量的多重比较得到若干同类
子集,然后根据各同类子集对应的因子水平整合得
到地形因子水平。由此,将坡度划分为 4 个水平:
1 ~ 10°,11 ~ 20°,21 ~ 30°和 31 ~ 40°,通过 SNK 法
做植被碳储量在 0. 05 水平上的多重比较,得到植被
碳储量的 2 个子集对应的坡度水平分别为1 ~ 20°和
21 ~ 40°。将海拔分为 100 ~ 400 和 400 ~ 800 m; 南
面、西南面、西面和西北面 4 个方位统称为阳坡(含
半阳坡),北面、东北面、东面和东南面 4 个方位统
称为阴坡(含半阴坡); 坡位分为上坡、中坡和下坡。
871
第 11 期 范叶青等: 地形条件对毛竹林分结构和植被碳储量的影响
表 2 样地统计特征
Tab. 2 Statistical characteristics of the sample plots
统计量
Statistic
样本数
Sample
number
极小值
Min.
极大值
Max.
均值
Mean
标准差
Standard
deviation
变异系数
Coefficient of
variation (% )
立竹度 Stand density /( tree·hm - 2 ) 105 103 3 5 556 2 734 940 34. 4
平均胸径 Mean DBH /cm 105 6. 9 12. 9 10. 1 1. 3 12. 5
年龄(度)Age / du 105 1 5 — — —
树高 Tree height /m 98 8. 0 12. 0 9. 7 1. 0 10. 2
郁闭度 Canopy density (% ) 105 45. 0 95. 0 72. 6 10. 7 14. 8
海拔 Altitude /m 105 108 804 354 151 42. 6
坡度 Slope degree /( °) 105 1 39 21 7 35. 4
灌木覆盖度 Shrub coverage (% ) 15 5. 0 95. 0 50. 0 33. 6 67. 2
灌木平均高 Mean height of shrubs /m 15 0. 30 2. 00 1. 02 0. 46 45. 1
草本覆盖度 Herb coverage (% ) 86 5. 0 95. 0 30. 6 22. 7 74. 1
草本平均高 Mean height of herbs /m 86 0. 05 0. 60 0. 26 0. 13 49. 2
枯落物厚度 Litter thickness / cm 101 0. 10 6. 00 2. 06 2. 17 105. 2
植被碳储量 Vegetation carbon storage /( t·hm - 2 ) 105 10. 749 46. 318 23. 718 7. 143 30. 1
2. 2 毛竹林碳储量估算方法 毛竹林碳储量主要
指毛竹林地上乔木层、林下灌草层、枯落物层和地下
根系碳储量之和。根据单株毛竹二元生物量模型,
对样地各单株生物量求和得到地上部分生物量,再
利用生物量乘转换系数 0. 504 2 得到乔木层碳储量
(周国模等,2010)。单株毛竹二元生物量计算模
型为:
M = 747 . 787D2 . 771 ( 0 . 148A
0 . 028 + A
)
5 . 555
+ 3 . 772。
式中: M为单株毛竹生物量(kg); D为胸径( cm); A
为年龄(度)。计算过程中,胸径、年龄数据为单株
毛竹的实测胸径和实际生长度数。考虑研究区调查
样地的实际情况,林下植被较少,有记录林下灌木生
长状况的样地数仅 15 个,灌草层盖度和枯落物层厚
度变异系数大(表 2),同时参考相关研究成果,林下
灌草层和枯落物层碳储量比例仅占生态系统总碳储
量的 2% ~ 5% (周国模等,2004),故本研究植被碳
储量中不计林下灌草层和枯落物层碳储量。地下根
系碳储量则根据毛竹通用根茎比 0. 2(中国绿色碳
基金,2008)乘以地上部分碳储量换算得到。
3 结果与分析
3. 1 不同因子水平上的指标均值 对毛竹林林分
结构和植被碳储量指标进行海拔、坡向、坡位和坡度
不同因子水平上的均值对比分析,结果见表 3。由
表 3 可知,立竹度均值表现为海拔 100 ~ 400 m
(3 084 株·hm - 2) > 400 ~ 800 m(1 897 株·hm - 2 ),
差异达 62. 6% ; 上坡最小(2 400 株·hm - 2),中坡最
大(2 888 株·hm - 2 ),差异达 20. 3% ; 不同坡向、坡
度条件下变化不明显。平均胸径表现为海拔400 ~
800 m(11. 4 cm) > 100 ~ 400 m (9. 5 cm),差异达
20% ;坡度 1 ~ 20°(10. 4 cm) > 21 ~ 40°(9. 8 cm),
差异达 5. 3% ;不同坡位、坡向条件下平均胸径均值
较接近。植被碳储量表现为海拔 100 ~ 400 m
(24. 636 t·hm - 2 ) > 400 ~ 800 m(21. 528 t·hm - 2 ),
差异达 14. 4% ;坡度 1 ~ 20° (25. 744 t·hm - 2 ) >
21 ~ 40°(22. 139 t·hm - 2 ),差异达 16. 3% ;坡向、坡
位对植被碳储量影响不明显。
均值对比分析结果表明,各地形因子对毛竹林
林分结构和植被碳储量均有显著影响,但海拔、坡度
比坡向、坡位影响更明显。从总样本均值及其变异
程度来看,立竹度均值为 2 734 株·hm - 2 (变异系数
为 34. 4% ),平均胸径均值为 0. 1 cm (变异系数为
12. 5% ),植被碳储量均值为 3. 718 t·hm - 2 (变异系
数为 30. 1% )。平均胸径均值相对较稳定,立竹度
和植被碳储量均值变异较大。本研究植被碳储量估
值与周国模等(2004)和范叶青等 (2012)的估算结
果相近。
3. 2 地形因子对林分结构和植被碳储量的影响
为判断和比较海拔、坡向、坡位和坡度 4 个地形因子
及其交互作用对毛竹林林分结构和植被碳储量的影
响,借助 SPSS 20. 0 统计软件进行协方差分析。由
于调查样本来自安吉和龙泉 2 县市,为排除研究区
域和经营强度 2 个不可控因素的影响,在 SPSS 中构
建一般线性模型,将研究区域和经营强度作为协变
量,海拔、坡向、坡位和坡度作为固定因子,分别对毛
竹林立竹度、平均胸径和植被碳储量进行协方差分
析。基于实际应用考虑,模型构建时重点关注各因
子的主效应及其两两交互作用。协方差分析结果见
表 4。
971
林 业 科 学 49 卷
表 3 立竹度、平均胸径和植被碳储量的均值随海拔、坡向、坡位和坡度的变化①
Tab. 3 Variations of mean stand density,DBH,and vegetation carbon storage as altitude,
slope aspect,slope position,and slope degree change
因子
Factor
水平
Level
样本数
Sample number
立竹度
Stand density /
( tree·hm - 2 )
平均胸径
Mean DBH /cm
植被碳储量
Vegetation carbon
storage /( t·hm - 2 )
海拔 Altitude
100 ~ 400 m 74 3 084 9. 5 24. 636
400 ~ 800 m 31 1 897 11. 4 21. 528
坡向 Slope aspect
阴坡 Shaded slope 66 2 700 10. 1 23. 433
阳坡 Sunny slope 39 2 791 10. 0 24. 201
上坡 Upper slope 18 2 400 10. 3 22. 222
坡位 Slope position 中坡 Middle slope 46 2 888 10. 0 24. 292
下坡 Low slope 41 2 708 10. 1 23. 732
坡度 Slope degree
1° ~ 20° 46 2 831 10. 4 25. 744
21° ~ 40° 59 2 658 9. 8 22. 139
总样本 Total sample number 105 2 734(34. 4% ) 10. 1(12. 5% ) 23. 718(30. 1% )
①括号中数字为变异系数。Numbers in parentheses are coefficient of variation.
表 4 协方差分析结果①
Tab. 4 Result of covariance analysis
方差来源 Source of variance
立竹度 Stand density 平均胸径 Mean DBH 植被碳储量 Vegetation carbon storage
F 显著性 Sig. F 显著性 Sig. F 显著性 Sig.
校正模型 Corrected modle 4. 632 0. 000 8. 467 0. 000 2. 143 0. 013
截距 Intercept 69. 100 0. 000 242. 397 0. 000 55. 626 0. 000
研究区域 Studied area 16. 785** 0. 000 20. 236** 0. 000 2. 324 0. 131
经营强度 Management intensity 0. 688 0. 409 7. 005 * 0. 010 6. 395 * 0. 013
海拔 Altitude 1. 815 0. 181 3. 938 * 0. 050 0. 637 0. 427
坡向 Slope aspect 0. 370 0. 545 0. 587 0. 446 0. 048 0. 827
坡位 Slope position 1. 659 0. 196 0. 012 0. 988 0. 819 0. 444
坡度 Slope degree 0. 046 0. 830 12. 550** 0. 001 3. 164 ( * ) 0. 079
海拔 ×坡向 Altitude × slope aspect 0. 118 0. 732 0. 896 0. 346 1. 152 0. 286
海拔 ×坡位 Altitude × slope position 0. 005 0. 995 0. 923 0. 401 0. 288 0. 751
海拔 ×坡度 Altitude × slope degree 2. 968 ( * ) 0. 088 0. 006 0. 939 3. 436 ( * ) 0. 067
坡向 ×坡位 Slope aspect × slope position 1. 223 0. 299 0. 016 0. 984 1. 06 0. 351
坡向 ×坡度 Slope aspect × slope degree 0. 404 0. 527 3. 839 ( * ) 0. 053 0. 33 0. 567
坡位 ×坡度 Slope position × slope degree 0. 683 0. 508 0. 713 0. 493 0. 179 0. 836
①( * ) : P < 0. 1; * : P < 0. 05; **: P < 0. 01.
由表 4 可知,在保持研究区域和经营强度相对
一致的情况下,坡度对平均胸径具有极显著的影响
(P < 0. 01),海拔对平均胸径有显著影响 ( P <
0. 05)。因子间的交互作用显示,海拔与坡度的交
互作用对植被碳储量影响较显著(P 值接近 0. 05),
坡向与坡度的交互作用对平均胸径影响较显著,其
他两两交互作用均不显著。协变量分析认为,立竹
度和平均胸径在两个研究区域间差异极显著(P <
0. 01),植被碳储量差异不显著,经营强度对平均胸
径和植被碳储量影响显著(P < 0. 05)。进一步分析
认为,区域间林分结构差异主要是由经营强度差异
引起的; 经营强度高的毛竹林内,林分立竹度高,平
均胸径大,植被碳储量估算值高。
3. 3 地形因子与植被碳储量的相关性 为进一步
明确各地形因子对毛竹林林分结构和植被碳储量的
影响程度,引入偏相关分析法分别研究海拔、坡向、
坡位和坡度与林分立竹度、平均胸径和植被碳储量
的相关性,结果如表 5 所示。
由表 5 可知,海拔和坡度分别与平均胸径在
0. 01 水平上显著正偏相关和负偏相关,坡度与植被
碳储量之间的负偏相关系数在 0. 05 水平上显著,其
他因子间偏相关系数均不显著。从偏相关系数绝对
值来看,各地形因子对立竹度的影响程度大小排序
为坡向 >海拔 >坡位 > 坡度,对平均胸径的影响程
度大小排序为坡度 > 海拔 > 坡向 > 坡位,对植被碳
储量的影响程度大小排序为坡度 > 坡向 > 坡位 >
海拔。
植被碳储量常被认为是实施毛竹林碳汇生产经
营的目标统计量,立竹度和平均胸径则是竹林生产
经营过程的林分结构控制指标。根据偏相关系数符
081
第 11 期 范叶青等: 地形条件对毛竹林分结构和植被碳储量的影响
号判定地形因子对上述统计量的影响方向,有助于
改善竹林生产经营方式,提高对地形条件的综合利
用水平。立竹度和植被碳储量均值随海拔、坡度增
加而减少,且阳坡大于阴坡,中下坡大于上坡; 平均
胸径随海拔增加而增加,随坡度增加而减少,坡向坡
位上的变化不显著。由表 3 可知总样本平均胸径较
稳定,立竹度和植被碳储量变异系数较大,且 400 m
以下低海拔、缓坡地带、阳坡、中下坡位置具有更大
的植被碳储量,因此毛竹林碳汇生产经营中需重视
对低海拔、缓坡、阳坡和中下坡地段的开发利用。
表 5 偏相关分析结果①
Tab. 5 Result of partial correlation analysis
项目
Item
参数
Parameter
海拔
Altitude
坡向
Slope aspect
坡位
Slope position
坡度
Slope degree
偏相关系数 Partial correlation coefficient - 0. 153 0. 166 ( * ) 0. 144 - 0. 034
立竹度 Stand density
显著性 Sig. 0. 128 0. 099 0. 154 0. 737
自由度 df 98 98 98 98
次序 Sequence 2 1 3 4
偏相关系数 Partial correlation coefficient 0. 279** - 0. 109 - 0. 032 - 0. 320**
平均胸径 Mean DBH
显著性 Sig. 0. 005 0. 279 0. 755 0. 001
自由度 df 98 98 98 98
次序 Sequence 2 3 4 1
偏相关系数 Partial correlation coefficient - 0. 061 0. 111 0. 098 - 0. 213 *
植被碳储量
Vegetation carbon storage
显著性 Sig. 0. 549 0. 271 0. 330 0. 033
自由度 df 98 98 98 98
次序 Sequence 4 2 3 1
①( * ) : P < 0. 1; * : P < 0. 05; **: P < 0. 01.
4 结论与讨论
国内外从多个因子角度研究地形条件对森林植
被碳储量影响的不多,在林分水平上研究地形条件
对毛竹林碳储量影响的更少,国外文献检索中未发
现有同类研究。目前有报道的影响因子主要是海拔
或者坡向、坡位因子及二者的交互作用。于顺龙
(2009)、王向荣等(2011)报道了坡向、坡位对东北
林区水曲柳中龄林林分生长与生物量分配有重要影
响,坡向对林分平均胸径和优势木高的影响大于坡
位; 何志斌等(2006)报道了祁连山青海云杉林斑受
地形条件的影响变化,指出坡向直接关系到植被分
布,对森林土壤有机碳含量、土壤碳分配有影响; 鲁
顺保等(2008)、刘玉霞(2012)和范叶青等(2012)报
道了地形条件对毛竹林生物量和生态系统碳储量的
影响。相比较而言,这些文献的地形因子数量较少,
研究方法较单一,研究结果的应用推广较难。本研
究选取了海拔、坡向、坡位和坡度 4 个地形因子,调
查样地数量达 105 个,研究方法符合统计学要求,分
析中同时考虑了不同研究区域、经营强度与地形因
子的交互作用,研究结果除揭示了地形因子对林分
结构和碳储量的影响显著性外,还反映出各因子的
影响程度大小排序及影响的方向性。本研究对于开
展毛竹林的碳汇生产经营、更好地利用地形条件改
善经营方式、提高竹林固碳能力具有直接参考价值。
鲁顺保等(2008)对江西省 14 个毛竹主产区不
同立地条件对毛竹生物量的影响研究认为,海拔与
立竹度、胸径显著相关,与本研究结果相似。与范叶
青等(2012)对临安市板桥乡毛竹林碳储量影响研
究相比,本研究扩展了研究区域,同时引入经营强度
因子。分析认为,经营强度对平均胸径和植被碳储
量影响显著,且与植被碳储量的偏相关关系在 0. 01
水平上显著。
本研究仅选择浙江省南北 2 个典型毛竹生长区
域为研究对象,对于国内其他重点毛竹分布区地形、
立地条件对毛竹林分结构和植被碳储量的影响还有
待进一步研究; 竹林人为经营方式与地形条件对竹
林碳储量的交互影响也值得进一步研究; 此外,不
同地形因子下的毛竹林对于冰雪灾害和连续高温干
旱等极端气候的适应和响应还有待深入研究。
参 考 文 献
陈茂铨,金晓春,吴林森,等 . 2010. 竹林碳汇功能及其影响因子研究
进展 .竹子研究汇刊,29(3) : 5 - 9.
范叶青,周国模,施拥军,等 . 2012. 坡向坡位对毛竹林生物量与碳储
量的影响 .浙江农林大学学报,39(3) : 321 - 327.
何志斌,赵文智,刘 鹄,等 . 2006. 祁连山青海云杉林斑表层土壤有
机碳特征及其影响因素 .生态学报,26(8) :2572 - 2577.
李海奎,雷渊才 . 2010.中国森林植被生物量和碳储量评估 . 北京:中
国林业出版社 .
刘玉霞 . 2012. 不同海拔高度对寿宁县毛竹生长的影响 . 防护林科
技,(1) :36 - 38.
181
林 业 科 学 49 卷
鲁顺保,饶 玮,彭九生,等 . 2008.立地条件对毛竹生物量的影响研
究 .浙江林业科技,28(4) :22 - 27.
吕超群,孙书存 . 2004.陆地生态系统碳密度格局研究概述 . 植物生
态学报,28 (5) : 692 - 703.
王向荣,孙海龙,余 鑫,等 . 2011. 坡向和坡位对水曲柳中龄林生长
的影响 .山西农业大学学报:自然科学版,31(1) :30 - 34.
于顺龙 . 2009.坡向、坡位对水曲柳中龄林生长与生物量分配的影响 .
内蒙古林业调查设计,32(1) :54 - 56.
赵 敏,周广胜 . 2004.中国森林生态系统的植物碳贮量及其影响因
子分析 .地理科学,24(1) : 50 - 54.
浙江省统计局 . 2009. 浙江自然资源与环境统计年鉴(2009) . 北京:
中国统计出版社 .
中国绿色碳基金 . 2008.造林项目碳汇计量与监测指南 .北京:中国林
业出版社 .
周国模,姜培坤 . 2004.毛竹林的碳密度和碳贮量及其空间分布 . 林
业科学,40(6) :20 - 24.
周国模,姜培坤,徐秋芳 . 2010.竹林生态系统中碳的固定与转化 . 北
京:科学出版社,92 - 93.
周国模,吴家森,姜培坤 . 2006. 不同管理模式对毛竹林碳贮量的影
响 .北京林业大学学报,28(6) : 51 - 55.
Chen X G,Zhang X Q,Zhang Y P,et al. 2009. Changes of carbon
stocks in bamboo stands in China during 100 years. Forest Ecology
and Management,258(7) : 1489 - 1496.
Schmid S, Thürig E, Kaufmann E, et al. 2006. Effect of forest
management on future carbon pools and fluxes: a model comparison.
Forest Ecology and Management,237(1 /3) : 65 - 82.
Thürig E,Kaufmann E. 2010. Increasing carbon sinks through forest
management: a model-based comparison for Switzerland with its
Eastern Plateau and Eastern Alps. European Journal of Forest
Research,129 (4) : 563 - 572.
Werner F, Taverna R,Hofer P, et al. 2010. National and global
greenhouse gas dynamics of different forest management and wood
use scenarios: a model-based assessment. Environmental Science
and Policy,13(1) :72 - 85.
Yen T M,Ji Y J,Lee J S. 2010. Estimating biomass production and
carbon storage for a fast-growing makino bamboo ( Phyllostachys
makinoi) plant based on the diameter distribution model. Forest
Ecology and Management,260(3) : 339 - 344.
Yen T M,Lee J S. 2011. Comparing aboveground carbon sequestration
between moso bamboo ( Phyllostachys heterocycla ) and China fir
(Cunninghamia lanceolata) forests based on the allometric model.
For Ecol Manage,261(6) : 995 - 1002.
(责任编辑 于静娴)
281