全 文 :园 艺 学 报 2014,41(9):1861–1872 http: // www. ahs. ac. cn
Acta Horticulturae Sinica E-mail: yuanyixuebao@126.com
收稿日期:2014–07–11;修回日期:2014–09–01
基金项目:公益性行业(农业)科研专项(201203004);霍英东教育基金项目(132024);国家科技支撑计划课题(2013AA102406)
* 通信作者 Author for correspondence(E-mail:yanhongzhou@zju.edu.cn)
光质和光敏色素在植物逆境响应中的作用研究
进展
杨有新,王 峰,蔡加星,喻景权,周艳虹*
(浙江大学农业与生物技术学院,农业部园艺植物生长发育与品质调控重点开放实验室,杭州 310058)
摘 要:光敏色素是植物感受外界光环境变化最重要的光受体之一,不仅参与调控植物生长发育,
还介导植物对各种生物和非生物胁迫的响应。已有研究表明,光敏色素缺失会导致植物对病原菌、害虫
等生物胁迫以及低温、高温、干旱、盐等非生物胁迫的抗性发生改变;改变光质(如调节红光远红光比
率)可提高植物对上述逆境胁迫的抗性,并且通过水杨酸、茉莉酸和脱落酸等激素信号途径诱导植物的
抗性。在系统综述近年来光敏色素在逆境响应中的作用以及防御机制研究进展的基础上,讨论了在园艺
植物生产中通过利用光质和对光敏色素信号途径相关基因进行遗传改良,提高作物抗性,促进作物增产
和改善作物品质的重要性。
关键词:光敏色素;抗逆性;光受体;生物胁迫;非生物胁迫;光质
中图分类号:S 63 文献标志码:A 文章编号:0513-353X(2014)09-1861-12
Recent Advances in the Role of Light Quality and Phytochrome in Plant
Defense Resistance Against Environmental Stresses
YANG You-xin,WANG Feng,CAI Jia-xing,YU Jing-quan,and ZHOU Yan-hong*
(College of Agriculture and Biotechnology,The State Agricultural Ministry Laboratory of Horticultural Plants Growth,
Development and Quality Improvement,Zhejiang University,Hangzhou 310058,China)
Abstract:Phytochrome is one of the most important photoreceptors sensing the changes of the
surrounding environment,which not only plays an important role in regulation of plant growth and
development,but also modulates plant stress responses against both biotic and abiotic stresses. Some
researches indicated that mutation of the phytochromes decreases defense resistance against biotic stresses
like pathogens,and herbivores infection as well as abiotic stresses including cold,heat,drought,salinity
and so on. Plant responded to stress differentially with the changes in R/FR ratio,which was associated
with salicylic acid(SA),jasmonic acid(JA)and abscisic acid(ABA)signaling transduction. This review
summarized recent progress in the study of phytochromes and light quality in plant stress response and
discussed the potential application of light environment and phytochrome regulation in horticulture
industry.
Key words:phytochrome;defense resistance;photoreceptors;biotic stress;abiotic stress;light
quality
1862 园 艺 学 报 41 卷
光不仅是植物光合作用的能量来源,还是参与调控植物的生长发育和逆境胁迫响应的重要信号
来源。植物在长期进化中形成了多种光感受系统(光受体),用于感知周围环境的光强、光质、光向
和光周期,并对其变化做出响应。目前已知的光受体主要包括感受红光(波长 600 ~ 700 nm)和远
红光(波长 700 ~ 760 nm)的光敏色素(phytochromes)(Essen et al.,2008),感受蓝光(波长 320 ~
500 nm)、近紫外 UV-A 区域光的隐花色素(cryptochromes)、向光色素(phototropins)、LOV/F-box
类光受体(ZTL、FKF1、LKP2),以及最近研究发现的主要感受紫外 UV-B 区域光(波长 280 ~ 315
nm)的 UV-B 受体(UVR8)(Wu et al.,2012)等。其中,光敏色素在光调控植物生长发育中起着
关键作用,对其作用机理的研究也较为深入。
光敏色素由生色基团(chromophore)和脱辅基蛋白(apoprotein)共价结合而成。光敏色素包
括远红光吸收型(Pfr)和红光吸收型(Pr)两种类型,通过远红光和红光的可逆作用调节植物的生
理活动。远红光吸收型是生理激活型,不稳定,吸收远红光后逆转为红光吸收型;红光吸收型是生
理钝化型,较稳定,吸收红光后转变为远红光吸收型。在黑暗中,光敏色素主要以红光吸收型形式
位于细胞质中,经过光照射后便会转移到细胞核内,直接与光敏色素互作因子(phytochrome
interacting factors,PIFs)或其他信号转导组分作用,并将光信号作用于相关反应基因的启动子上,
调控相关基因表达进而影响植物光形态建成的发生。大多数双子叶植物有 4 个光敏色素亚家族
(PHYA、PHYB/D、PHYC/F 和 PHYE),而单子叶植物只有 3 个亚家族(PHYA、PHYB、PHYC)。
PHYA 在远红光信号转导中起主要作用,PHYB 负责调节短暂和持续红光照射下的大多数反应,
PHYC 参与对持续红光的反应,其作用类似于 PHYB;PHYD 和 PHYE 在结构上也类似于 PHYB
(Hirschfeld et al.,1998;Quail,2002)。研究表明,由光敏色素感受光信号并参与调控的生理反应
包括种子萌发、幼苗形成、光合系统的建立、避荫作用、开花时间和昼夜节律响应等过程(Tóth et al.,
2001;Quail,2002)。此外,近年来许多研究还发现,光敏色素还参与调控植物应对逆境胁迫的抗
性。本文就光敏色素参与调控植物应对病原菌、虫害等生物胁迫,冷害、高温、干旱和盐害等非生
物胁迫的抗性机制进行综合阐述,并就光质在园艺植物抗性调控中的应用价值进行分析和讨论。
1 光敏色素在植物生物逆境应答中的作用
1.1 对病原菌抗性的调控
研究发现,植物受病原菌侵染后,光敏色素参与诱导植物的抗病性。Genoud 和 Buchala(2002)
发现,与野生型拟南芥植株相比,光敏色素突变体 phyA 和 phyB 对细菌丁香假单胞菌(Pseudomonas
syringae pv tomato strain DC3000,Pst DC3000)的抗性显著降低;此外,拟南芥光敏色素 phyB 突变
体受尖孢镰刀菌(Fusarium oxysporum)侵染后病害较野生型更加严重(Kazan & Manners,2011)。
光敏色素除直接调控一些抗病基因表达外(Tepperman et al.,2001;Devlin et al.,2003),还通过影
响激素的合成和信号途径调控植物对病原菌的抗性(Kangasjarvi et al.,2012)。拟南芥光敏色素双
突变体 phyAphyB 接种病原细菌 Pst DC3000 后,其水杨酸(salicylic acid)介导的抗病途径和依赖于
水杨酸的系统获得性抗性(systemic acquired resistance)较野生型减弱,叶片病害症状加重(Griebel
& Zeier,2008)。单子叶植物水稻光敏色素缺失突变体 phyAphyBphyC 对稻瘟病菌(Magnaporthe
grisea)的抗性也明显低于野生型,其抗性变化主要与水杨酸、茉莉酸(jasmonic acid)相关路径的
基因表达量下降有关(Xie et al.,2011a)。光敏色素还与光暗交互循环的同步昼夜节律生物钟有关
(Bhardwaj et al.,2011)。光敏色素 PHYA 和 PHYB 分别是微弱红光和高通量红光的光受体,它们
参与调控昼夜节律(Somers et al.,1998),而昼夜节律参与调控病原相关分子模式(pathogen-associated
9 期 杨有新等:光质和光敏色素在植物逆境响应中的作用研究进展 1863
molecular pattern,PAMP)诱导的免疫反应(Bhardwaj et al.,2011;Zhang et al.,2013)(图 1)。光
敏色素还协同其它光受体诱导植物的系统获得性抗性,提高植物应对外界逆境胁迫的能力(Genoud
& Buchala,2002;Griebel & Zeier,2008;Wu & Yang,2010)。以上研究表明,光敏色素主要通过
诱导水杨酸等激素途径以及影响昼夜节律进而调控植物对病原菌的抗性,在实际生产中可以通过对
光敏色素途径相关基因进行遗传改良或者直接激活水杨酸途径提高植物对病原菌的抗性。
1.2 对害虫抗性的调控
光敏色素还参与调控植物对虫害的抗性。Izaguirre 等(2006)发现光敏色素 PHYB 突变导致番
茄植株对烟草天蛾(Manduca sexta)的抗性明显减弱,其中 phyB1phyB2 双突变体的害虫密度和害
虫增长速度均显著高于野生型番茄。茉莉酸介导的信号途径是虫害和机械损伤诱导的主要途径,而
光敏色素参与调控茉莉酸的合成代谢和信号途径(Zhai et al.,2007;Moreno et al.,2009)。研究发
现,拟南芥光敏色素生色团缺失突变体中的茉莉酸含量增多,对冠菌素不敏感的突变体 1 依赖的茉
莉酸信号响应基因上调表达,表明茉莉酸信号途径介导的抗性路径和光敏色素生色团介导的光信号
途径互相拮抗(Zhai et al.,2007)。Robson 等(2010)研究发现茉莉酸的合成和信号突变体不能有
效地响应高通量远红光反应,其中茉莉酸和 PHYA 光敏色素信号途径主要是通过降解茉莉酸 ZIM 结
构域 JAZ1 蛋白产生互作,并且茉莉酸和 PHYA 都是植物应对光和逆境胁迫的必需因子。通过构建
系列茉莉酸相关突变体发现,茉莉酸的含量影响植株对光质的响应,如水稻茉莉酸信号传导突变体
hebiba 胚芽鞘在红光环境下表现为伸长,而在黑暗环境下则受到抑制(Riemann et al.,2003);水稻
突变体 osjar1 在远红光和蓝光下胚芽鞘比野生型的更长(Riemann et al.,2008)。以上研究表明,光
敏色素信号途径与茉莉酸途径存在互作,因此光敏色素可能通过参与调控茉莉酸的合成代谢或信号
途径进而影响植物对虫害和机械损伤的响应(Zhai et al.,2007;Moreno et al.,2009;Goodspeed et al.,
2012)。此外,光敏色素可能通过昼夜节律参与调控茉莉酸从而影响植物的抗虫性(Goodspeed et al.,
2012;2013)(图 1)。然而光敏色素直接调控植物抗虫性的分子机制尚不清楚,在以后的研究中可
通过光敏色素的突变体或通过光敏色素信号途径基因的过表达植株,深入研究光敏色素在植物抗虫
性中的具体作用机理。
图 1 光敏色素在植物抵抗生物逆境胁迫中的作用机制
表示促进; 表示抑制; 代表正调控, 代表负调控,但是虚线表示该研究结果还未得到完全证实。
Fig. 1 The role and mechanism of phytochrome in defense against biotic stress in plant
Represent promoting; Means inhibiting; Represent promoting, Means inhibiting,
but they are uncertained and needed to be verified.
1864 园 艺 学 报 41 卷
2 光敏色素在植物非生物逆境应答中的作用
2.1 对温度胁迫抗性的调控
光敏色素被认为是启动冷驯化的光受体,参与调控冷诱导基因 C–重复基序结合因子(CBFs)
的表达从而影响植物对冷害的抗性(Franklin & Whitelam,2007)。在高红光/远红光(R/FR)比率
下,拟南芥光敏色素 phyB 和 phyD 突变体的冷害抗性基因 COR15a(cold regulated genes,COR)的
表达显著上调(Franklin & Whitelam,2007)。Sysoeva 等(2008)发现 PHYB 是黄瓜植株应对温度
骤降提高黄瓜抗性的必需因子。光敏色素还介导短日照对拟南芥等植物冷驯化的刺激(Williams et
al.,1972;Catalá et al.,2011)。遗传分析表明,在长日照环境下,拟南芥的 PHYB 和光敏色素互作
因子 PIF4 和 PIF7 共同下调 CBF 途径相关基因,避免激活冻害抗性途径从而减少不必要的能量浪费
和营养物质的再分配;而短日照能够解除该抑制作用,上调 CBFs 及其下游基因的表达并增强冻害
胁迫的抗性(Lee & Thomashow,2012)(图 2)。
光敏色素还参与调控植物对高温逆境胁迫的响应。在高温环境下拟南芥植株的表型倾向为避荫
反应,具体表现为细长的下胚轴与叶柄、提早开花等(Franklin et al.,2014)。光敏色素互作因子 PIF4
参与调控植物在高温环境下的驯化(Franklin et al.,2011;Li et al.,2012),其中 PIF4 在高温下直
接调控生长素的含量及其合成基因的表达,并诱导下胚轴的伸长(Franklin et al.,2011);而 PHYB
抑制 PIF4 调控拟南芥的生长量和生理活性,影响植株对高温的适应性(Foreman et al.,2011)(图
2)。然而也有研究表明,PIF4 调控植物抗高温的特性并不是通过与光敏色素或者 DELLA 蛋白的互
作,可能存在其他的高温调控机制(Koini et al.,2009);植物抗高温的特性可能还受到其他光受体
(如隐花色素)或者激素的影响(Leivar & Quail,2011)。
大量的研究表明在植物的生长发育过程中光敏色素和温度间存在互作。例如在不同温度下种子
的发芽受到不同光敏色素家族的调控(Heschel et al.,2007;Donohue et al.,2008),其中 PHYA 参
与调控高温环境中的种子发育,PHYE 介导低温环境中的种子发芽,PHYB 对更宽适应温度范围内
的种子发芽起关键作用(Heschel et al.,2007)。此外,光敏色素还参与调控不同温度下的植物开花。
PHYB 在温暖的环境中诱导植物开花,而 PHYD 和 PHYE 在较低温度下发挥主导作用(Halliday &
Whitelam,2003)。总之,光敏色素尤其是光敏色素 PHYB 主要通过调控 CBF 途径影响植物的抗冷
性,但如何调控植物高温抗性的机制还有待进一步研究。
2.2 对干旱胁迫抗性的调控
研究表明光敏色素参与调控植物的耐旱性并影响其生物量。例如光敏色素 PHYB 过表达棉花植
株在干旱胁迫环境中其单株结铃数、单铃质量和籽棉产量比对照植株更高(Shamim et al.,2013)。
光敏色素调控植物的抗旱机制主要包括以下几方面:(1)光敏色素调控叶片形态和气孔发育,从而
影响蒸腾速率和抗旱性(Boccalandro et al.,2009;Boggs et al.,2010)。在高红光/远红光比率下,
光敏色素 PHYB 生理活性型比例增加,提高叶片的气孔密度(单位面积气孔数)与气孔率(气孔和
表皮细胞数的比率),气孔发育相关的基因表达量上调;而拟南芥 phyB 缺失突变体的叶片气孔密度
降低,进而影响拟南芥植株水分利用率(Boccalandro et al.,2009)。在拟南芥中,PHYB 通过调节
MYB60 的表达来调控红光诱导的气孔开闭(Wang et al.,2010a)。在水稻中,光敏色素 phyB 突变体
导致叶面积变小、单位叶片面积的蒸腾速率降低、水分的散失减少,具有更强的抗旱能力(Liu et al.,
2012)。(2)光敏色素还影响木质部导管的数量和直径(Casal et al.,1994)、侧根的数量(Salisbury
et al.,2007)和根毛的发育(de Simone et al.,2000),进而影响植物对水分的吸收。在水稻中,光
9 期 杨有新等:光质和光敏色素在植物逆境响应中的作用研究进展 1865
敏色素互作因子 OsPIL1 是调控节间伸长的一个关键调节因子,它参与诱导植物对干旱胁迫的形态
学响应(Todaka et al.,2012)。此外,光敏色素还通过影响水通道蛋白的活性调节植物抗旱性(Uenishi
et al.,2014)。
研究证明,光敏色素调控植物干旱胁迫抗性主要是通过脱落酸信号途径(Staneloni et al.,2008;
Carvalho et al.,2010)。PHYB 介导的光信号负调控水稻脱落酸的积累及其反应(顾建伟 等,2012);
PHYB 也可通过影响植物对脱落酸敏感性进而增强其耐旱性(González et al.,2012);烟草光敏色素
缺失突变体 pewl 在干旱胁迫下植株的脱落酸含量及含水量均显著高于野生型植株(Kraepiel et al.,
1994)。因此,光敏色素信号途径可能通过脱落酸途径等影响植物叶片的形态、气孔和根部的发育进
而调节植物的抗旱性(图 2),在农业生产中可以根据这些抗性机理改善作物的抗旱能力。
图 2 光敏色素在植物抵抗非生物逆境胁迫中的作用机制
Fig. 2 The role and mechanism of phytochrome in tolerance to abiotic stress in plant
2.3 对盐胁迫抗性的调控
近年来对拟南芥突变体的功能分析为进一步阐明光敏色素调控盐胁迫的分子机制提供了线索。
拟南芥耐盐基因 STO 的 T-DNA 插入突变体下胚轴的生长试验结果表明,STO 是光敏色素信号途径
和蓝光信号的负调控因子(Indorf et al.,2007)。尽管系列研究表明光敏色素和 STO 存在互作,但
它们之间复杂的信号转导机制仍有待进一步分析,如 STO 和光信号的调节因子 HY5(光形态建成的
促进因子)和 COP1(光形态建成抑制因子)之间的互作等(Indorf et al.,2007)。另外有研究表明,
血红素加氧酶(HO)是光受体光敏色素生色团合成的必需因子,其中 HO1 基因是光敏色素生色团
合成中最重要的基因(Terry et al.,2002);同时研究发现 HO 基因的上调表达促进植物对盐胁迫的
抗性(Chen et al.,2009)。Xie 等(2011b)利用拟南芥的野生型和 4 个 HO 突变体(hy1-100,ho2,
ho3 和 ho4)分析血红素氧合酶家族基因在盐胁迫中的作用,结果表明突变体 hy1-100 对盐胁迫高度
敏感,而过表达 HY1(35S:HY1)植株则表现出高抗盐胁迫,并且 HY1 介导植物对盐胁迫的适应
性需要 RbohD 产生的活性氧的参与;进一步利用光敏色素突变体 phyA、phyB 和 phyAphyB 证实拟
南芥的盐胁迫适应性主要是通过 HY1 而不是 PHYA 或 PHYB(Xie et al.,2011b)(图 2)。因此在盐
胁迫的过程中,耐盐基因 STO 和血红素加氧酶基因 HO 等参与调控植物对盐胁迫的抗性,但是光敏
色素信号途径调控植物耐盐胁迫的具体机制尚不清楚。
1866 园 艺 学 报 41 卷
2.4 对其他胁迫抗性的调控
光敏色素还参与调控植物对其他逆境胁迫的抗性,例如高光强胁迫。光敏色素互作因子 PIFs
协同乙烯调控拟南芥植株的去黄化,并防止光氧化胁迫从而促进植株生长发育(Zhong et al.,2009),
pif1 突变体在黑暗环境中积累过剩的原脱植基叶绿素,但在光照下却容易漂白致死(Huq et al.,2004;
Moon et al.,2008)(表 1)。有研究发现光敏色素通过调控过氧化物酶的活性和非酶促抗氧化物质(如
黄酮类化合物和类胡萝卜素分子)的含量从而影响芥菜等植物对高光等逆境胁迫的抗性(Drumm &
Schopfer,1974;Thomsen et al.,1992;Zhong et al.,1997)。
表 1 光敏色素基因家族和光质调控植物对逆境胁迫的反应
Table 1 Phytochrome family and light quality in plant defense resistance against environmental stresses
逆境
Stress
胁迫类型
Stressor
光敏色素
Phytochrome
作用或机制
The role or the mechanism
参考文献
Reference
病原菌
Pathogen
番茄细菌性叶斑病
Pseudomonas syringae
pv. tomato
PHYA,PHYB 调控水杨酸途径相关基因的表达,影响植物抗病性
Moderate SA pathway gene expression and influence plant
disease resistance
Genoud & Buchala,
2002;Griebel &
Zeier,2008
细菌性叶斑病
Pseudomonas syringae
PHYA,PHYB 调控昼夜节律,影响植物的免疫反应 Regulates plants
circadian rhythms and induces the immune resistance
Bhardwaj et al.,2011;
Zhang et al.,2013
镰刀霉枯萎病,灰霉病
Fusarium oxysporum,
Botrytis cinerea
PHYB 调控茉莉酸途径的基因表达,影响植物的抗性 Regulate the
accumulation of jasmonic acid pathway genes and influence
plant defense resistance
Kazan & Manners,
2011
稻瘟病
Magnaporthe grisea
PHYAPHYBPHYC 调控水杨酸与茉莉酸信号路径、水稻对稻瘟病菌的抗性
Regulate SA and JA signaling pathways and are required for
developmentally controlled resistance to Magnaporthe grisea
Xie et al.,2011a
细菌性叶斑病,灰霉病
Pseudomonas syringae,
Botrytis cinerea
低比率红光/远红光通过抑制拟南芥水杨酸和茉莉酸途径
导致其对丁香假单胞菌和灰霉病的抗性减弱 Low R/FR
inhibited SA and JA pathway,and weaken Arabidopsis plant
resistance to Pseudomonas syringae and Botrytis cinerea
de Wit et al.,2013
白粉病
Sphaerotheca fuliginea
红光增强植物对白粉病的抗性,远红光抑制红光增强植物
抗性的效应 Red light enhanced plant resistance to powdery
mildew,and far-red light inhibited this reaction
Wang et al.,2010b;
Schuerger et al.,
1997
辣椒疫霉
Phytophthora capsici
红光照射的蔬菜受辣椒疫霉的感染率最小
Red light can suppress Phytophthora capsici infection in
vegetable compared with other light quality
Islam et al.,2002
线虫
Steinernema kushidai
线虫经太阳光、UV-B 和 UB-C 照射后死亡率大幅增加
The Steinernema kushidai mortality increased after sunlight,
UV-B and UB-C irradiation
Fujiie & Yokoyama,
1998
温度
Temperature
冷害,冻害
Cold,freezing
PHYB PHYB和两个光敏色素互作因子PIF4和PIF7下调CBF途径
基因的表达 PHYB combined with two phytochrome interacting
factor PIF4 and PIF7 to down-regulated CBF gene expression
Lee &Thomashow,
2012
冷害 Cold PHYB,PHYD 调控 CBF 转录因子,提高植物抗冷性 Regulated CBF
transcription factors and enhanced plant freezing resistance
Franklin & Whitelam,
2007
冷害 Cold PHYB PHYB 是应对温度骤降,提高植物抗性的必需因子
PHYB is the most important factor to improve plant freezing
resistance against temperature changes
Sysoeva et al.,2008
高温,冷害
High temperature,cold
PHYA,PHYB 调控不同温度下的种子发芽
Control seed germination under different temperature
Heschel et al.,2007;
Donohue et al.,2008
温度较高,冷害
Warm temperature,cold
PHYB,PHYE,
PHYD
调控不同温度下植物的开花
Control flowering under different temperature
Halliday & Whitelam,
2003
高温
Warm ambient
temperature
PHYB PHYB 抑制光敏色素互作因子 4(PIF4),调控植物的生长
量和生理活性从而影响高温抗性 PHYB repress phytochrome
interacting fator 4 to control plant growth and physiological
activity,affect plant adaptation at high temperatures
Foreman et al.,2011
冷害 Cold 光质与温度互作,调控叶片形态,影响植物抗冷性
Light quality interact with temperature,thus regulate leaf
morphology,influence plant cold resistance
Patel et al.,2013
冷害 Cold 影响冷驯化效应 Affects plant cold acclimation Williams et al.,1972
干旱
Drought
干旱 Drought PHYA,PHYB,
PHYE
调控气孔导度,影响植物的耐旱性 Affects plants drought
tolerance by regulating stomatal conductance
Boggs et al.,2010
干旱 Drought PHYB 影响气孔导度和气孔率
Affect stomatal conductance and porosity
Boccalandro et al.,
2009
9 期 杨有新等:光质和光敏色素在植物逆境响应中的作用研究进展 1867
续表 1
逆境
Stress
胁迫类型
Stressor
光敏色素
Phytochrome
作用或机制
The role or the mechanism
参考文献
Reference
干旱 Drought PHYB PHYB 调节 MYB60 的基因表达,参与调控红光诱导的气
孔开关 PHYB regulated MYB60 gene expression,and
integrated red light induction of stomatal opening
Wang et al.,2010a
干旱 Drought PHYB 调控植物的叶面积、气孔密度和蒸腾速率,影响抗旱性
PHYB regulated plant drought resistance by influencing plant
leaf area,stomatal density and transpiration rate
Liu et al.,2012
干旱 Drought PHYB 光敏色素 B 基因过表达的棉花在干旱胁迫下比野生型产
量更高 Over expression of phytochrome B transgenic plants
performed higher production than wildtype under drought stress
Shamim et al.,2013
干旱 Drought PHYB PHYB 介导的光信号负调控脱落酸的积累及其反应
PHYB mediated light signaling to down-regulation of ABA
accumulation and its response
顾建伟 等,2012
干旱 Drought PHYB PHYB 影响脱落酸的敏感性,增强植物抗旱性 PHYB
affected ABA sensitivity and enhanced plant drought resistance
González et al.,2012
盐害
Salt
盐害 Salt PHYA,PHYB 耐盐胁迫蛋白(STO)负调控光敏色素信号途径 Salt stress
protein(STO)negatively regulated phytochrome signaling pathways
Indorf et al.,2007
盐害 Salt 光质影响冰叶日中花中松醇和可溶性碳水化合物的积累,
调控耐盐性 Light quality influenced the accumulation of
pinitol and soluble carbohydrates in Mesembryanthemum
crystallinum L.,thereby affecting plant salt stress
Cockburn et al.,1996
高光
High-light
高光
High light
PIF PIF 参与调控植物光氧化胁迫抗性 Phytochrome interacting
factor PIF were involved in plant photo-oxidative stress resistance
Zhong et al.,2009;
Huq et al.,2004;
机械损伤
Wound
机械损伤
Wound
PHYA 茉莉酸和 PHYA 信号途径互作
PHYA integrated with jasmonate signaling pathways
Robson et al.,2010
3 光质与园艺植物抗逆性
3.1 光质调控减轻病虫害
光敏色素通过接受外界入射的一定比率的红光和远红光光量子从而调控植物的抗病性。de Wit
等(2013)发现降低红光/远红光比率导致拟南芥植株对病原菌丁香假单胞菌(Pseudomonas syringae
pv tomato DC3000)和灰霉病(Botrytis cinerea)的抗性减弱,这种抗性的变化主要同水杨酸和茉莉
酸信号途径的削弱有关。Wang 等(2010b)利用不同光质(红光,黄光,绿光,蓝光,紫光和白光)
处理黄瓜,结果发现红光最有效地减轻了白粉病(Sphaerotheca fuliginea)对黄瓜的危害;而远红光
削弱红光抑制白粉病的危害(Schuerger et al.,1997)。红光处理还能延迟和抑制黄瓜褐斑病
(Corynespora cassiicola)的发生,黄瓜叶片上的病斑面积显著减少(Rahman et al.,2010)。红光
处理的甜椒、南瓜和番茄幼苗受辣椒疫霉(Phytophthora capsici)感染率低于自然光或白光处理的
植株(Islam et al.,2002)。蚕豆灰霉病(Botrytis cinerea)病斑形成和真菌的扩增在红光处理后均受
到明显抑制(Khanam et al.,2005)。此外,红光预处理 24 h 能够抑制极细链格孢菌(Alternaria
tenuissima)对蚕豆的侵染(Rahman et al.,2003)。
改变光质还可调控植物对虫害的抗性。低红光/远红光比率下生长的黄瓜叶毛变少,韧性增强和
C/N 比例发生改变,导致黄瓜植株上的甲虫(Acalymma vittatum)密度增加 93%(McGuire & Agrawal,
2005)。相似的是,番茄植株生长在富含远红光环境下更易受烟草天蛾(Manduca sexta)的危害,
烟草天蛾总质量增加 48%(Izaguirre et al.,2006)。此外,红光还参与诱导植物提高对根部虫害的抗
性。接种根结线虫(Meloidogyne javanica)的拟南芥植株用红光处理后根部的根结数量明显下降,
表明红光处理能够降低根结线虫对植物根部的危害(Islam et al.,2008)。综上所述,特定的光质可
通过激活植物的抗性途径减轻植物受病虫害的侵染。而当植株处于夜间黑暗环境下,由于缺乏光照
导致其抗逆性减弱,所以植物在夜间受病虫害的侵袭几率较日间明显增加(Roberts & Paul,2006),
1868 园 艺 学 报 41 卷
利用夜间补光可在一定程度上诱导植物的抗性,并降低病虫害侵染作物的活力,从而减轻病虫对作
物的危害,提高作物的产量和品质。因此,夜间补光可望成为生产中新型有效的病虫害控制方式。
光不仅激活植物的抗性系统从而减轻病虫害,光还能直接抑制病菌的生长及其致毒物质活性与
害虫的活性。Zhang 等(2005)研究发现豌豆叶片上的豌豆球腔菌孢子扩散速度在白天明显低于夜
间。Yu 等(2013)发现不同光质抑制炭疽病菌(Colletotrichum acutatum)孢子萌发的效果不一样
(Suthaparan et al.,2010),其中蓝光相对于白光、绿光、红光和黑暗环境下的孢子萌发率最低。另
外,暴露在日光、UV-B 和 UV-C 照射下的线虫(Steinernema kushidai)死亡率大幅度增加(Fujiie &
Yokoyama,1998)(图 1)。
3.2 光质调控提高对非生物胁迫的抗性
有研究表明,短日照环境下生长的偃伏梾木(Cornus)和锦带花(Weigela)在夜间黑暗环境中
对其照射红光后,其耐冷性降低;接着照射远红光后,植株受冷胁迫的影响减轻(Williams et al.,
1972)。远红光提高低温下植物的抗性,主要表现为植物生长停滞、茎硬化并快速产生冷驯化效应
(McKenzie et al.,1974)。光质还通过与温度互作影响拟南芥植物的叶片形态,并进一步影响其抗
冷性。在 22 ℃环境中,低红光/远红光比率下生长的植物叶片生长受到抑制,叶片小而厚,生物量
减少;但在 16 ℃环境中,生长在低红光/远红光下的拟南芥植物叶片比高红光/远红光比率环境中的
叶片大而且更厚,生物量增大,可溶性糖和代谢物积累增多,冷适应能力增强(Patel et al.,2013)。
不同比率的红光/远红光可通过调控植物产生不同的生理变化来影响植物的抗盐性(McElwain et
al.,1992;Slocombe et al.,1993)。如红光加速盐胁迫下草本植物冰叶日中花(Mesembryanthemum
crystallinum)的光合碳同化从 C3 途径转变到景天酸代谢(CAM)途径,显著上调 PEP 羧化酶基因
的表达量(Cushman & Bohnert,2002),而 Cockburn 等(1996)则发现降低红光/远红光比率可增
强冰叶日中花植物 PEP 羧化酶活性,促进 PEP 羧化酶同工酶和苹果酸盐阴离子的积累,在盐胁迫下
促进 CAM 途径的转变;同时松醇、可溶性碳水化合物的积累也增多,进一步提高植物耐盐性(图
2)。此外,光质可调控气孔导度从而影响植物的抗旱性。如在棉花进入黑夜前照射 30 min 远红光后
植株的气孔阻力变大,蒸腾速率变小,其抗旱性增强(Ouedraogo & Hubac,1982)。另外有研究表
明,预处理红光还能够提高莴苣光合组织对 UV-A 的耐性(Kreslavski et al.,2013)。
光质对园艺植物抗性影响的研究相对缺乏,在生产中的实际应用还不成熟,今后应加强合理有
效利用不同光强和光质组合提高园艺作物对非生物胁迫的抗性研究,从而提高作物的产量和品质。
4 结语
近年来有关光敏色素参与调控植物应对生物胁迫和非生物胁迫抗性的研究取得明显进展,未来
的研究还需进一步明确光敏色素调控植物应对不同逆境胁迫机制的异同性。同时,由于植物处于复
杂的外界生态环境下,植物同时应对多种生物胁迫和非生物胁迫,光敏色素如何调控激素的合成及
其互作从而应对多因素逆境胁迫还有待进一步研究。此外,光敏色素和光质还参与诱导植物根部的
系统获得性抗性,但其机制尚不明确,有待深入研究。
目前光敏色素和光信号途径调控植物对生物和非生物胁迫的研究主要集中在模式植物拟南芥
和水稻中,而对于园艺植物的研究相对较少。未来可根据拟南芥等模式作物的相关基因在园艺植物
中找到同源基因,利用反向遗传学手段,如 RNAi(双链 RNA 干涉)、病毒诱导的基因沉默技术(virus
induced gene silencing,VIGS)和超量表达来研究这些同源基因在园艺植物中的功能,同时利用修
饰光敏色素信号途径进行植物改良,提高作物对外界逆境胁迫的抗性,解决农业生产中的实际问题。
9 期 杨有新等:光质和光敏色素在植物逆境响应中的作用研究进展 1869
此外,由于不同光质参与调控园艺作物对逆境胁迫的抗性,可利用 LEDs(发光二极管)发出单色
光谱的优势,筛选提高园艺植物对外界多种生物胁迫或(和)非生物胁迫抗性的最佳光质及组合,
并进一步解析光质对植物生长发育和产量品质的影响,为农业生产中植物遭遇逆境胁迫时提供一种
新的环境友好型解决策略。这不仅有利于提高园艺作物的抗性、产量及品质,同时可降低农药使用
量,促进安全、低碳、环保型农业的发展,这对于设施园艺产业具有极大的应用价值。
References
Bhardwaj V,Meier S,Petersen L N,Ingle R A,Roden L C. 2011. Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae
are regulated by the circadian clock. PloS One,6 (3):26968.
Boccalandro H E,Rugnone M L,Moreno J E,Ploschuk E L,Serna L,Yanovsky M J,Casal J J. 2009. Phytochrome B enhances photosynthesis
at the expense of water-use efficiency in Arabidopsis. Plant Physiology,150 (2):1083–1092.
Boggs J Z,Loewy K,Bibee K,Heschel M S. 2010. Phytochromes influence stomatal conductance plasticity in Arabidopsis thaliana. Plant Growth
Regulation,60 (3):77–81.
Carvalho R F,Quecini V,Peres L E P. 2010. Hormonal modulation of photomorphogenesis-controlled anthocyanin accumulation in tomato(Solanum
lycopersicum L.cv. Micro-Tom)hypocotyls:Physiological and genetic studies. Plant Science,178 (3):258–264.
Casal J J,Sánchez R A,Vierstra R D. 1994. Avena phytochrome A overexpressed in transgenic tobacco seedlings differentially affects red/far-red
reversible and very-low-fluence responses(cotyledon unfolding)during de-etiolation. Planta,192 (3):306–309.
Catalá R,Medina J,Salinas J. 2011. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proceedings
of the National Academy of Sciences of United States of America,108 (39):16475–16480.
Chen X Y,Ding X,Xu S,Wang R,Xuan W,Cao Z Y,Chen J,Wu H H,Ye M B,Shen W B. 2009. Endogenous hydrogen peroxide plays a positive
role in the upregulation of heme oxygenase and acclimation to oxidative stress in wheat seedling leaves. Journal of Integrative Plant Biology,51
(10):951–960.
Cockburn W,Whitelam G,Broad A,Smith J. 1996. The participation of phytochrome in the signal transduction pathway of salt stress responses in
Mesembryanthemum crystallinum L. Journal of Experimental Botany,47 (5):647–653.
Cushman J C,Bohnert H J. 2002. Induction of crassulacean acid metabolism by salinity-molecular aspects. Salinity:Environment-Plants-Molecules:
361–393.
de Simone S,Oka Y,Inoue Y. 2000. Effect of light on root hair formation in Arabidopsis thaliana phytochrome-deficient mutants. Journal of Plant
Research,113 (1):63–69.
de Wit M,Spoel S H,Sanchez-Perez G F,Gommers C M,Pieterse C M,Voesenek L A,Pierik R. 2013. Perception of low red:Far-red ratio
compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis. The Plant Journal:for Cell and Molecular
Biology,75 (1):90–103.
Devlin P F,Yanovsky M J,Kay S A. 2003. A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiology,133 (4):1617–1629.
Donohue K,Heschel M S,Butler C M,Barua D,Sharrock R A,Whitelam G C,Chiang G C. 2008. Diversification of phytochrome contributions
to germination as a function of seed-maturation environment. New Phytologist,177 (2):367–379.
Drumm H,Schopfer P. 1974. Effect of phytochrome on development of catalase activity and isoenzyme pattern in mustard(Sinapis alba L.)seedlings.
Planta,120 (1):13–30.
Essen L O,Mailliet J,Hughes J. 2008. The structure of a complete phytochrome sensory module in the Pr ground state. Proceedings of the National
Academy of Sciences of United States of America,105 (38):14709–14714.
Foreman J,Johansson H,Hornitschek P,Josse E M,Fankhauser C,Halliday K J. 2011. Light receptor action is critical for maintaining plant biomass
at warm ambient temperatures. The Plant Journal,65 (3):441–452.
Franklin K A,Lee S H,Patel D,Kumar S V,Spartz A K,Gu C,Ye S,Yu P,Breen G,Cohen J D,Wigge P A,Gray W M. 2011.
Phytochrome-interacting factor 4(PIF4)regulates auxin biosynthesis at high temperature. Proceedings of the National Academy of Sciences of
United States of America,108 (50):20231–20235.
Franklin K A,Toledo-Ortiz G,Pyott D E,Halliday K J. 2014. Interaction of light and temperature signalling. Journal of Experimental Botany,65
(11):2859–2871.
Franklin K A,Whitelam G C. 2007. Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nature Genetics,39 (11):1410–1413.
1870 园 艺 学 报 41 卷
Fujiie A,Yokoyama T. 1998. Effects of ultraviolet light on the entomopathogenic nematode,Steinernema kushidai and its symbiotic bacterium,
Xenorhabdus japonicus. Applied Entomology and Zoology,33 (2):263–269.
Genoud T,Buchala A J. 2002. Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis. The Plant Journal,31 (1):87–95.
González C V,Ibarra S E,Piccoli P N,Boccalandro H E. 2012. Phytochrome B increases drought tolerance by enhancing ABA sensitivity in
Arabidopsis thaliana. Plant,Cell & Environment,35 (11):1958–1968.
Goodspeed D,Chehab E W,Covington M F,Braam J. 2013. Circadian control of jasmonates and salicylates:The clock role in plant defense. Plant
Signaling & Behavior,8 (2):e23123
Goodspeed D,Chehab E W,Min-Venditti A,Braam J,Covington M F. 2012. Arabidopsis synchronizes jasmonate-mediated defense with insect
circadian behavior. Proceedings of the National Academy of Sciences of United States of America,109 (12):4674–4677.
Griebel T,Zeier J. 2008. Light regulation and daytime dependency of inducible plant defenses in Arabidopsis:Phytochrome signaling controls
systemic acquired resistance rather than local defense. Plant Physiology,147 (2):790–801.
Gu Jian-wei,Zhang Fang,Zhao Jie,Zhou Jin-jun,Qian Feng-qin,Yan Li-hua,Zang Xin,Xie Xian-zhi. 2012. Light signals mediated by phytochrome
B affect abscisic acid pathway in rice. Chinese Science Bulletin,57:2371–2379. (in Chinese)
顾建伟,张 方,赵 杰,周晋军,钱凤芹,闫丽华,臧 新,谢先芝. 2012. 光敏色素 B 介导光信号影响水稻的脱落酸途径. 科学通
报,57:2371–2379.
Halliday K J,Whitelam G C. 2003. Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles
for phyD and phyE. Plant Physiology,131 (4):1913–1920.
Heschel M S,Selby J,Butler C,Whitelam G C,Sharrock R A,Donohue K. 2007. A new role for phytochromes in temperature-dependent
germination. New Phytologist,174 (4):735–741.
Hirschfeld M,Tepperman J M,Clack T,Quail P H,Sharrock R A. 1998. Coordination of phytochrome levels in phyB mutants of Arabidopsis as
revealed by apoprotein-specific monoclonal antibodies. Genetics,149 (2):523–535.
Huq E,Al-Sady B,Hudson M,Kim C,Apel K,Quail P H. 2004. Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll
biosynthesis. Science,305 (5692):1937–1941.
Indorf M,Cordero J,Neuhaus G,Rodríguez-Franco M. 2007. Salt tolerance(STO),a stress-related protein,has a major role in light signalling.
The Plant Journal,51 (4):563–574.
Islam S,Babadoost M,Honda Y. 2002. Effect of red light treatment of seedlings of pepper,pumpkin,and tomato on the occurrence of Phytophthora
damping-off. HortScience,37 (4):678–681.
Islam S Z,Babadoost M,Bekal S,Lambert K. 2008. Red light-induced systemic disease resistance against root-knot nematode Meloidogyne javanica
and Pseudomonas syringae pv. tomato DC 3000. Journal of Phytopathology,156 (11–12):708–714.
Izaguirre M M,Mazza C A,Biondini M,Baldwin I T,Ballaré C L. 2006. Remote sensing of future competitors:Impacts on plant defenses.
Proceedings of the National Academy of Sciences of United States of America,103 (18):7170–7174.
Kangasjarvi S,Neukermans J,Li S,Aro E M,Noctor G. 2012. Photosynthesis,photorespiration,and light signalling in defence responses. Journal
of Experimental Botany,63 (4):1619–1636.
Kazan K,Manners J M. 2011. The interplay between light and jasmonate signalling during defence and development. Journal of Experimental
Botany,62 (12):4087–4100.
Koini M A,Alvey L,Allen T,Tilley C A,Harberd N P,Whitelam G C,Franklin K A. 2009. High temperature-mediated adaptations in plant
architecture require the bHLH transcription factor PIF4. Current Biology,19 (5):408–413.
Khanam N N,Ueno M,Kihara J,Honda Y,Arase S. 2005. Suppression of red light-induced resistance in broad beans to Botrytis cinerea by salicylic
acid. Physiological and Molecular Plant Pathology,66 (1–2):20–29.
Kraepiel Y,Rousselin P,Sotta B,Kerhoas L,Einhorn J,Caboche M,Miginiac E. 1994. Analysis of phytochrome-and ABA-deficient mutants
suggests that ABA degradation is controlled by light in Nicotiana plumbaginifolia. The Plant Journal,6 (5):665–672.
Kreslavski V D,Lyubimov V Y,Shirshikova G N,Shmarev A N,Kosobryukhov A A,Schmitt F J,Friedrich T,Allakhverdiev S I. 2013.
Preillumination of lettuce seedlings with red light enhances the resistance of photosynthetic apparatus to UV-A. Journal of Photochemistry and
Photobiology B:Biology,133:1–6.
9 期 杨有新等:光质和光敏色素在植物逆境响应中的作用研究进展 1871
Lee C M,Thomashow M F. 2012. Photoperiodic regulation of the C-repeat binding factor(CBF)cold acclimation pathway and freezing tolerance in
Arabidopsis thaliana. Proceedings of the National Academy of Sciences of United States of America,109 (37):15054–15059.
Leivar P,Quail PH. 2011. PIFs:Pivotal components in a cellular signaling hub. Trends in Plant Science,16 (1):19–28.
Li L,Ljung K,Breton G,Schmitz R J,Pruneda-Paz J,Cowing-Zitron C,Cole B J,Ivans L J,Pedmale U V,Jung H S. 2012. Linking photoreceptor
excitation to changes in plant architecture. Genes & Development,26 (8):785–790.
Liu J,Zhang F,Zhou J,Chen F,Wang B,Xie X. 2012. Phytochrome B control of total leaf area and stomatal density affects drought tolerance in
rice. Plant Molecular Biology,78 (3):289–300.
McElwain E F,Bohnert H J,Thomas J C. 1992. Light moderates the induction of phosphoenolpyruvate carboxylase by NaCl and abscisic acid in
Mesembryanthemum crystallinum. Plant Physiology,99 (3):1261–1264.
McGuire R,Agrawal A. 2005. Trade-offs between the shade-avoidance response and plant resistance to herbivores? Tests with mutant Cucumis
sativus. Functional Ecology,19 (6):1025–1031.
McKenzie J,Weiser C,Burke M. 1974. Effects of red and far red light on the initiation of cold acclimation in Cornus stolonifera Michx. Plant
Physiology,53 (6):783–789.
Moon J,Zhu L,Shen H,Huq E. 2008. PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis.
Proceedings of the National Academy of Sciences of United States of America,105 (27):9433–9438.
Moreno J E,Tao Y,Chory J,Ballaré C L. 2009. Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity.
Proceedings of the National Academy of Sciences of United States of America,106 (12):4935–4940.
Ouedraogo M,Hubac C. 1982. Effect of far red light on drought resistance of cotton. Plant and Cell Physiology,23 (7):1297–1303.
Patel D,Basu M,Hayes S,Majlath I,Hetherington F M,Tschaplinski T J,Franklin K A. 2013. Temperature-dependent shade avoidance involves
the receptor-like kinase ERECTA. The Plant Journal,73 (6):980–992.
Quail P H. 2002. Phytochrome photosensory signalling networks. Nature Reviews Molecular Cell Biology,3 (2):85–93.
Rahman M Z,Honda Y,Arase S. 2003. Red-light-induced resistance in broad bean(Vicia faba L.)to leaf spot disease caused by Alternaria
tenuissima. Journal of Phytopathology,151 (2):86–91.
Rahman M Z,Khanam H,Ueno M,Kihara J,Honda Y,Arase S. 2010. Suppression by red light irradiation of Corynespora leaf spot of cucumber
caused by Corynespora cassiicola. Journal of Phytopathology,158 (5):378–381.
Riemann M,Müller A,Korte A,Furuya M,Weiler E W,Nick P. 2003. Impaired induction of the jasmonate pathway in the rice mutant hebiba. Plant
Physiology,133 (4):1820–1830.
Riemann M,Riemann M,Takano M. 2008. Rice JASMONATE RESISTANT 1 is involved in phytochrome and jasmonate signalling. Plant,Cell &
Environment,31 (6):783–792.
Robson F,Okamoto H,Patrick E,Harris S R,Wasternack C,Brearley C,Turner J G. 2010. Jasmonate and phytochrome A signaling in Arabidopsis
wound and shade responses are integrated through JAZ1 stability. The Plant Cell,22 (4):1143–1160.
Roberts M R,Paul N D. 2006. Seduced by the dark side:Integrating molecular and ecological perspectives on the influence of light on plant defence
against pests and pathogens. New Phytologist,170 (4):677–699.
Salisbury F J,Hall A,Grierson C S,Halliday K J. 2007. Phytochrome coordinates Arabidopsis shoot and root development. The Plant Journal,50
(3):429–438.
Schuerger A C,Brown C S,Stryjewski E C. 1997. Anatomical features of pepper plants(Capsicum annuum L.)grown under red light-emitting diodes
supplemented with blue or far-red light. Annals of Botany,79 (3):273–282.
Shamim Z,Rashid B,ur Rahman S,Husnain T,Panyathep A,Chewonarin T,Taneyhill K,Vinitketkumnuen U,Ruangyuttikarn W,Chattaviriya
P. 2013. Expression of drought tolerance in transgenic cotton. Scienceasia,39 (1):1–11.
Slocombe S,Whitelam G,Cockburn W. 1993. Investigation of phosphoeno/pyruvate carboxylase(PEPCase)in Mesembryanthemum crystallinum
L. in C3 and CAM photosynthetic states. Plant,Cell & Environment,16 (4):403–411.
Somers D E,Devlin P F,Kay S A. 1998. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science,282
(5393):1488–1490.
Staneloni R J,Rodriguez-Batiller M J,Casal J J. 2008. Abscisic acid,high-light,and oxidative stress down-regulate a photosynthetic gene via a
1872 园 艺 学 报 41 卷
promoter motif not involved in phytochrome-mediated transcriptional regulation. Molecular Plant,1 (1):75–83.
Suthaparan A,Torre S,Stensvand A,Herrero M L,Pettersen R I,Gadoury D M,Gislerød H R. 2010. Specific light-emitting diodes can suppress
sporulation of podosphaera pannosaon greenhouse roses. Plant Disease,94 (9):1105–1110.
Sysoeva M,Patil G G,Sherudilo E,Torre S,Markovskaya E,Moe R. 2008. Effect of temperature drop and photoperiod on cold resistance in young
cucumber plants-involvement of phytochrome B. Plant Stress,2 (1):84–88.
Tóth R,Kevei E,Hall A,Millar A J,Nagy F,Kozma-Bognár L. 2001. Circadian clock-regulated expression of phytochrome and cryptochrome genes
in Arabidopsis. Plant Physiology,127 (4):1607–1616.
Tepperman J M,Zhu T,Chang H S,Wang X,Quail P H. 2001. Multiple transcription-factor genes are early targets of phytochrome A signaling.
Proceedings of the National Academy of Sciences of United States of America,98 (16):9437–9442.
Terry M,Linley P,Kohchi T. 2002. Making light of it:The role of plant haem oxygenases in phytochrome chromophore synthesis. Biochemical
Society Transactions,30 (4):604–609.
Thomsen B,Drumm-Herrel H,Mohr H. 1992. Control of the appearance of ascorbate peroxidase(EC 1.11. 1.11)in mustard seedling cotyledons by
phytochrome and photooxidative treatments. Planta,186 (4):600–608.
Todaka D,Nakashima K,Maruyama K,Kidokoro S,Osakabe Y,Ito Y,Matsukura S,Fujita Y,Yoshiwara K,Ohme-Takagi M. 2012. Rice
phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response
to drought stress. Proceedings of the National Academy of Sciences of United States of America,109 (39):15947–15952.
Uenishi Y,Nakabayashi Y,Tsuchihira A,Takusagawa M,Hashimoto K,Maeshima M,Sato-Nara K. 2014. Accumulation of TIP2;2 aquaporin
during dark adaptation is partially PhyA dependent in roots of Arabidopsis seedlings. Plants,3 (1):177–195.
Wang F F,Lian H L,Kang C Y,Yang H Q. 2010a. Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis
thaliana. Molecular Plant,3 (1):246–259.
Wang H,Jiang Y P,Yu H J,Xia X J,Shi K,Zhou Y H,Yu J Q. 2010b. Light quality affects incidence of powdery mildew,expression of
defence-related genes and associated metabolism in cucumber plants. European Journal of Plant Pathology,127 (1):125–135.
Williams B,Pellett N,Klein R. 1972. Phytochrome control of growth cessation and initiation of cold acclimation in selected woody plants. Plant
Physiology,50 (2):262–265.
Wu D,Hu Q,Yan Z,Chen W,Yan C Y,Huang X,Zhang J,Yang P Y,Deng H T,Wang J W,Deng X W,Shi Y G. 2012. Structural basis of
ultraviolet-B perception by UVR8. Nature,484 (7393):214–219.
Wu L,Yang H Q. 2010. Cryptochrome1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis.
Molecular Plant,3 (3):539–548.
Xie X Z,Xue Y J,Zhou J J,Zhang B,Chang H,Takano M. 2011a. Phytochromes regulate SA and JA signaling pathways in rice and are required
for developmentally controlled resistance to Magnaporthe grisea. Molecular Plant,4 (4):688–696.
Xie Y J,Xu S,Han B,Wu M Z,Yuan X X,Han Y,Gu Q,Xu D K,Yang Q,Shen W B. 2011b. Evidence of Arabidopsis salt acclimation induced
by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. The Plant Journal,66 (2):280–292.
Yu S M,Ramkumar G,Lee Y H. 2013. Light quality influences the virulence and physiological responses of Colletotrichum acutatum causing
anthracnose in pepper plants. Journal of Applied Microbiology,115 (2):509–516.
Zhai Q,Li C B,Zheng W,Wu X,Zhao J,Zhou G,Jiang H,Sun J,Lou Y,Li C. 2007. Phytochrome chromophore deficiency leads to overproduction
of jasmonic acid and elevated expression of jasmonate-responsive genes in Arabidopsis. Plant and Cell Physiology,48 (7):1061–1071.
Zhang C,Xie Q,Anderson R G,Ng G,Seitz N C,Peterson T,McClung C R,McDowell J M,Kong D,Kwak J M. 2013. Crosstalk between
the circadian clock and innate immunity in Arabidopsis. PLoS Pathogens,9 (6):e1003370.
Zhang J X,Fernando W G D,Xue A G. 2005. Daily and seasonal spore dispersal by Mycosphaerella pinodes and development of mycosphaerella
blight of field pea. Canadian Journal of Botany,83 (3):302–310.
Zhong H H,Resnick A S,Straume M,McClung C R. 1997. Effects of synergistic signaling by phytochrome A and cryptochrome 1 on circadian
clock-regulated catalase expression. The Plant Cell,9 (6):947–955.
Zhong S,Zhao M,Shi T,Shi H,An F,Zhao Q,Guo H. 2009. EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening
of Arabidopsis seedlings. Proceedings of the National Academy of Sciences of United States of America,106 (50):21431–21436.