免费文献传递   相关文献

Advances in on Flavonoid Composition and Metabolism in Citrus

柑橘中类黄酮的组成与代谢研究进展



全 文 :园艺学报,2016,43 (2):384–400.
Acta Horticulturae Sinica
384 doi:10.16420/j.issn.0513-353x.2015-0689;http://www. ahs. ac. cn
柑橘中类黄酮的组成与代谢研究进展
陈嘉景,彭昭欣,石梅艳,徐 娟*
(华中农业大学园艺林学学院,园艺植物生物学教育部重点实验室,武汉 430070)
摘 要:柑橘是人类膳食中类黄酮的主要来源之一。类黄酮对人体健康有多方面的生理功能,且其
抗癌、抗病毒、抗炎及抑菌效果可能基于其强抗氧化活性。柑橘中的类黄酮类物质分为黄烷酮、黄酮、
黄酮醇、二氢黄酮醇和花色苷等几类,且以黄烷酮糖苷类含量最为丰富。柑橘中类黄酮组成和含量因种
质和组织部位而异,柚果实中含有大量苦味的新橘皮糖苷类,而甜橙和橘果实中以无苦味的柚皮芸香糖
苷类为主。目前,对类黄酮代谢途径的认识主要局限于其主通路上,但对类黄酮糖基化、酰基化以及甲
基化等相关的基因和酶类研究较少。随着柑橘类黄酮代谢研究的深入,其积累和分布的遗传机理将逐渐
得以揭示,这将会为培育功能性柑橘新种质提供理论依据。
关键词:柑橘;类黄酮;组成;代谢
中图分类号:S 666 文献标志码:A 文章编号:0513-353X(2016)02-0384-17

Advances in on Flavonoid Composition and Metabolism in Citrus
CHEN Jia-jing,PENG Zhao-xin,SHI Mei-yan,and XU Juan*
(Key Laboratory of Horticultural Plant Biology(Ministry of Education),College of Horticulture & Forestry Sciences,
Huazhong Agricultural University,Wuhan 430070,China)
Abstract:Citrus is one of the major sources of dietary flavonoids that are polyphenolic compounds
biosynthesized in secondary metabolism pathways. Possibly due to their strong antioxidant activity,
flavonoids have many health-promoting properties,including anticancer,antiviral,anti-inflammatory and
antimicrobial functions. The types of flavonoids detected in Citrus so far consist of flavanones,flavones,
flavonols,dihydrochalcones and anthocyanins. Flavanone glycosides are the most abundant flavonoids in
Citrus. Flavonoid composition varied significantly between different Citrus species and between tissue
types,i.e. pummelo fruit contains large amounts of the bitter compound neohesperidosides,while sweet
orange and mandarin have tasteless rutinosides as their dominant flavonoids. So far,our understanding of
flavonoid metabolism is mostly on the structural genes in main biosynthesis pathways,while information on
genes regulating the pathways and enzymes involving in glycosylation,acylation and methylation of
flavonoid are relatively scarce. Future researches in flavonoid biosynthesis in citrus will reveal more genetic
mechanisms controlling the synthesis,modification and distribution of the flavonoids. A better understanding

收稿日期:2015–11–16;修回日期:2016–02–01
基金项目:农业部公益性行业(农业)科研专项(201303093);国家重点基础研究发展计划(‘973’计划)项目(2011CB100603);教
育部新世纪优秀人才支持计划项目(NCET-13-0810);中央高校基本科研业务费专项(2014PY021)
* 通信作者 Author for correspondence(E-mail:xujuan@mail.hzau.edu.cn)
致谢:感谢姚家龙老师[The New Zealand Institute for Plant & Food Research Limited(PFR),Email:Jia-Long.Yao@plantandfood.co.nz]在
本文英文摘要部分修改校正时提出宝贵的意见。
陈嘉景,彭昭欣,石梅艳,徐 娟.
柑橘中类黄酮的组成与代谢研究进展.
园艺学报,2016,43 (2):384–400. 385
of these mechanisms will provide guidance for citrus breeding programs to produce functional fruit with
enhanced levels of flavonoids.
Key words:citrus;flavonoids;composition;metabolism

类黄酮是植物中一类重要的多酚类次生代谢物质,具有强烈的生物活性,在影响果实的色泽和
风味,改善植物抗逆性和抗病虫害方面有重要作用(Sun et al.,2013;Goławska et al.,2014;Li et al.,
2014b)。柑橘是人类膳食中多酚类物质的主要来源(Durand-Hulak et al.,2015),其亦因富含多种类
黄酮而越来越受到食品行业乃至制药工业的青睐。例如化州柚未成熟或近成熟果实的干燥外果皮(化
橘红)对风寒咳嗽、喉痒痰多、食伤积酒和呕恶痞闷等症有显著疗效(Li et al.,2014a)。从柑橘中
检测并定性的类黄酮有黄烷酮、黄酮、黄酮醇和花青苷等(Tripoli et al.,2007),其中黄烷酮类的含
量最为丰富(Frydman et al.,2004);黄酮醇则主要存在于柠檬中(Escriche et al.,2011);而花青素
则仅以糖苷或酰基化糖苷形式存在于血橙和紫皮柚等种质中(Chen et al.,2015a)。自从 20 世纪 90
年代以来,柑橘类黄酮由于其多种特殊功效而被广泛研究和关注。本文中从功能、组成、代谢方面
对柑橘中类黄酮的研究进展予以论述。
1 柑橘中类黄酮的功能
柑橘中类黄酮对人体健康有多方面的生理功能。自 20 世纪 90 年代起,人们开始对柑橘属类黄
酮的生理活性进行大量的研究。作为强抗氧化剂、自由基清除剂、二价阳离子螯合剂和脂质过氧化
抑制剂,类黄酮在抗癌、抗病毒、消炎、降血脂、抑菌、强化毛细血管、抗过敏等方面有着重要的
作用(Benavente-Garcia & Castillo,2008;Akhlaghi & Bandy,2009;Guimarães et al.,2010;
Londoño-Londoño et al.,2010;Tarahovsky et al.,2014)。除此之外,部分类黄酮带有明显的苦味、
甜味甚至具有鲜艳的颜色,还被大量用于食品加工行业。
研究证实,柑橘中多种次生代谢物质具有抗氧化能力,且类黄酮的抗氧化性要明显强于其他次
生代谢物质,类黄酮在柑橘总抗氧化能力上贡献巨大(Yu et al.,2005;Goulas & Manganaris,2012;
Barreca et al.,2013;Singanusong et al.,2014;Zhang et al.,2014c)。天然化合物因其高药效性和较
低的副作用而成为抗癌药物研发的重要资源。柑橘中天然类黄酮类,特别是聚甲氧基黄酮亦有显著
的抗癌作用,能有效抑制肺癌、结肠癌以及黑色素癌等癌细胞系的增殖,且对胃癌细胞等的侵入和
转移,以及前列腺肿瘤、结肠肿瘤等的发生抑制作用明显,可被用为天然抗癌药剂(Manthey &
Guthrie,2002;Chidambara Murthy et al.,2012;Lee et al.,2012;Park et al.,2012;Lai et al.,2013;
Dong et al.,2014;Zhang et al.,2014a)。另外,柑橘中的多种类黄酮对乙型肝炎病毒(HBV)以及
呼吸道合胞体病毒(RSV)等的发生有明显的抑制作用(Hsin,2013;Xu et al.,2014)。并且,柑
橘类黄酮还具有广谱的抑菌效果,不仅对青霉菌、黄曲霉和寄生曲霉等病原真菌的生长抑制作用明
显(Salas et al.,2011;Ballester et al.,2013;Jeong et al.,2014),还能显著抑制革兰氏阴性菌(大
肠杆菌、恶臭假单胞菌等)以及革兰氏阳性菌(金黄色酿脓葡萄球菌、表皮葡萄球菌等)等细菌的
生长(Mandalari et al.,2007;Yi et al.,2008)。
柑橘类黄酮在改变花和果实色泽、调节果实风味等方面也有显著的作用。花青素能在不同酸碱
度细胞液中使植物本身的花和果实呈现红、蓝、紫等不同色泽(Mondello et al.,2000;Lo Piero,
2015)。类黄酮中的新橘皮糖苷,如柚皮苷、新橙皮苷、新圣草枸橼苷等具有明显的苦味,柚子果实

Chen Jia-jing,Peng Zhao-xin,Shi Mei-yan,Xu Juan.
Advances in on flavonoid composition and metabolism in citrus.
386 Acta Horticulturae Sinica,2016,43 (2):384–400.
因富含柚皮苷有明显的苦味(Frydman et al.,2004;Chen et al.,2015c)。而柚皮苷和新橙皮苷经过
氢化后转化成的二氢查尔酮则具有甜味,且甜度极高(Esaki et al.,1994)。此外,柑橘中类黄酮可
显著改善植物对病虫害的抗性且能有效平衡植物体与外界环境的交互关系,帮助植物响应多种逆境
条件(Xu et al.,2007;Djoukeng et al.,2008;Jadhav et al.,2012;Agut et al.,2014)。
2 柑橘类黄酮的组成
类黄酮广泛存在于橘、柚、枸橼、甜橙、酸橙、柠檬等柑橘种质的果实、叶片、花及根中(Lim,
2012)。据不完全统计,目前柑橘中已确定的生物类黄酮已超过 80 种(图 1)。生物类黄酮在柑橘
果实中多以糖苷形式存在,且黄烷酮–O–糖苷类、黄酮–O–糖苷类和黄酮–C–糖苷类含量最为
丰富(Gattuso et al.,2007;Abad-Garcia et al.,2014)。

表 1 柑橘中类黄酮的种类(据不完全统计)
Table 1 Compositions of flavonoids in citrus(According to incomplete statistics)
编号
Code
名称
Name
取代基
Substituent
参考文献
Reference
A 黄烷酮类 Flavanone R1 R2 R3 R4 R5 R6 R7
1 柚皮素 Naringenin OH H OH H H OH H
2 橙皮素 Hesperetin OH H OH H OH OCH3 H
3 圣草素 Eriodictyol OH H OH H OH OH H
4 樱花素 Sakuranetin OH H OCH3 H H OH H
5 高圣草素 Homoeriodictyol OH H OH H OCH3 OH H
6 柚皮苷 Naringin OH H O-Neo H H OH H
7 柚皮芸香苷 Narirutin OH H O-Rut H H OH H
8 新橙皮苷 Neohesperidin OH H O-Neo H OH OCH3 H
9 橙皮苷 Hesperidin OH H O-Rut H OH OCH3 H
10 新圣草次苷 Neoeriocitrin OH H O-Neo H OH OH H
11 圣草次苷 Eriocitrin OH H O-Rut H OH OH H
12 枳属苷 Poncirin OH H O-Neo H H OCH3 H
13 香风草苷 Didymin OH H O-Rut H H OCH3 H
14 樱桃苷 Prunin OH H O-Glu H H OH H
15 圣草酚–7–O–葡萄糖苷
Pyracanthoside
OH H O-Glu H OH OH H
16 5,6,7,4’–四甲氧基黄烷酮
5,6,7,4’–tetramethoxyflavanone
OCH3 OCH3 OCH3 H H OCH3 H
17 5–羟基–6,7,8,3’,4’–五甲氧基黄烷酮
5-hydroxy-6,7,8,3’,4’-pentamethoxyflavanone
OH OCH3 OCH3 OCH3 OCH3 OCH3 H
Durand-Hulak et
al.,2015;Abad-
Garcia et al. ,
2012;Li et al.,
2006;Gattuso et
al.,2007;Zhang et
al.,2011;
Djoukeng et al.,
2008;Chen et al.,
2015c;
Delourdesmata-
bilbao et al. ,
2007;Abad-
García et al. ,
2014 ;Nogata et
al.,2006;Wu et
al.,2007;Xi et
al.,2014;Zhang et
al.,2014b;Barreca
et al.,2011
B 黄酮醇类 Flavonols R1 R2 R3 R4 R5 R6 R7
18 山奈酚 Kaempferol OH OH H OH H OH H
19 槲皮素 Quercetin OH OH H OH OH OH H
20 杨梅素 Myricetin OH OH H OH OH OH OH
21 栎草亭 Quercetagetin OH OH OH OH OH OH H
22 山奈酚–3–O–葡萄糖苷
Asragalin
O-Glu OH H OH H OH H
23 山奈酚–3–O–芸香糖苷
Kaempferol-3-O-rutinoside
O-Rut OH H OH H OH H
24 山奈酚–3–6–对–香豆酰–葡萄糖苷
Kaempferol-3-(p-coumaroyl)-glucoside
O-Col OH H OH H OH H
25 刺槐素 Robinin O-Rob OH H O-Rha H OH H
26 山奈酚–7–O–新橘皮糖苷
Kaempferol-7-O-neohesperidoside
OH OH H O-Neo H OH H
27 异槲皮苷 Isoquercitrin O-Glu OH H OH OH OH H
28 槲皮素–3–O–呋喃葡萄糖苷
Quercetin-3-O-glucofuranoside
O-Glf OH H OH OH OH H
29 槲皮素–3–O–鼠李糖苷
Quercetin-3-O-rhamnoside
O-Rha OH H OH OH OH H
30 槲皮素–3–O–半乳糖苷
Quercetin-3-O-galactoside
O-Gal OH H OH OH OH H
31 芦丁 Rutin O-Rut OH H OH OH OH H
32 异鼠李素–3–O–芸香糖苷
Isorhamnetin-3-O-rutinoside
O-Rut OH H OH OCH3 OH H
Durand-Hulak et
al.,2015;Abad-
Garcia et al. ,
2012;Gattuso et
al.,2007;
Djoukeng et al.,
2008;Delourdes-
mata-bilbao et al.,
2007 ;Nogata et
al.,2006;Wu et
al.,2007;Zhang et
al.,2014b;Barreca
et al.,2011

陈嘉景,彭昭欣,石梅艳,徐 娟.
柑橘中类黄酮的组成与代谢研究进展.
园艺学报,2016,43 (2):384–400. 387
续表 1
编号
Code
名称
Name
取代基
Substituent
参考文献
Reference
C 二氢黄酮醇类;黄烷醇类 Dihydroflavonol R1 R2 R3 R4 R5
33 二氢山奈酚 Dihydrokaempferol OH OH OH H OH
34 二氢槲皮素 Dihydroquercetin OH OH OH OH OH
35 二氢异鼠李素 Dihydroisorhamnetin OH OH OH OCH3 OH
36 二氢山奈酚–7–O–芸香糖苷
Dihydrokaempferol-7-O-rutinoside
OH OH O-Rut H OH
Abad-Garcia et
al.,2012;Abad-
Garcia et al.,
2009;Chatterjee
& Chatterjee,
1988
37 二氢山奈酚–4’–甲基醚–7–O–鼠李糖苷
Dihydrokaempferol-4’-methylether-7-O-
rhamnoside
OH OH O-Rha H O-Me
38 二氢槲皮素–7–O–芸香糖苷
Dihydroquercetin-7-O-rutinoside
OH OH O-Rut OH OH
39 二氢异鼠李素–7–O–芸香糖苷
Dihydroisorhamnetin-7-O-rutinoside
OH OH O-Rut OCH3 OH
D 花青素类 Anthocyanin R1 R2 R3 R4 R5 R6
40 飞燕草素–3–O–葡萄糖苷
Delphinidin-3-O-glucoside
O-Glu OH OH OH OH OH
41 飞燕草素–3-O-(6’’–丙二酰基)–葡萄糖苷
Delphinidin -3-(6’’-malonylglucoside)
O-Mal OH OH OH OH OH
42 矢车菊素–3–O–葡萄糖苷
Cyanidin-3-O-glucoside
O-Glu OH OH OH OH H
Durand-Hulak et
al.,2015;Kelebek
et al.,2008;Lee,
2002 ; Hillebrand
et al.,2004
43 矢车菊素–3–O–槐糖苷
Cyanidin-3-O-sophoroside
O-Sop OH OH OH OH H
44 矢车菊素–3,5–di–O–葡萄糖苷
Cyanidin-3,5-di-O-glucoside
O-Glu O-Glu OH OH OH H
45 矢车菊素–3-O-(6’’–丙二酰基)–葡萄糖苷
Cyanidin-3-(6’’-malonylglucoside)
O-Mal OH OH OH OH H
46 矢车菊素–3-O-(6’’–草酰基)–葡萄糖苷
Cyanidin-3-(6’’-dioxalylglucoside)
O-Dio OH OH OH OH H
47 甲基花青素–3–O–葡萄糖苷
Peonidin-3-O-glucoside
O-Glu OH OH OCH3 OH H
48 甲基花青素–3–O–(6’’–丙二酰基)–
葡萄糖苷 Peonidin-3-(6’’-malonylglucoside)
O-Mal OH OH OCH4 OH H
E 黄酮类 糖苷或配糖体 Flavone Aglycone or glucoside R1 R2 R3 R4 R5 R6 R7
49 芹菜素 Apigenin H OH H OH H H OH
50 香叶木素 Diosmetin H OH H OH H OH OCH3
51 木犀草素 Luteolin H OH H OH H OH OH
52 金雀花素 Scoparin H OH H OH O-Glu OCH3 OH
53 金合欢素 Acacetin H OH H OH H H OCH3
54 金圣草黄素 Chrysoeriol H OH H OH H OCH3 OH
55 大波斯菊苷 Cosmosiin H OH H O-Glu H H OH
56 野漆树苷 Rhoifolin H OH H O-Neo H H OH
57 异野漆树苷 Isorhoifolin H OH H O-Rut H H OH
58 香叶木苷 Diosmin H OH H O-Rut H OH OCH3
59 新香叶木苷 Neodiosmin H OH H O-Neo H OH OCH3
60 木犀草素–7–O–葡萄糖苷
Luteolin-7-O-glucoside
H OH H O-Glu H OH OH
61 木犀草素–3’,7–O–葡萄糖苷
Luteolin-3’,7-di-O-glucoside
H OH H O-Glu H O-Glu OH
62 木犀草素–4’ –O–葡萄糖苷
Luteolin-4’-O-glucoside
H OH H OH H OH O-Glu
63 木犀草素–7–O–芸香糖苷
Luteolin-7-O-rutinoside
H OH H O-Rut H OH OH
64 牡荆素 Vitexin H OH H OH Glu H OH
65 异牡荆素 Isovitexin H OH Glu OH H H OH
66 葫芦巴苷 II Vicenin-2 H OH Glu OH H H OH
67 香叶木素–8–C–葡萄糖苷
Diosmetin-8-C-glucoside
H OH H OH Glu OH OCH3
68 香叶木素–6,8–C–葡萄糖苷
Diosmetin-6,8-di-C-glucoside
H OH Glu OH Glu OH OCH3
69 异荭草素 Isoorientin H OH Glu OH H OH OH
Durand-Hulak et
al.,2015;Abad-
García et al. ,
2012;Li et al.,
2006;Gattuso et
al.,2007;Zhang et
al.,2011;
Djoukeng et al.,
2008;Chen et
al.,2015c;Abad-
García et al. ,
2014 ;Nogata et
al.,2006;Xi et
al.,2014;Zhang et
al.,2014b;Barreca
et al.,2011
70 荭草素 Orientin H OH H OH Glu OH OH
71 芹菜素–8–C–葡萄糖–4’–O–鼠李糖苷
Apigenin-8-C-glucoside-4’-O-rhamnoside
H OH H OH Glu H O-Rha
72 蒙花苷 Linarin H OH H O-Rut H H OCH3
73 皂草苷 Saponarin H OH Glu O-Glu H H OH






Chen Jia-jing,Peng Zhao-xin,Shi Mei-yan,Xu Juan.
Advances in on flavonoid composition and metabolism in citrus.
388 Acta Horticulturae Sinica,2016,43 (2):384–400.
续表 1
编号
Code
名称
Name
取代基
Substituent
参考文献
Reference
多甲氧基黄酮 Polymethoxylatedflavones
74 甜橙黄酮 Sinensetin H OCH3 OCH3 OCH3 H OCH3 OCH3
75 桔黄酮 Tangeretin H OCH3 OCH3 OCH3 OCH3 H OCH3
76 川陈皮苷 Nobiletin H OCH3 OCH3 OCH3 OCH3 OCH3 OCH3
77 七甲氧基黄酮
3,5,6,7,8,3’,4’-heptamethoxyflavone
OCH3 OCH3 OCH3 OCH3 OCH3 OCH3 OCH3
78 3,5,6,7,3’,4’–六甲氧基黄酮
3,5,6,7,3’,4’-hexamethoxyflavone
OCH3 OCH3 OCH3 OCH3 H OCH3 OCH3
79 5,6,7,4’–四甲氧基黄酮
5,6,7,4’-tetramethoxyflavone
H OCH3 OCH3 OCH3 H H OCH3
80 5,7,8,4’–四甲氧基黄酮
5,7,8,4’-tetramethoxyflavone
H OCH3 H OCH3 OCH3 H OCH3
羟基化多甲氧基黄酮 Hydroxyl Polymethoxylatedflavones
81 三裂鼠尾草素
5-hydroxy-6,7,4’-trimethoxyflavone
H OH OCH3 OCH3 H H OCH3
82 栀子黄素 5-demethyltangeretin H OH OCH3 OCH3 OCH3 H OCH3
83 5–羟基–3,6,7,8,3’,4’ –六甲氧基黄酮
5-hydroxy-3,6,7,8,3’,4’-hexamethoxyflavone
OCH3 OH OCH3 OCH3 OCH3 OCH3 OCH3
84 瑞士黄酮
5-hydroxy-3,7,3’,4’-tetramethoxyflavone
OCH3 OH H OCH3 H OCH3 OCH3
85 5–羟基–3,7,8,3’,4’–五甲氧基黄酮
5-hydroxy-3,7,8,3’,4’-pentamethoxyflavone
OCH3 OH H OCH3 OCH3 OCH3 OCH3
86 去甲川陈皮素 5-demethylnobiletin H OH OCH3 OCH3 OCH3 OCH3 OCH3
87 3–羟基–5,6,7,4’–四甲氧基黄酮
3-hydroxy-5,6,7,4’-tetramethoxyflavone
OH OCH3 OCH3 OCH3 H H OCH3
88 3–羟基–5,6,7,8,4’–五甲氧基黄酮
3-hydroxy-5,6,7,8,4’-pentamethoxyflavone
OH OCH3 OCH3 OCH3 OCH3 H OCH3




















图 1 柑橘中类黄酮的结构和组成成分(据不完全统计)
A:黄烷酮类;B:黄酮醇类;C:二氢黄酮醇类,黄烷醇类;D:花青素类;E:黄酮类,糖苷或配糖体。
Fig. 1 Structure and composition of flavonoids in citrus(According to incomplete statistics)
A:Flavanone;B:Flavonols;C:Dihydroflavonol;D:Anthocyanin;E:Flavone aglycone or glucoside.
陈嘉景,彭昭欣,石梅艳,徐 娟.
柑橘中类黄酮的组成与代谢研究进展.
园艺学报,2016,43 (2):384–400. 389
柑橘中类黄酮的组成鉴定受到诸多因素的影响,其中检测方法的选择极其重要,检测方法不同,
精度不同,则检测到的物质成分就会有差异。在柑橘中,类黄酮的检测方法主要有液相色谱法
(HPLC)、液相色谱—质谱联用法(LC–MS)、毛细管电泳—质谱联用法(CE–MS)及核磁共
振法(NMR)等。Nogata 等(2006)对 42 个柑橘属栽培种、2 个金柑种和枳壳 4 个果实组织(黄
皮层、白皮层、囊衣和汁胞)中类黄酮组成进行了 HPLC 分析,结果检测到 8 种黄烷酮、8 种黄酮
和 1 种黄酮醇的大量存在。Delourdesmatabilbao 等(2007)利用液相色谱—二极管阵列检测法(LC–
DAD)和 LC–MS 对葡萄柚、枸橼、甜橙和橘中的 5 种类黄酮进行了分析和鉴定,并首次发现柑橘
果实中高含量(0.773 mg · g-1)异槲皮素的存在。通过 LC–MS 和 NMR 技术,Djoukeng 等(2008)
对生长在不同环境的两个柑橘种质(施文格枳柚和卡里佐枳橙)叶片中的类黄酮组成进行了高效液
相二极管阵列联合电喷雾电离质谱(HPLC–DAD–ESI–MS)和核磁共振分析,初步确定出超过
40 种的类黄酮物质且部分在柑橘甚至植物界中尚未被报道。Abad-Garcia 等(2012)通过 LC–MS
并结合外标辅助定性方法对甜橙(9 个栽培种)、橘(7 个栽培种)、柠檬(4 个栽培种)和葡萄柚
(5 个栽培种)果实中 58 种酚类物质(类黄酮类 54 种)进行了大量分析工作,这是目前为止针对
柑橘属植物中各种类黄酮物质光谱特征及键断裂规律等所进行的最为全面的评价。
柑橘不同种质中类黄酮的种类和含量有很大的差异。‘Moro’、‘Sanguinello’等血橙中富含
多种花青苷,其中以矢车菊素–3–葡萄糖苷和矢车菊素–3–O–(6’’–丙二酰基)–葡萄糖苷的
含量最为丰富,但是在柚、橘等种质中这些物质则未检测到(Lee,2002;Dugo et al.,2003;Hillebrand
et al.,2004;Kelebek et al.,2008)。Caristi 等(2006)利用 LC–MS 技术对来自意大利南部各种
柑橘(橙、柑、柠檬、枸橼和克里曼丁橘)果汁中二碳苷黄酮类(Flavone-di-C-glycosides)组成进
行了鉴定,结果发现碳苷黄酮类在不同的柑橘种质中有明显的不同。Durand-Hulak 等(2015)利用
UPLC–MS 技术对生长于科西嘉岛的 4 种甜橙、3 种葡萄柚和 4 种橘栽培种不同组织中多酚类代谢
物质进行了检测,通过对定性和定量的 64 种酚类代谢物质(类黄酮类 38 种)进行分析,认为不同
柑橘种质及柑橘不同组织中的多酚类物质含量及种类都有很大的差异。该结论也被 Chen 等(2015c)
的研究所证实。柑橘类黄酮组成和含量差异不仅表现在不同的种质上,也表现在不同组织间。Wu
等(2007)利用毛细管电泳—电化学检测法(CE–CD)对葡萄柚果皮和果肉中主要类黄酮进行了
检测,发现其果肉中含有大量的橙皮苷、柚皮苷、柚皮素、橙皮素和芦丁,但是在其果皮中仅检测
到柚皮苷和橙皮苷。另外,作为一种抗氧化性极强的多酚类物质,聚甲氧基黄酮主要分布于橘、橙
和柑等的果皮特别是油胞层中,在果肉和囊衣中其含量极低或检测不到(Chen et al.,2015c)。
柑橘中黄烷酮类主要由柚皮苷、柚皮芸香苷、新橙皮苷、橙皮苷、新圣草次苷、圣草次苷、枳
属苷和香风草苷等 7–O–糖苷类组成,同时,这些糖苷的单体如柚皮素、橙皮素、圣草素等也被广
泛检测到(Abad-Garcia et al.,2012;Durand-Hulak et al.,2015)。黄烷酮糖苷类在柑橘中含量最为
丰富,橘、甜橙和柠檬中无苦味的芸香糖苷类尤其是橙皮苷异常丰富(Chen et al.,2015c);柚、
酸橙等中则含有大量苦味的新橘皮糖苷类,特别是柚皮苷,其含量甚至能占到类黄酮总含量的 75%
以上(Frydman et al.,2004);作为甜橙和柚的杂交后代,葡萄柚中黄烷酮糖苷的含量能占到其幼
果或幼叶干质量的 40% ~ 70%,且以新橘皮糖苷类的含量最大(Owens & McIntosh,2011;Zhang et
al.,2011;Frydman et al.,2013)。不同于黄烷酮类,柑橘种质中黄酮类除了以 O–糖苷形式(野
漆树苷、香叶木苷、新香叶木苷等)大量存在外,香叶木素、芹菜素以及木犀草素等单体的 6–
C–糖苷、8–C–糖苷以及 6,8–di–C–糖苷形式也大量存在于橘、橙、葡萄柚以及柠檬等果实中,
而且橘、橙等种质的油胞层中还含有另外一种特殊的黄酮类——聚甲氧基黄酮(Abad-Garcia et al.,

Chen Jia-jing,Peng Zhao-xin,Shi Mei-yan,Xu Juan.
Advances in on flavonoid composition and metabolism in citrus.
390 Acta Horticulturae Sinica,2016,43 (2):384–400.
2012;Xi et al.,2014;Zhang et al.,2014b)。柚等果实及叶片中的野漆树苷是含量最为丰富的黄酮
糖苷类之一,而橘、橙等种质油胞层中的黄酮类主要以聚甲氧基黄酮的形式存在,且以甜橙黄酮、
桔黄酮和川陈皮苷含量最为丰富(Chen et al.,2015c)。柑橘中的黄酮醇类主要以 3–O–糖苷和
7–O–糖苷的形式存在,主要分布于柠檬、枸橼和橘等种质中。其中,芦丁是柑橘中最为丰富的黄
酮醇类之一,且以柠檬中含量最高(Abad-Garcia et al.,2012)。不同于其他类黄酮类,自然界中没
有单体形式的花青素类,柑橘中花青素除了以糖苷的形式存在,还会经过酰基化的作用形成酰基化
的花青苷类。柑橘中花青素类分布具有种质特异性,只存在于血橙和紫皮柚等种质中,且血橙中矢
车菊素–3–O–葡萄糖苷和矢车菊素–3–(6’’–丙二酰)–β–葡萄糖苷超过花青素总量的 60%
(Lee,2002;Dugo et al.,2003;Hillebrand et al.,2004;Kelebek et al.,2008)。另外,血橙中还
检测到飞燕草色素和甲基花青素经糖基化和酰基化所形成的花青苷类(Dugo et al.,2003)。作为花
青素和黄酮醇的直接前体,黄烷醇类在柑橘中的含量甚少,目前橘、葡萄柚等种质中已检测到二氢
槲皮素、二氢山奈酚和二氢异鼠李素等单体及经过糖基化作用所形成的 7–O–芸香糖苷类
(Chatterjee & Chatterjee,1988;Abad-Garcia et al.,2009,2012)。
中国柑橘种质资源丰富,除常规栽培种外,还包括大量的野生种质。除了遗传背景的不同,外
界环境的调控也是构成柑橘种属间类黄酮特异积累的一大因素。据相关文献报道,Cu、Fe 和 Zn 元
素能显著抑制类黄酮代谢中的相关糖苷转移酶类的活性,而 Na、K、Mg、Mn 等元素则无明显作用
(McIntosh et al.,1990;Owens & McIntosh,2009)。此外,非生物胁迫如冷压等也能有效提高柑
橘中的相关类黄酮的含量(Chen et al.,2015b)。因此,除了利用特殊种质进行常规杂交等育种措
施外,栽培条件的改善可能会为高效提升柑橘果实类黄酮的含量提供便捷之径。通过深入系统评价
柑橘种质资源,明确其遗传背景与类黄酮成分及含量的关系,将为研究类黄酮代谢相关基因、育种
及开发利用柑橘类黄酮奠定理论基础。
3 柑橘中类黄酮的代谢
3.1 前体合成
类黄酮的生物合成来自苯丙烷代谢支路(Winkel-Shirley,2001)(图 2,A)。作为初生代谢
和次生代谢的接点,苯丙氨酸在苯丙氨酸解氨酶(PAL)、肉桂酸–4–羟化酶(CA4H)和 4–香
豆酸辅酶 A 连接酶(4CL)的作用下形成 4–香豆酰辅酶 A,后与 3 分子乙酰辅酶 A 经查尔酮合成
酶(CHS)的催化作用形成查尔酮,最后查尔酮在查尔酮异构酶(CHI)的作用下形成柚皮素,从
而进入各类黄酮代谢支路。其中,查尔酮合成酶(CHS)和查尔酮异构酶(CHI)为此途径的限速
酶(Muir et al.,2001;Wang et al.,2010)。
Reimold 等(1983)首次从紫外线辐射处理的欧芹(Petroselinum crispum)悬浮培养细胞中分
离获得 CHS 基因,而 CHI 基因则是利用抗体技术首先从法国菜豆(Phaseolus vulgaris Linn)中分离
出来。随着 CHS 基因和 CHI 基因陆续从其它植物中被克隆出来,发现两基因保守性较高,且 CHI
为单拷贝,而 CHS 在不同植物中拷贝数不同(Blyden et al.,1991;Lanz et al.,1991)。鉴于其重
要的功能性,Moriguchi 等(1999)利用伏令夏橙种子 cDNA 文库克隆出两条 CHS 基因(CitCHS1,
AB009350 和 CitCHS2,AB009351),通过基因表达分析发现,两个基因在柑橘体细胞胚胎发育中
的表达有差异,且仅 CitCHS2 能催化柑橘体细胞培养中类黄酮的合成;通过免疫印迹分析发现仅
CitCHS1 为单拷贝,且由于 CitCHS1 和 CitCHS2 的杂交模式不同,暗示这两条基因来源于不同的位
陈嘉景,彭昭欣,石梅艳,徐 娟.
柑橘中类黄酮的组成与代谢研究进展.
园艺学报,2016,43 (2):384–400. 391
点。另外,利用柑橘 cDNA 文库从温州蜜柑中克隆得到的 CHI 基因随果实发育的表达量与类黄酮含
量变化密切相关,认为柑橘中类黄酮大量积累于果实发育初期(Moriguchi et al.,2001)。Wang 等
(2010)从国庆 4 号温州蜜柑果实中克隆得到 CHS 和 CHI 两个基因,结果发现两个基因在果实不
同发育时期的表达量与果实总类黄酮的含量变化一致,证明两个基因在类黄酮合成中有重要的作用。
王志彬等(2015)克隆了 10 个柑橘种质的 CHS 基因,并对其不同时期果实和叶片中类黄酮含量进
行了测定,发现柑橘 CHS 基因的核苷酸序列高度保守且对类黄酮的生物合成有明显影响。
3.2 黄烷酮代谢合成
黄烷酮类是柑橘中含量最为丰富的生物类黄酮类,且主要以糖苷形式存在于果实中(Cheigh et
al.,2012;Khan & Dangles,2014)。在柑橘中,柚皮素连同其羟化或甲基化的产物橙皮素、圣草
酚和异樱野素经过 7–O–葡萄糖苷转移酶(7-Glct)的作用形成 7–O–葡萄糖苷类,然后经过
1,2–鼠李糖基转移酶(1,2-Rhat)的作用分别形成带苦味的柚皮苷、新橙皮苷、新圣草次苷和枳属
苷;经过 1,6–鼠李糖基转移酶(1,6-Rhat)的作用分别形成无苦味的柚皮芸香苷、橙皮苷、圣草次
苷和香风草苷(Lewinsohn et al.,1989;Bar-Peled et al.,1993;Frydman et al.,2013;Chen et al.,
2015c)(图 2,B)。


















图 2 柑橘中苯丙烷代谢途径(A)和主要的黄烷酮糖苷类代谢途径(B)
修改自 Frydman et al.,2004;Owens & McIntosh,2011;Chen et al.,2015c。
PAL:苯丙氨酸解氨酶;C4H:肉桂酸 4–羟化酶;4CL:4–香豆酰辅酶 A 连接酶;CHS:查尔酮合成酶;CHI:查尔酮异构酶;
7-Glct:黄烷酮 7–O–葡萄糖转移酶;1,2-Rhat:1,2 鼠李糖基转移酶;1,6-Rhat:1,6–鼠李糖基转移酶。
Fig. 2 The metabolic pathways of phenylpropanoid(A)and predominant flavanone glycosides(B)in citrus
Modified from Frydman et al.,2004;Owens & McIntosh,2011;Chen et al.,2015c.
PAL:Phenylalanin ammonia-lyase;C4H:Cinnamate-4-hydroxylase;4CL:4-coumarate:coenzyme A ligase;CHS:Chalconesynthase;
CHI:Chalcone isomerase;F3H:Flavanone 3-hydroxylase;7-Glct:Flavanone 7-O-glucosyltransferase;
1,2-Rhat:1,2-rhamnosyltransferase;1,6-Rhat:1,6-rhamnosyltransferase.

Chen Jia-jing,Peng Zhao-xin,Shi Mei-yan,Xu Juan.
Advances in on flavonoid composition and metabolism in citrus.
392 Acta Horticulturae Sinica,2016,43 (2):384–400.
柚、枳壳、酸橙和葡萄柚等种质中,黄烷酮糖苷类多为带苦味的新橘皮糖苷类,其中以柚皮苷
含量最高,而果实中富含的柚皮苷是产生苦味的主要根源之一,故新橘皮糖苷合成关键酶 1,2-Rhat
的功能引人关注。Bar-Peled 等(1991)首次从葡萄柚中纯化得到 1,2-Rhat,但 UDP–鼠李糖的缺乏
使得对该酶同质性和酶动力学研究受限。Frydman 等(2004)已从葡萄柚中分离得到编码 1,2-Rhat
的基因(Cm1,2Rhat)并进行了功能验证,证明此酶对类黄酮化合物引起苦味有直接作用。值得注
意的是,1,2-Rhat 底物特异性较强,只能催化黄烷酮–7–O–葡萄糖苷和黄酮–7–O–葡萄糖苷而
形成新橘皮糖苷类;而 1,6-Rhat 的底物特异性较为复杂,除了能作用于黄烷酮–7–O–葡萄糖苷、
黄酮–7–O–葡萄糖苷和黄酮醇–7–O–葡萄糖苷外,还能催化黄酮醇–3–O–葡萄糖苷和花青
素–3–O–葡萄糖苷形成芸香糖苷类(Frydman et al.,2013)。通过对酸橙等种质中得 1,2-Rhat 基
因进行克隆和测序,发现这些未检测到新橘皮糖苷的种质中,1,2-Rhat 基因的编码区域普遍存在碱
基的缺失(移码突变),这可能导致 1,2Rhat 基因无法正常的表达(Chen et al.,2015c),进一步的
体外、体内验证正在进行。
黄烷酮糖苷类大量存在于柑橘属的果实中且以白皮层和囊衣中的含量最高,而在黄皮层和汁胞
中的含量较低(Nogata et al.,2006;Zhang et al.,2014b)。另外,在叶片、花、皮、根等部位也有
少量的积累(Lim,2012)。黄烷酮类在柑橘果实中的代谢存在明显的规律性,总体来说伴随果实
的发育和成熟其含量呈现下降的趋势(Kim et al.,2011;Li et al.,2014b)。通过对 4 种甜橙中黄
烷酮类随果实发育过程中的含量变化进行跟踪检测,发现尽管在果实的绿熟期和转色期其积累量有
少许波动,但黄烷酮糖苷类在不同种质果实的不同组织中都呈现总体下降的趋势(Chen et al.,
2015c)。
3.3 黄酮类代谢
黄酮类在柑橘中主要以 O–糖苷和 C–糖苷形式存在(Gattuso et al.,2007;Barreca et al.,2011)。
此外,聚甲氧基黄酮作为一种特殊的黄酮类在橘、橙等果实的黄皮层中也被检测到大量存在(Zhang
et al.,2012;Ohguchi et al.,2014)。
在此支路中,黄酮类的形成有两条途径。一是在黄酮合成酶(FNS)的作用下催化柚皮素形成
芹菜素,之后在羟基化酶(F3’H 或 F3’5’H)的催化下形成木犀草素,或经甲基化酶作用形成香叶
木素,这些代谢物构成了柑橘中最主要的 3 种黄酮类糖苷配基,之后分别经过一系列糖苷转移酶的
作用形成最后的黄酮糖苷类(Benavente-Garcia et al.,1993;Menting et al.,1994);二是可能以黄
酮糖苷配基类等为前体物质经过甲基转移酶类催化最终形成聚甲氧基黄酮类,然而其代谢途径只是
基于结构特征进行的推测,尚无相关报道进行证实。
在柑橘中,野漆树苷是含量最丰富的黄酮糖苷类。芹菜素在 7–O–葡萄糖苷转移酶(7-Glct)
的作用下形成大波斯菊苷,然后经过 1,2–鼠李糖基转移酶(1,2-Rhat)的催化作用形成野漆树苷。
其大量存在于柚等果实的各组织中,且随着果实的发育和成熟呈现逐渐降低的趋势(Zhang et al.,
2014b)。
另外,由香叶木素经糖苷转移酶催化而来的香叶木苷和新香叶木苷等 7–O–糖苷类也大量存在
于柠檬、橙等柑橘果实中(Ortuño et al.,2011)。
柑橘中的黄酮糖苷类除了含量丰富的 O–糖苷类外,还包括由芹菜素及其羟基化或甲基化产物
木犀草素和香叶木素经 C–糖苷转移酶作用而形成的种类繁多的 6–C–糖苷类、8–C–糖苷类、
6,8–di–C–糖苷类等,它们广泛存在于橘、柚、柠檬中(Barreca et al.,2013;Sommella et al.,2014)。
最新研究发现,血橙中也检测到种类丰富的的黄酮–C–糖苷类(Barreca et al.,2014)。但到目前
陈嘉景,彭昭欣,石梅艳,徐 娟.
柑橘中类黄酮的组成与代谢研究进展.
园艺学报,2016,43 (2):384–400. 393
为止,柑橘中与这些代谢物形成相关的 C–糖苷转移酶还没有被分离出来。
作为一个特殊的分支,聚甲氧基黄酮尤其是橘黄酮、川皮苷和甜橙黄酮大量存在于橘、橙等果
实的油胞层中,且伴随果实的发育成熟呈现逐渐降低的趋势,其合成代谢途径尚未研究清楚。
3.4 黄烷醇、黄酮醇和花青素代谢
3.4.1 黄烷醇代谢
与其他类黄酮相似,黄酮醇和花青素在柑橘中多以糖苷形式存在,但含量较少。两种代谢物共
用黄烷醇类作为直接前体,代谢积累呈现竞争的关系(Gou et al.,2011)。苯丙烷代谢形成的香豆
酰辅酶 A(p-coumaroyl-CoA)和 3 分子丙二酰辅酶 A(malonyl-CoA)在关键酶 CHS、CHI 和 F3H
的催化作用下形成二氢山奈酚。通过蛋白组学分析,发现在红肉的 Moro 血橙和普通 Cadenera 橙中
功能已确定的 55 个差异表达蛋白中包括 CHS 和 F3H,暗示花青素合成途径的激活是造成血橙中色
素大量积累的原因(Muccilli et al.,2009)。
二氢山奈酚经过 F3’H 的催化作用形成二氢槲皮素,紧接着在 F3’5’H 的作用下形成二氢杨梅素
(Leonard et al.,2006;Gou et al.,2011;Rani et al.,2012)(图 3,A)。同时,二氢槲皮素可能
在酶的催化作用下形成二氢异鼠李素,且二氢异鼠李素是血橙中无色甲基花青素的直接前体。
3.4.2 花青素代谢
柑橘中,二氢槲皮素等在二氢黄酮醇–4–还原酶(DFR)的催化作用下形成无色矢车菊素等无
色花青素,紧接着在花青素合成酶(ANS)的催化下形成矢车菊素等单体形式的花青素(Lo Piero et
al.,2006; Bernardi et al.,2010;Gou et al.,2011;Lo Piero,2015)。经过 ANS 催化形成的花青
素类极其不稳定,一旦形成便会经过糖苷转移酶(UGTs)作用而被修饰以增加它们的亲水性和稳定
性(图 3,B)。其中,矢车菊素经过 3–O–葡萄糖苷转移酶(3-Glct,或 UFGT)的作用形成的矢
车菊素–3–O–葡萄糖苷,以及接着经过酰基化作用催化形成的矢车菊素–3–(6’’–丙二酰)–β–
葡萄糖苷构成了血橙中含量最为丰富的两种花青苷(Kelebek et al.,2008)。
二氢黄酮醇–4–还原酶是花青素合成的关键酶之一,其编码基因已从多种植物中分离获得,
如百合、小麦、水稻和兰科植物等(Nakatsuka et al.,2003;Himi & Noda,2004;Shih et al.,2008;
Whang et al.,2011)。Lo Piero 等(2006)利用 cDNA 文库和基因组 DNA 从 Tarocco 血橙和普通脐
橙中分离出 DFR 基因并发现其 cDNA 序列同源性为 100%且均为单拷贝,并首次将克隆自甜橙的
DFR 通过体外表达成功地将二氢槲皮素转化为无色矢车菊素,从而确定所分离的 DFR 基因参与了
柑橘花青素的合成,且其表达受某特异转录调节因子的调控只能在血橙果实中正常转录。另外,Crifò
等(2011)通过短时间低温处理血橙果实和普通甜橙果实,发现低温只能明显诱导血橙中 PAL、DFR
和 UFGT 基因的表达而形成花青素,但普通甜橙则对低温逆境无明显应答。ANS 和 UFGT 是负责花
青苷合成过程中最后一个环节,在细胞质和液泡中将不稳定的配糖体转变为稳定的糖苷形式。Lo
Piero(2015)已经从 Tarocco 血橙中克隆出 ANS 和 UFGT 的序列,发现这两个基因很可能都为单拷
贝且仅在红肉橙中有表达,而更加深入的酶功能研究正在进行。然而,血橙中不同种类的花青苷意
味着有一系列的糖苷转移酶类的存在,然而大部分这些酶类在柑橘乃至其他植物中尚未被分离出来。
此外,酰基化(其占花青素总量有时会超过 40%)是血橙中花青素最普遍的修饰方式且主要发
生在葡萄糖基的 C6’’位置上,能够保护花青素在中性或弱酸性水溶液中不被脱色(Lo Piero,2015)。
然而到目前为止,柑橘中还没有任何与花青素酰基化确切相关的基因的报道。
3.4.3 黄酮醇代谢
FLS 通过催化 3 种黄烷醇代谢前体分别形成山奈酚、槲皮素和杨梅素而参与到黄酮醇的代谢;

Chen Jia-jing,Peng Zhao-xin,Shi Mei-yan,Xu Juan.
Advances in on flavonoid composition and metabolism in citrus.
394 Acta Horticulturae Sinica,2016,43 (2):384–400.
另外,槲皮素在 O–甲基化转移酶(OMT)的作用下形成异鼠李素(Gou et al.,2011)。此 4 种代
谢物质构成了柑橘中常见的 4 种黄酮醇糖苷配基,之后在一系列糖苷转移酶的作用下形成柑橘中稳
定存在的黄酮醇糖苷类(图 3,C)。其中,芦丁是柑橘中含量最为丰富的黄酮醇糖苷,且以柠檬中
的含量居高(Bilbao et al.,2007;Escriche et al.,2011)。
























图 3 柑橘中主要二氢黄酮醇类(A)、花青苷类(B)和黄酮醇类(C)代谢途径
参考 Lo Piero et al.,2006;Lo Piero,2015;Gou et al.,2011。F3H:黄烷酮 3–羟化酶;F3’H:类黄酮 3’–羟化酶;F3’5’H:类黄酮
3’5’–羟化酶;DFR:二氢黄酮醇还原酶;ANS:花青素合成酶;3-Glct:黄酮醇 3–葡萄糖苷转移酶;UGTs:UDP 依赖的
糖苷转移酶类;ATT:酰基化转移酶类;FLS:黄酮醇合成酶;OMT:O–甲基化转移酶;1,6-Rhat:1,6–鼠李糖基转移酶。
Fig. 3 The metabolic pathways of predominant dihydroflavonols(A),anthocyanins(B)and flavonols(C)in citrus
Modified from Lo Piero et al.,2006;Lo Piero,2015;Gou et al.,2011. F3H:Flavanone 3-hydroxylase;F3’H:Flavonoids 3’-
hydroxylase;F3’5’H:Flavonoid 3’,5’-hydroxylase;DFR:Dihydroflavanol 4-reductase;ANS:Anthocyanidin synthase;
3-Glat:Flavonol 3-O-glucosyltransferase;UGTs:UDP-Glycosyltransferases;ATT:Acyltransferases;
FLS:Flavonol synthase;OMT:O-methyltransferase;1,6-Rhat:1,6-rhamnosyltransferas.

黄酮醇合成酶(FLS)与黄烷酮–3–羟化酶(F3H)以及黄酮合成酶Ⅰ(FNSⅠ)等同属于 2–
氧化戊二酸依赖性加氧酶(2-ODD)家族(Kim et al.,2014),且其功能第 1 次在欧芹悬浮细胞中
被证明(Britsch et al.,1981)。Holton 等(1993)首次利用 PCR 技术从矮牵牛(Petunia hybrida)
中扩增得到 FLS 基因并在酵母中进行表达。之后,FLS 基因陆续在杨树(Populus tremula)、玉米
陈嘉景,彭昭欣,石梅艳,徐 娟.
柑橘中类黄酮的组成与代谢研究进展.
园艺学报,2016,43 (2):384–400. 395
(Zea mays)、苦荞麦(Fagopyrum tataricum)、银杏(Ginkgo biloba)和黄芩(Scutellaria baicalensis)
中被分离出来(Falcone Ferreyra et al.,2010;Kim et al.,2010,2014;Li et al.,2012;Xu et al.,2012)。
柑橘中,Moriguchi 等(2002)利用从拟南芥序列表达标签(EST)筛选的异源探针从温州蜜柑
中首次分离出编码 FLS 的 cDNA–CitFLS 序列,并分析了 CitFLS 在温州蜜柑花、叶片和果实不同
发育时期的表达水平,结果发现柑橘各器官发育早期 CitFLS 的表达量要明显高于晚期,这与柑橘组
织中黄酮醇的积累规律相吻合。Lukačin 等(2003)通过将分离自温州蜜柑的 FLS 基因转入大肠杆
菌进行原核表达,结果发现柑橘中 FLS 除了能催化(2R,3R)–二氢黄烷醇形成黄烷醇外,还能
催化(2S)–柚皮素和(2R)–柚皮素分别形成(+)–二氢山奈酚和(–)–二氢山奈酚(无法
被继续催化形成黄酮醇类),是一个具有两种不同功能的双加氧酶。Owens 和 McIntosh(2009)从
葡萄柚中克隆得到编码黄酮醇–3–O–葡萄糖苷转移酶(3-Glct)的基因,并联合原核表达和底物
添加试验对其功能进行了验证,证明其仅能以山奈酚、槲皮素和杨梅素等黄酮醇类作为底物,但无
法以矢车菊素等花青素单体类作为底物。除此之外,对柑橘中黄酮醇途径中其他功能基因的研究很
少。
4 展望
近年来,生物类黄酮因其广泛的生理学乃至生态学等功能而备受关注,柑橘因含有大量且多样
类黄酮而逐渐受到人们的重视。同时,柑橘因其复杂的种、属间关系、丰富的突变材料、多样化的
野生种质资源以及种内、种间代谢产物组成差异而为生物类黄酮代谢调控研究带来极大的优势。
目前,柑橘中生物类黄酮的研究主要集中在功能、含量和组成上,且主要以柚、橘、橙等常规
栽培种的果实居多。中国柑橘野生种质资源多样,类黄酮的组成丰富,是研究该代谢途径和开展功
能性柑橘育种的宝贵资源。
随着各催化酶功能在各植物中相继被表征,人们对类黄酮在植物中的代谢途径的认识得到扩
展。然而这些功能酶主要处于类黄酮代谢主通路上,种类繁多的糖苷转移酶、酰基化转移酶以及黄
酮代谢途径中与聚甲氧基黄酮合成相关的甲基化转移酶类等却始终未被分离出来。另外、类黄酮的
代谢调控机理研究多集中在花青素上,且一般多在矮牵牛、草莓和拟南芥中被报道,而柑橘因为材
料的特殊性,在类黄酮代谢途径中相关基因的调控研究还是空白。
综上所述,柑橘中有关类黄酮的研究,在其代谢及调控方面尚有待完善和深入,尤其是对肿瘤
细胞有特殊功能的聚甲氧基黄酮的生物合成引人关注。相关探索,不但会进一步推动类黄酮合成与
代谢调控的基础研究,也将为促进柑橘种质的创新和果实品质的提升提供理论依据。

References
Abad-Garcia B,Garmon-Lobato S,Berrueta L A,Gallo B,Vicente F. 2009. A fragmentation study of dihydroquercetin using triple quadrupole mass
spectrometry and its application for identification of dihydroflavonols in citrus juices. Rapid Commun Mass Spectrom,23 (17):2785–2792.
Abad-Garcia B,Garmon-Lobato S,Berrueta L A,Gallo B,Vicente F. 2012. On line characterization of 58 phenolic compounds in citrus fruit juices
from Spanish cultivars by high-performance liquid chromatography with photodiode-array detection coupled to electrospray ionization triple
quadrupole mass spectrometry. Talanta,99:213–224.
Abad-García B,Garmón-Lobato S,Sánchez-Ilárduya M B,Berrueta L A,Gallo B,Vicente F,Alonso-Salces R M. 2014. Polyphenolic contents
in citrus fruit juices:authenticity assessment. European Food Research and Technology,238 (5):803–818.
Agut B,Gamir J,Jacas J A,Hurtado M,Flors V. 2014. Different metabolic and genetic responses in citrus may explain relative susceptibility to

Chen Jia-jing,Peng Zhao-xin,Shi Mei-yan,Xu Juan.
Advances in on flavonoid composition and metabolism in citrus.
396 Acta Horticulturae Sinica,2016,43 (2):384–400.
Tetranychus urticae. Pest Management Science,70 (11):1728–1741.
Akhlaghi M,Bandy B. 2009. Mechanisms of flavonoid protection against myocardial ischemia–reperfusion injury. Journal of Molecular and
Cellular Cardiology,46 (3):309–317.
Ballester A R,Lafuente M T,de Vos R C,Bovy A G,González-Candelas L. 2013. Citrus phenylpropanoids and defence against pathogens. Part I:
Metabolic profiling in elicited fruits. Food Chemistry,136 (1):178–185.
Bar-Peled M,Fluhr R,Gressel J. 1993. Juvenile-specific localization and accumulation of a rhamnosyltransferase and its bitter flavonoid in foliage,
flowers,and young citrus fruits. Plant Physiology,103 (4):1377–1384.
Bar-Peled M,Lewinsohn E,Fluhr R,Gressel J. 1991. UDP-rhamnose:flavanone-7-O-glucoside-2-O-rhamnosyltransferase. Purification and
characterization of an enzyme catalyzing the production of bitter compounds in citrus. Journal of Biological Chemistry,266 (31):20953–
20959.
Barreca D,Bellocco E,Caristi C,Leuzzi U,Gattuso G. 2011. Distribution of C- and O-glycosyl flavonoids,(3-hydroxy-3-methylglutaryl)glycosyl
flavanones and furocoumarins in Citrus aurantium L. juice. Food Chemistry,124 (2):576–582.
Barreca D,Bellocco E,Leuzzi U,Gattuso G. 2014. First evidence of C- and O-glycosyl flavone in blood orange[Citrus sinensis(L.)Osbeck] juice
and their influence on antioxidant properties. Food Chemistry,149:244–252.
Barreca D,Bisignano C,Ginestra G,Bisignano G,Bellocco E,Leuzzi U,Gattuso G. 2013. Polymethoxylated,C- and O-glycosyl flavonoids in
tangelo(Citrus reticulata × Citrus paradisi)juice and their influence on antioxidant properties. Food Chemistry,141 (2):1481–1488.
Benavente-Garcia O,Castillo J. 2008. Update on uses and properties of citrus flavonoids:new findings in anticancer,cardiovascular,and
anti-inflammatory activity. Journal of Agricultural and Food Chemistry,56 (15):6185–6205.
Benavente-Garcia O,Castillo J,del Rio Conesa J. 1993. Changes in neodiosmin levels during the development of Citrus aurantium leaves and fruits.
Postulation of a neodiosmin biosynthetic pathway. Journal of Agricultural and Food Chemistry,41 (11):1916–1919.
Bernardi J,Licciardello C,Russo M P,Chiusano M L,Carletti G,Recupero G R,Marocco A. 2010. Use of a custom array to study differentially
expressed genes during blood orange(Citrus sinensis L. Osbeck)ripening. Journal of Plant Physiology,167 (4):301–310.
Bilbao M d L M,Andrés-Lacueva C,Jáuregui O,Lamuela-Raventos R M. 2007. Determination of flavonoids in a citrus fruit extract by LC–DAD
and LC–MS. Food Chemistry,101 (4):1742–1747.
Blyden E,Doerner P,Lamb C,Dixon R. 1991. Sequence analysis of a chalcone isomerase cDNA of Phaseolus vulgaris L. Plant Molecular Biology,
16 (1):167–169.
Britsch L,Heller W,Grisebach H. 1981. Conversion of flavanone to flavone,dihydroflavonol and flavonol with an enzyme system from cell cultures
of parsley. Zeitschrift für Naturforschung C,36 (9–10):742–750.
Caristi C,Bellocco E,Gargiulli C,Toscano G,Leuzzi U. 2006. Flavone-di-glycosides in juices from Southern Italy. Food Chemistry,95 (3):431–437.
Chatterjee P,Chatterjee A. 1988. A dihydroflavonol-O-glycoside of Citrus sinensis. Phytochemistry,27 (3):946–947.
Cheigh C I,Chung E Y,Chung M S. 2012. Enhanced extraction of flavanones hesperidin and narirutin from Citrus unshiu peel using subcritical
water. Journal of Food Engineering,110 (3):472–477.
Chen C,Piero A R L,Gmitter Jr F. 2015a. Pigments in Citrus//Chen C. Pigments in fruits and vegetables. New York:Springer:165–187.
Chen J,Li S,Xu J,Ding F,Wang Z,Cheng Y,Deng X. 2015b. Concentration and distribution of main bitter compounds in fruit tissues of
‘Oroblanco’(Citrus grandis L.× Citrus paradisi Macf.). Scientia Horticulturae,193:84–89.
Chen J,Zhang H,Pang Y,Cheng Y,Deng X,Xu J. 2015c. Comparative study of flavonoid production in lycopene-accumulated and blonde-flesh
sweet oranges(Citrus sinensis)during fruit development. Food Chemistry,184:238–246.
Chidambara Murthy K N,Kim J,Vikram A,Patil B S. 2012. Differential inhibition of human colon cancer cells by structurally similar flavonoids of
citrus. Food Chemistry,132 (1):27–34.
Crifò T,Petrone G,Lo Cicero L,Lo Piero A R. 2011. Short cold storage enhances the anthocyanin contents and level of transcripts related to their
biosynthesis in blood oranges. Journal of Agricultural and Food Chemistry,60 (1):476–481.
Delourdesmatabilbao M,Andreslacueva C,Jauregui O,Lamuelaraventos R. 2007. Determination of flavonoids in a citrus fruit extract by LC–DAD
and LC–MS. Food Chemistry,101 (4):1742–1747.
陈嘉景,彭昭欣,石梅艳,徐 娟.
柑橘中类黄酮的组成与代谢研究进展.
园艺学报,2016,43 (2):384–400. 397
Djoukeng J D,Arbona V,Argamasilla R,Gomez-Cadenas A. 2008. Flavonoid profiling in leaves of citrus genotypes under different environmental
situations. Journal of Agricultural and Food Chemistry,56 (23):11087–11097.
Dong Y,Cao A,Shi J,Yin P,Wang L,Ji G,Xie J,Wu D. 2014. Tangeretin,a citrus polymethoxyflavonoid,induces apoptosis of human gastric
cancer AGS cells through extrinsic and intrinsic signaling pathways. Oncology Reports,31 (4):1788–1794.
Dugo P,Mondello L,Morabito D,Dugo G. 2003. Characterization of the anthocyanin fraction of Sicilian blood orange juice by micro-HPLC-ESI/MS.
Journal of Agricultural and Food Chemistry,51 (5):1173–1176.
Durand-Hulak M,Dugrand A,Duval T,Bidel L P,Jay-Allemand C,Froelicher Y,Bourgaud F,Fanciullino A L. 2015. Mapping the genetic and
tissular diversity of 64 phenolic compounds in Citrus species using a UPLC-MS approach. Ann Bot,115 (5):861–877.
Esaki S,Nishiyama K,Sugiyama N,Nakajima R,Takao Y,Kamiya S. 1994. Preparation and taste of certain glycosides of flavanones and of
dihydrochalcones. Bioscience,Biotechnology,and Biochemistry,58 (8):1479–1485.
Escriche I,Kadar M,Juan-Borrás M,Domenech E. 2011. Using flavonoids,phenolic compounds and headspace volatile profile for botanical
authentication of lemon and orange honeys. Food Research International,44 (5):1504–1513.
Falcone Ferreyra M L,Rius S,Emiliani J,Pourcel L,Feller A,Morohashi K,Casati P,Grotewold E. 2010. Cloning and characterization of
a UV–B–inducible maize flavonol synthase. The Plant Journal,62 (1):77–91.
Frydman A,Liberman R,Huhman D V,Carmeli-Weissberg M,Sapir-Mir M,Ophir R,L W S,Eyal Y. 2013. The molecular and enzymatic basis
of bitter/non-bitter flavor of citrus fruit:evolution of branch-forming rhamnosyltransferases under domestication. The Plant Journal,73 (1):
166–178.
Frydman A,Weisshaus O,Bar-Peled M,Huhman D V,Sumner L W,Marin F R,Lewinsohn E,Fluhr R,Gressel J,Eyal Y. 2004. Citrus fruit
bitter flavors:isolation and functional characterization of the gene Cm1,2RhaT encoding a 1,2 rhamnosyltransferase,a key enzyme in the
biosynthesis of the bitter flavonoids of citrus. The Plant Journal,40 (1):88–100.
Gattuso G,Barreca D,Gargiulli C,Leuzzi U,Caristi C. 2007. Flavonoid composition of citrus juices. Molecules,12 (8):1641–1673.
Goławska S,Sprawka I,Łukasik I,Goławski A. 2014. Are naringenin and quercetin useful chemicals in pest-management strategies? Journal of Pest
Science,87 (1):173–180.
Gou J Y,Felippes F F,Liu C J,Weigel D,Wang J W. 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted
SPL transcription factor. Plant Cell,23 (4):1512–1522.
Goulas V,Manganaris G. 2012. Exploring the phytochemical content and the antioxidant potential of Citrus fruits grown in Cyprus. Food Chemistry,
131 (1):39–47.
Guimarães R,Barros L,Barreira J C,Sousa M J,Carvalho A M,Ferreira I C. 2010. Targeting excessive free radicals with peels and juices of citrus
fruits:grapefruit,lemon,lime and orange. Food and Chemical Toxicology,48 (1):99–106.
Hillebrand S,Schwarz M,Winterhalter P. 2004. Characterization of anthocyanins and pyranoanthocyanins from blood orange [Citrus sinensis(L.)
Osbeck] juice. Journal of Agricultural and Food Chemistry,52 (24):7331–7338.
Himi E,Noda K. 2004. Isolation and location of three homoeologous dihydroflavonol-4-reductase(DFR)genes of wheat and their tissue-dependent
expression. Journal of Experimental Botany,55 (396):365–375.
Holton T A,Brugliera F,Tanaka Y. 1993. Cloning and expression of flavonol synthase from Petunia hybrida. The Plant Journal,4 (6):1003–1010.
Hsin Shie P. 2013. The flavonoids in Citrus madurensis Lour and their anti-hepatitis B virus activity. Pharmaceutica Analytica Acta,4 (239):2.
Jadhav D R,Mallikarjuna N,Rathore A,Pokle D. 2012. Effect of some flavonoids on survival and development of Helicoverpa armigera(Hübner)
and Spodoptera litura(Fab)(Lepidoptera:Noctuidae). Asian Journal of Agricultural Sciences,4 (4):298–307.
Jeong S W,Kim H G,Park S,Lee J H,Kim Y H,Kim G S,Jin J S,Kwak Y S,Huh M R,Lee J E. 2014. Variation in flavonoid levels in Citrus
benikoji Hort. ex. Tan. infected by Colletotrichum gloeosporioides. Food Chemistry,148:284–288.
Kelebek H,Canbas A,Selli S. 2008. Determination of phenolic composition and antioxidant capacity of blood orange juices obtained from cvs. Moro
and Sanguinello[Citrus sinensis(L.)Osbeck] grown in Turkey. Food Chemistry,107 (4):1710–1716.
Khan M K,Dangles O. 2014. A comprehensive review on flavanones,the major citrus polyphenols. Journal of Food Composition and Analysis,33
(1):85–104.

Chen Jia-jing,Peng Zhao-xin,Shi Mei-yan,Xu Juan.
Advances in on flavonoid composition and metabolism in citrus.
398 Acta Horticulturae Sinica,2016,43 (2):384–400.
Kim B G,Joe E J,Ahn J H. 2010. Molecular characterization of flavonol synthase from poplar and its application to the synthesis of
3-O-methylkaempferol. Biotechnology Letters,32 (4):579–584.
Kim H G,Kim G S,Lee J H,Park S,Jeong W Y,Kim Y H,Kim J H,Kim S T,Cho Y A,Lee W S. 2011. Determination of the change of flavonoid
components as the defence materials of Citrus unshiu Marc. fruit peel against Penicillium digitatum by liquid chromatography coupled with
tandem mass spectrometry. Food Chemistry,128 (1):49–54.
Kim Y B,Kim K,Kim Y,Tuan P A,Kim H H,Cho J W,Park S U. 2014. Cloning and characterization of a flavonol synthase gene from Scutellaria
baicalensis. Scientific World Journal,doi:10.1155/2014/980740.
Lai C S,Li S,Miyauchi Y,Suzawa M,Ho C T,Pan M H. 2013. Potent anti-cancer effects of citrus peel flavonoids in human prostate xenograft
tumors. Food & Function,4 (6):944–949.
Lanz T,Tropf S,Marner F,Schröder J,Schröder G. 1991. The role of cysteines in polyketide synthases. Site-directed mutagenesis of resveratrol and
chalcone synthases,two key enzymes in different plant-specific pathways. Journal of Biological Chemistry,266 (15):9971–9976.
Lee D H,Park K I,Park H S,Kang S R,Nagappan A,Kim J A,Kim E H,Lee W S,Hah Y S,Chung H J. 2012. Flavonoids isolated from Korea
Citrus aurantium L. induce G2/M phase arrest and apoptosis in human gastric cancer AGS cells. Evidence-Based Complementary and
Alternative Medicine,doi:10.1155/2012/515901.
Lee H S. 2002. Characterization of major anthocyanins and the color of red-fleshed budd blood orange(Citrus sinensis). Journal of Agricultural and
Food Chemistry,50 (5):1243–1246.
Leonard E,Yan Y,Koffas M A. 2006. Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated
flavonols in Escherichia coli. Metabolic Engineering,8 (2):172–181.
Lewinsohn E,Britsch L,Mazur Y,Gressel J. 1989. Flavanone glycoside biosynthesis in citrus chalcone synthase,UDP-glucose:
flavanone-7-O-glucosyl-transferase and rhamnosyl-transferase activities in cell-Free extracts. Plant Physiology,91 (4):1323–1328.
Li C,Bai Y,Li S,Chen H,Han X,Zhao H,Shao J,Park S U,Wu Q. 2012. Cloning,characterization,and activity analysis of a flavonol synthase
gene FtFLS1 and its association with flavonoid content in tartary buckwheat. Journal of Agricultural and Food Chemistry,60 (20):5161–5168.
Li P L,Liu M H,Hu J H,Su W W. 2014a. Systematic chemical profiling of Citrus grandis‘Tomentosa’by ultra-fast liquid chromatography/
diode-array detector/quadrupole time-of-flight tandem mass spectrometry. J Pharm Biomed Anal,90:167–179.
Li S,Lo C Y,Ho C T. 2006. Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange(Citrus sinensis)peel. Journal of
Agricultural and Food Chemistry,54 (12):4176–4185.
Li S,Wang Z,Ding F,Sun D,Ma Z,Cheng Y,Xu J. 2014b. Content changes of bitter compounds in‘Guoqing No.1’Satsuma mandarin(Citrus
unshiu Marc.)during fruit development of consecutive 3 seasons. Food Chemistry,145:963–969.
Lim T. 2012. Citrus maxima. In Edible Medicinal And Non-Medicinal Plants:667–681.
Lo Piero. 2015. The state of the art in biosynthesis of anthocyanins and its regulation in pigmented sweet oranges(Citrus sinensis L. Osbeck). J Agric
Food Chem,63 (16):4031–4041.
Lo Piero,Puglisi I,Petrone G. 2006. Gene characterization,analysis of expression and in vitro synthesis of dihydroflavonol 4-reductase from [Citrus
sinensis(L.)Osbeck]. Phytochemistry,67 (7):684–695.
Londoño-Londoño J,De Lima V R,Lara O,Gil A,Pasa T B C,Arango G J,Pineda J R R. 2010. Clean recovery of antioxidant flavonoids from
citrus peel:optimizing an aqueous ultrasound-assisted extraction method. Food Chemistry,119 (1):81–87.
Lukačin R,Wellmann F,Britsch L,Martens S,Matern U. 2003. Flavonol synthase from Citrus unshiu is a bifunctional dioxygenase.
Phytochemistry,62 (3):287–292.
Mandalari G,Bennett R N,Bisignano G,Trombetta D,Saija A,Faulds C B,Gasson M J,Narbad A. 2007. Antimicrobial activity of flavonoids
extracted from bergamot(Citrus bergamia Risso)peel,a byproduct of the essential oil industry. J Appl Microbiol,103 (6):2056–2064.
Manthey J A,Guthrie N. 2002. Antiproliferative activities of citrus flavonoids against six human cancer cell lines. Journal of Agricultural and Food
Chemistry,50 (21):5837–5843.
McIntosh C A,Latchinian L,Mansell R L. 1990. Flavanone-specific 7-O-glucosyltransferase activity in Citrus paradisi seedlings:purification and
characterization. Archives of Biochemistry and Biophysics,282 (1):50–57.
陈嘉景,彭昭欣,石梅艳,徐 娟.
柑橘中类黄酮的组成与代谢研究进展.
园艺学报,2016,43 (2):384–400. 399
Menting J G,Scopes R K,Stevenson T W. 1994. Characterization of flavonoid 3′,5′-hydroxylase in microsomal membrane fraction of Petunia
hybrida flowers. Plant Physiology,106 (2):633–642.
Mondello L,Cotroneo A,Errante G,Dugo G,Dugo P. 2000. Determination of anthocyanins in blood orange juices by HPLC analysis. J Pharm
Biomed Anal,23 (1):191–195.
Moriguchi T,Kita M,Ogawa K,Tomono Y,Endo T,Omura M. 2002. Flavonol synthase gene expression during citrus fruit development.
Physiologia Plantarum,114 (2):251–258.
Moriguchi T,Kita M,Tomono Y,Endo-Inagaki T,Omura M. 1999. One type of chalcone synthase gene expressed during embryogenesis regulates
the flavonoid accumulation in citrus cell cultures. Plant and Cell Physiology,40 (6):651–655.
Moriguchi T,Kita M,Tomono Y,Endo-Inagaki T,Omura M. 2001. Gene expression in flavonoid biosynthesis:correlation with flavonoid
accumulation in developing citrus fruit. Physiologia Plantarum,111 (1):66–74.
Muccilli V,Licciardello C,Fontanini D,Russo M P,Cunsolo V,Saletti R,Recupero G R,Foti S. 2009. Proteome analysis of Citrus sinensis L.
(Osbeck)flesh at ripening time. Journal of Proteomics,73 (1):134–152.
Muir S R,Collins G J,Robinson S,Hughes S,Bovy A,De Vos C R,Van Tunen A J,Verhoeyen M E. 2001. Overexpression of petunia chalcone
isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnology,19 (5):470–474.
Nakatsuka A,Izumi Y,Yamagishi M. 2003. Spatial and temporal expression of chalcone synthase and dihydroflavonol 4-reductase genes in the
Asiatic hybrid lily. Plant Science,165 (4):759–767.
Nogata Y,Sakamoto K,Shiratsuchi H,Ishii T,YANO M,Ohta H. 2006. Flavonoid composition of fruit tissues of citrus species. Bioscience,
Biotechnology,and Biochemistry,70 (1):178–192.
Ohguchi K,Iinuma M,Nozawa,Y,Ito M. 2014. Nobiletin,a polymethoxylated flavone from citrus peels,induces differentiation of normal human
epidermal keratinocytes. Journal of Medicinal Plants Research,8 (33):1060–1064.
Ortuño A,Díaz L,Alvarez N,Porras I,García-Lidón A,Del Río J. 2011. Comparative study of flavonoid and scoparone accumulation in different
citrus species and their susceptibility to Penicillium digitatum. Food Chemistry,125 (1):232–239.
Owens D K,McIntosh C A. 2009. Identification,recombinant expression,and biochemical characterization of a flavonol 3-O-glucosyltransferase
clone from Citrus paradisi. Phytochemistry,70 (11–12):1382–1391.
Owens D K,McIntosh C A. 2011. Biosynthesis and function of citrus glycosylated flavonoids. The Biological Activity of Phytochemicals,41:67–95.
Park K I,Park H S,Nagappan A,Hong G E,Lee D H,Kang S R,Kim J A,Zhang J,Kim E H,Lee W S. 2012. Induction of the cell cycle arrest
and apoptosis by flavonoids isolated from Korean Citrus aurantium L. in non-small-cell lung cancer cells. Food Chemistry,135 (4):2728–
2735.
Rani A,Singh K,Ahuja P S,Kumar S. 2012. Molecular regulation of catechins biosynthesis in tea[Camellia sinensis(L.)O. Kuntze]. Gene,495
(2):205–210.
Reimold U,Kröger M,Kreuzaler F,Hahlbrock K. 1983. Coding and 3 non-coding nucleotide sequence of chalcone synthase mRNA and assignment
of amino acid sequence of the enzyme. The EMBO Journal,2 (10):1801–1805.
Salas M P,Céliz G,Geronazzo H,Daz M,Resnik S L. 2011. Antifungal activity of natural and enzymatically-modified flavonoids isolated from
citrus species. Food Chemistry,124 (4):1411–1415.
Shih C H,Chu H,Tang L K,Sakamoto W,Maekawa M,Chu I K,Wang M,Lo C. 2008. Functional characterization of key structural genes in
rice flavonoid biosynthesis. Planta,228 (6):1043–1054.
Singanusong R,Nipornram S,Tochampa W,Rattanatraiwong P. 2014. Low power ultrasound-assisted extraction of phenolic compounds from
Mandarin(Citrus reticulata Blanco cv. Sainampueng)and Lime(Citrus aurantifolia)peels and the antioxidant. Food Analytical Methods,8
(5):1112–1123.
Sommella E,Pepe G,Pagano F,Tenore G C,Marzocco S,Manfra M,Calabrese G,Aquino R P,Campiglia P. 2014. UHPLC profiling and effects
on LPS-stimulated J774A. 1 macrophages of flavonoids from bergamot(Citrus bergamia)juice,an underestimated waste product with high
anti-inflammatory potential. Journal of Functional Foods,7:641–649.
Sun Y,Qiao L,Shen Y,Jiang P,Chen J,Ye X. 2013. Phytochemical profile and antioxidant activity of physiological drop of citrus fruits. Journal

Chen Jia-jing,Peng Zhao-xin,Shi Mei-yan,Xu Juan.
Advances in on flavonoid composition and metabolism in citrus.
400 Acta Horticulturae Sinica,2016,43 (2):384–400.
of Food Science,78 (1):37–42.
Tarahovsky Y S,Kim Y A,Yagolnik E A,Muzafarov E N. 2014. Flavonoid–membrane interactions:involvement of flavonoid-metal complexes in
raft signaling. BBA Biomembranes,1838 (5):1235–1246.
Tripoli E,Guardia M L,Giammanco S,Majo D D,Giammanco M. 2007. Citrus flavonoids:molecular structure,biological activity and nutritional
properties. Food Chemistry,104 (2):466–479.
Wang Y,Li J,Xia R. 2010. Expression of chalcone synthase and chalcone isomerase genes and accumulation of corresponding flavonoids during
fruit maturation of Guoqing No. 4 satsuma mandarin(Citrus unshiu Marcow). Scientia Horticulturae,125 (2):110–116.
Wang Zhi-bin,Shen Wan-xia,Zhu Shi-ping,Xue Yang,Zhao Xiao-chun. 2015. Polymorphism and expression of chalcone synthase gene in citrus
related to the falvonoids content. Acta Horticulturae Sinica,42 (3):435–444. (in Chinese)
王志彬,申晚霞,朱世平,薛 杨,赵晓春. 2015. 柑橘 CHS 基因序列多态性及表达水平对类黄酮生物合成的影响. 园艺学报,42 (3):
435–444.
Whang S S,Um W S,Song I J,Lim P O,Choi K,Park K W,Kang K W,Choi M S,Koo J C. 2011. Molecular analysis of anthocyanin biosynthetic
genes and control of flower coloration by flavonoid 3′,5′-hydroxylase(F3′ 5′ H)in Dendrobium moniliforme. Journal of Plant Biology,54 (3):
209–218.
Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics,biochemistry,cell biology,and biotechnology. Plant Physiology,
126 (2):485–493.
Wu T,Guan Y,Ye J. 2007. Determination of flavonoids and ascorbic acid in grapefruit peel and juice by capillary electrophoresis with
electrochemical detection. Food Chemistry,100 (4):1573–1579.
Xi W,Fang B,Zhao Q,Jiao B,Zhou Z. 2014. Flavonoid composition and antioxidant activities of Chinese local pummelo(Citrus grandis Osbeck.)
varieties. Food Chemistry,161:230–238.
Xu F,Li L,Zhang W,Cheng H,Sun N,Cheng S,Wang Y. 2012. Isolation,characterization,and function analysis of a flavonol synthase gene
from Ginkgo biloba. Molecular Biology Reports,39 (3):2285–2296.
Xu G,Ye X,Chen J,Liu D. 2007. Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract. Journal of
Agricultural and Food Chemistry,55 (2):330–335.
Xu J J,Wu X,Li M M,Li G Q,Yang Y T,Luo H J,Huang W H,Chung H Y,Ye W C,Wang G C,Li Y L. 2014. Antiviral activity of
polymethoxylated flavones from“Guangchenpi”,the edible and medicinal pericarps of citrus reticulata‘Chachi’. Journal of Agricultural and
Food Chemistry,62 (10):2182–2189.
Yi Z,Yu Y,Liang Y,Zeng B. 2008. In vitro antioxidant and antimicrobial activities of the extract of Pericarpium Citri reticulatae of a new citrus
cultivar and its main flavonoids. LWT-Food Science and Technology,41 (4):597–603.
Yu J,Wang L,Walzem R L,Miller E G,Pike L M,Patil B S. 2005. Antioxidant activity of citrus limonoids,flavonoids,and coumarins. Journal
of Agricultural and Food Chemistry,53 (6):2009–2014.
Zhang J Y,Zhang Q,Zhang H X,Ma Q,Lu J Q,Qiao Y J. 2012. Characterization of polymethoxylated flavonoids(PMFs)in the peels of
‘Shatangju’mandarin(Citrus reticulata Blanco)by online high-performance liquid chromatography coupled to photodiode array detection and
electrospray tandem mass spectrometry. Journal of Agricultural and Food Chemistry,60 (36):9023–9034.
Zhang J,Wu Y,Zhao X,Luo F,Li X,Zhu H,Sun C,Chen K. 2014a. Chemopreventive effect of flavonoids from Ougan(Citrus reticulata cv.
Suavissima)fruit against cancer cell proliferation and migration. Journal of Functional Foods,10:511–519.
Zhang M,Duan C,Zang Y,Huang Z,Liu G. 2011. The flavonoid composition of flavedo and juice from the pummelo cultivar[Citrus grandis(L.)
Osbeck] and the grapefruit cultivar(Citrus paradisi)from China. Food Chemistry,129 (4):1530–1536.
Zhang M,Nan H,Wang Y,Jiang X,Li Z. 2014b. Comparison of flavonoid compounds in the flavedo and juice of two pummelo cultivars(Citrus
grandis L. Osbeck)from different cultivation regions in China. Molecules,19 (11):17314–17328.
Zhang Y,Sun Y,Xi W,Shen Y,Qiao L,Zhong L,Ye X,Zhou Z. 2014c. Phenolic compositions and antioxidant capacities of Chinese wild mandarin
(Citrus reticulata Blanco)fruits. Food Chemistry,145:674–680.