以25%聚乙二醇(PEG-6000)模拟干旱, 利用一氧化氮(nitric oxide, NO)供体硝普钠(sodium nitroprusside, SNP) 处理小麦幼苗, 探讨外源NO对水分胁迫下小麦幼苗根系生长和吸收的影响。结果表明, 50 mol L-1 SNP可增加小麦主根长度及侧根数目, 分别比对照增加11.94%和83.78%。同时, SNP可使水分胁迫下小麦的根系活力提高55.88%, 根系K+ 的含量提高42.52%。膜片钳全细胞电流显示, SNP处理可增强小麦根细胞质膜内向K+ 电流, 而NO的专一清除剂c-PTIO可以逆转SNP的上述效应。因此认为, 外源NO可通过提高小麦根系活力, 增强根细胞质膜内向K+ 通道的活性, 从而促进根细胞对K+ 的吸收以适应水分胁迫。
To investigate the effects of exogenous NO donor sodium nitroprusside (SNP) on root growth and absorption in wheat seedlings (Triticum aestivum L.) under water stress, we cultured Yumai 49 seeds in Hoagland solution for 8 days, and then treated them for 2 days in Hoagland solution (CK) and Hoagland adding 50 μmol L-1 SNP, 25% PEG-6000 ( Ó0.8 MPa), and 50 μmol L-1 SNP+25% PEG-6000, respectively. The results showed that 50 mmol L-1 SNP increased the length of primary roots and the number of lateral roots by 11.94% and 83.78% respectively, and enhanced the root activity by 55.88%. Meanwhile, the K+ content in wheat roots increased by 42.52%. In the patch-clamp experiment, SNP increased the inward-rectifying K+ current of wheat root cells under water stress and the NO specific scavenger c-PTIO reversed the effect above. The results above indicated that exogenous NO enhanced wheat drought resistance possible by improving wheat roots growth, increasing root activity to enhance K+ influx by activating root inward-rectifying K+ channels.
全 文 :作物学报 ACTA AGRONOMICA SINICA 2008, 34(2): 344−348 http://www.chinacrops.org/zwxb/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn
基金项目:国家自然科学基金项目(30570964)
作者简介:闻玉(1980–),女,硕士研究生,主要从事作物逆境生理研究。
*通讯作者(Corresponding author):张骁(1967–),男,博士生导师,主要从事植物逆境信号转导研究。E-mail: xzhang@henu.edu.cn;
Tel: 0378-3880008
Received (收稿日期): 2007-06-19; Accepted (接受日期): 2007-08-27.
DOI: 10.3724/SP.J.1006.2008.00344
水分胁迫下一氧化氮对小麦幼苗根系生长和吸收的影响
闻 玉 赵 翔 张 骁*
(河南大学生命科学学院/河南省植物逆境生物学重点实验室, 河南开封 475001)
摘 要: 以 25%聚乙二醇(PEG-6000)模拟干旱, 利用一氧化氮(nitric oxide, NO)供体硝普钠(sodium nitroprusside, SNP)
处理小麦幼苗, 探讨外源NO对水分胁迫下小麦幼苗根系生长和吸收的影响。结果表明, 50 mol L−1 SNP可增加小麦主
根长度及侧根数目, 分别比对照增加 11.94%和 83.78%。同时, SNP可使水分胁迫下小麦的根系活力提高 55.88%, 根
系K+ 的含量提高 42.52%。膜片钳全细胞电流显示, SNP处理可增强小麦根细胞质膜内向K+ 电流, 而NO的专一清除剂
c-PTIO可以逆转SNP的上述效应。因此认为, 外源NO可通过提高小麦根系活力, 增强根细胞质膜内向K+ 通道的活性,
从而促进根细胞对K+ 的吸收以适应水分胁迫。
关键词: 小麦; 一氧化氮; 水分胁迫; 离子通道; 根系
Effects of Nitric Oxide on Root Growth and Absorption in Wheat
Seedlings in Response to Water Stress
WEN Yu, ZHAO Xiang, and ZHANG Xiao*
(School of Life Sciences, Henan University/ Henan Key Laboratory of Plant Stress Biology, Kaifeng 475001, Henan, China)
Abstract: To investigate the effects of exogenous NO donor sodium nitroprusside (SNP) on root growth and absorption in wheat
seedlings (Triticum aestivum L.) under water stress, we cultured Yumai 49 seeds in Hoagland solution for 8 days, and then treated
them for 2 days in Hoagland solution (CK) and Hoagland adding 50 µmol L−1 SNP, 25% PEG-6000 ( −0.8 MPa), and 50 µmol L−1
SNP+25% PEG-6000, respectively. The results showed that 50 µmol L−1 SNP increased the length of primary roots and the
number of lateral roots by 11.94% and 83.78% respectively, and enhanced the root activity by 55.88%. Meanwhile, the K+ content
in wheat roots increased by 42.52%. In the patch-clamp experiment, SNP increased the inward-rectifying K+ current of wheat root
cells under water stress and the NO specific scavenger c-PTIO reversed the effect above. The results above indicated that
exogenous NO enhanced wheat drought resistance possible by improving wheat roots growth, increasing root activity to enhance
K+ influx by activating root inward-rectifying K+ channels.
Keywords: Wheat (Triticum aestivum L.); Nitric oxide (NO); Water stress; Ion channel; Root system
根系不仅是作物吸收水分和矿质营养的重要器官 ,
而且也是作物感知外界环境变化调节其生长发育的“感受
器”。尤其在干旱缺水时 , 根源逆境信号脱落酸(abscisic
acid, ABA)不仅可通过木质部运输到茎的不同部位,调节
植株水分的散失和叶片的生长, 诱导叶片气孔关闭[1], 降
低水分蒸腾, 作物没有奢侈性气孔开放和蒸腾损失[2], 而
且可通过影响作物主根和侧根的生长发育提高其根系传
导能力, 从而增强作物的抗旱性[3-7]。但到目前为止, 有关
ABA对作物根系生长发育调控机制还不清楚。
最近, 一氧化氮(nitric oxide, NO)被认为是一种新的
植物信号分子调节植物生长发育的诸多生理过程 , 如种
子萌发[8-9]、延缓衰老[10-11]、气孔运动[12]以及侧根及不
定根生长发育 [13-14]等。我们以前的研究表明, NO作为一
个新的信号成分可介导保卫细胞 ABA和过氧化氢
(hydrogen peroxide, H2O2)信号转导过程[15-18], 而且可通
过诱导气孔关闭, 提高干旱条件下作物的相对含水量, 降
低膜透性, 诱导LEA蛋白的合成, 进而增强植物的耐旱力
[19]。但NO对植物根系生长发育调控研究还很有限。尤其
第 2期 闻 玉等: 水分胁迫下一氧化氮对小麦幼苗根系生长和吸收的影响 345
是在干旱条件下, 根源逆境信号ABA所诱导产生的NO对
植物根系生长发育调控的研究更是知之甚少。为此, 本文
利用 PEG-6000 模拟干旱 , 研究外源NO供体硝普钠
(sodium nitroprusside, SNP)调控干旱条件下小麦根系生长
发育的细胞及生理机制, 以明确NO在干旱逆境信号反应
中的作用, 为氮氧类抗旱剂的应用研究提供理论依据。
1 材料和方法
1.1 材料与处理
小麦(Triticum aestivum L.)品种豫麦 49由河南省农业
科学院提供。
饱满且胚完整的种子经 0.1% HgCl2消毒 15~20 min
后, 用自来水和蒸馏水各冲洗 3 次, 用Hoagland营养液于
光照培养箱沙砾培养, 温度 20℃, 光照 12 h, 光照强度
100 µmol m−2 s−1, 相对湿度 60%。
以Hoagland液培养小麦 8d后, 再分别用Hoagland液
(CK)、Hoagland液+ 50 µmol L−1 SNP、Hoagland液+25%
PEG-6000和 25% PEG-6000 + 50 µmol L−1 SNP, 处理 2 d
后取样, 每组试验至少 3个重复。
1.2 根系测定
1.2.1 ﹑主 侧根长度与数目 分别取培养 12 d的麦苗,
于距离根结 1 cm处剪下, 冲洗干净, 自然拉直, 平铺在纱布
上, 分别测定最长根长和最长根的侧根数目, 求其平均值。
1.2.2 根系活力 将正常生长 8 d的小麦幼苗, 分别在
上述 4 种处理液中处理 2 d后取样, 用氯化三苯基四氮唑
(TTC)法[20]测定。
1.2.3 根系K +含量 参照Hunt [ 2 1 ]的方法 , 用日立
Z-8000型原子吸收仪测定。
1.3 根细胞原生质体的分离
参照Schachtman等[22]的方法, 将正常生长 5~6 d的
小麦幼苗分别在 4 种处理液中处理 2 d后(其中PEG-6000
浓度改为 15%), 各取 1 g根组织提取原生质体。选择直
径>30 µm且具有细胞汁液流的原生质体进行膜片钳
实验[23]。
1.4 根细胞质膜K+电流
采用常规全细胞记录技术 [24]测定小麦根细胞原生
质体质膜内向K+ 通道电流。
1.5 数据分析
采用 Microsoft Excel 进行数据处理和显著性测验
(Student’s t-test); 使用 PULSE+PULSEFIT 软件采集并输
出全细胞电流, 用 Igro和 OriginPro7.0软件统计分析全细
胞电流。
2 结果与分析
2.1 NO对小麦根系生长及形态的影响
图 1显示, 50 µmol L−1 SNP(NO供体)处理 12 d, 可明
显改变小麦根系的形态 , 使小麦平均最长主根长度增加
11.94%, 最长主根上的平均侧根数增加 83.78%(P<0.01),
说明施用NO可以促进小麦主根生长以及增加侧根数目。
2.2 NO提高干旱胁迫下小麦根系活力
与对照相比, 经 25% PEG-6000 (−0.8 MPa) 处理 2 d
后 , 小麦根系活力明显下降 , 为对照的 53.03%, 而
50 µmol L−1 SNP的施用可明显缓解PEG-6000对根系活力
的影响, 提高 55.88% (P<0.01)。50 µmol L−1SNP单独处理
的小麦根系, 其活力变化相对较小(图 2)。说明NO可提高
干旱胁迫条件下的根系活力。
图 1 外源 NO供体 SNP对小麦最长主根长度(A)和最长主根侧根数(B)的影响
Fig. 1 Effects of exogenous NO donor SNP on length of the longest primary root (A) and lateral number of the longest primary root (B) in
wheat seedlings
CK: 对照; SNP: 50 µmol L−1 SNP 处理。图中每个柱状表示来自 3个独立重复试验的平均值±标准误。
CK: control; SNP: 50 µmol L−1 SNP treatment. Each bar represents the mean of measurements with standard error from three independent experiments.
346 作 物 学 报 第 34卷
图 2 外源 NO对干旱胁迫下小麦根系活力的影响
Fig. 2 Effects of exogenous NO on root activity of wheat seedlings
in response to 25% PEG-6000 mimic drought stress
CK: 对照; PEG: 25% PEG-6000 处理; PEG+SNP: 25% PEG-6000 和
50 µmol L−1 SNP同时处理; SNP: 50 µmol L−1 SNP 处理。 图中每个
柱来自 3个独立重复试验的的平均值±标准误。
CK: control; PEG: 25% PEG-6000 treatment; PEG+SNP: 25%
PEG-6000 and 50 µmol L−1 SNP treatments; SNP: 50 µmol L−1 SNP
treatment. Each bar represents the mean of measurements with standard
error from three independent experiments.
2.3 水分胁迫下外源NO对小麦根系K+含量的影响
由图 3可见, 25% PEG-6000的水分胁迫处理可使小
麦根中K+ 含量极显著降低(P<0.01), 比对照减少 47.78%;
50 µmol L−1SNP可部分逆转水分胁迫所导致的K+含量降
低 , 其K+含量比 25% PEG-6000 处理的增加 42.52%
(P<0.01)。SNP单独处理对小麦根系的K+ 含量没有明显影
响。表明NO可提高水分胁迫下小麦根系的K+ 含量。
图 3 外源NO对干旱胁迫下小麦根系K+ 含量的影响
Fig. 3 Effects of exogenous NO on K+ content in wheat seedling
roots in response to 25% PEG-6000 mimic drought stress
图中字母缩写同图 2, 图中每个柱来自 3个独立重复试验的
平均值±标准误。
Abbreviations are the same as in Fig. 3. Each bar represents the mean of
measurements with standard error from three independent experiments.
2.4 外源NO对小麦根细胞内向K+ 通道的调节
图 4显示, 经 15% PEG-6000(−0.3 MPa)水分胁迫处
理的小麦, 其根细胞内向K+电流降低为对照的 33.02%, 但
50 µmol L−1 SNP可明显逆转PEG-6000 水分胁迫效应,此时
记录的根细胞内向K+电流比PEG-6000 单独处理下的电流
增加 85.34% (P<0.01)。为进一步证实NO的上述作用, 将
NO专一清除剂 100 µmol L−1 c-PTIO加入电极液中, 结果
c-PTIO可完全逆转水分胁迫下SNP的作用, 此时记录的根
细胞内向K+电流降低到PEG-6000 单独处理的水平 , 而
SNP单独处理对小麦根细胞内向K+电流影响不大。表明
NO可通过激活根细胞质膜内向K+通道活性, 增强小麦根
系对K+的吸收, 以提高小麦的抗旱性。
3 讨论
NO作为一种新的信号分子调节植物对生物与非生
物胁迫的适应反应[25]。在非生物胁迫反应中, 主要研究多
集中在其对气孔运动的调控方面 , 尤其是其作为保卫细
胞ABA和H2O2信号转导途径下游信号成分的确立 [15-18],
为研究逆境条件下NO对植物生长发育调节提供了新的途
径。既然根源逆境信号ABA可提高根系传导能力, 增强植
物的抗旱性[3-7], 且H2O2的积累能影响拟南芥的发 育[26],
那么, 其下游成分NO是否对植物根系有调控作用?本研
究用 50 µmol L−1 SNP(NO供体)处理小麦幼苗, 发现NO不
仅能促进小麦侧根的发育, 增加侧根的数目, 而且也能促
进小麦主根生长以增加主根长度(图 1), 该结果与前人对
黄瓜[13]、番茄[14]和玉米[27]的研究结果一致。同时, 我们
检测了SNP对水分胁迫条件下小麦根系活力的变化, 发现
50 µmol L−1 SNP可使其根系活力恢复提高 55.88%(图 2)。
根系活力反应了植物根系的生长发育状况 , 是根系生命
力的综合评定指标。考虑到NO可代替生长素作用, 促进
侧根及不定根生长发育[13-14], 我们推测 , NO能促进作物
根系的生长发育, 提高根系活力, 可能与植物体内生长素
的代谢有关。
根系活力在一定程度上反映出植物根系对矿质营养
(如K+)的吸收能力, 而且植物对K+ 的吸收也可以影响其
侧根的生长 [28]。已有研究表明, 植物吸收K+的最主要途
径为细胞质膜内向K+ 通道[29-30]。在保卫细胞研究体系
中 , NO可以调节ABA介导保卫细胞质膜K+ 通道促进K+在
保卫细胞中积累, 诱导气孔关闭[31]。而NO的上游信号分
子H2O2同样可以调节作物根细胞对K+ 的吸 收 [26]。
NO是否也可以通过调节根细胞质膜内向K+通道以促进根
对K+的吸收 , 从而影响根系的生长发育呢?为此, 我们
利用膜片钳技术检测了PEG-6000 水分胁迫下小麦根细胞
K+ 通道的活性。结果显示, SNP确实能缓解PEG-6000水分
胁迫所导致的内向K+ 电流的抑制(图 4), 促进根系对离子
的吸收能力 , 以提高水分胁迫下小麦根部的K + 含量(图
3)。K+ 作为主要的渗透调节物质, 其在根细胞的积累有利
于维持根与土壤之间渗透差, 保证干旱条件下植物对水
分的吸收利用。考虑到细胞膜相关通道活性的变化受其质
膜膜电位调节, NO可以减缓干旱胁迫对小麦造成的伤害,
可能通过调节质膜超极化状态, 但具体机制还不清楚。最
近 研 究 表 明 , 质 膜 H + - A T P a s e 作 为 细
第 2期 闻 玉等: 水分胁迫下一氧化氮对小麦幼苗根系生长和吸收的影响 347
图 4 外源NO对水分胁迫下小麦根细胞内向K+ 通道电流的调节
Fig. 4 Regulation of exogenous NO on inward-rectifying K+ channel current from protoplasts in wheat roots in response to 15% PEG-6000
mimic water stress
A: 不同处理对时间依赖的小麦根细胞内向K+ 通道电流的影响; B: 全细胞跨膜K+ 电流(pA pF−1)与跨膜电势(mV)的关系; C: 跨膜电压为 −190
mV时不同处理对小麦根细胞稳态内向K+ 通道电流的影响; CK: 对照; PEG: 15% PEG-6000 处理; PEG+SNP: 15% PEG-6000和
50 µmol L−1 SNP同时处理; PEG+SNP+c-PTIO: 15% PEG-6000、50 µmol L−1 SNP和 100 µmol L−1 c-PTIO 同时处理; SNP: 50 µmol L−1 SNP处理。
图B和C中每个数据均来自 6个独立重复试验的平均值±标准误。
A: effects of different treatments on time-dependent wheat root inward-rectifying K+ channel current; B: relationship between the whole cell K+
current (pA pF−1) and membrane potential (mV); C: effects of different treatments on wheat root inward-rectifying K+ channel current at membrane
potential of −190 mV; CK: control; PEG: 15% PEG-6000 treatment; PEG+SNP: 15% PEG-6000 and 50 µmol L−1 SNP treatments; PEG+SNP+c-PTIO:
15% PEG-6000, 50 µmol L−1 SNP, and 100 µmol L−1 c-PTIO treatments; SNP: 50 µmol L−1 SNP treatment. Each value in Fig.4-B and C is the mean
current density (current/C-slow) from six independent experiments and the error bar denotes the standard error.
胞的“主宰酶”(master enzyme), 其被激活后, 可导致质
膜超激化, 从而激活其下游的质膜内向K+ 通道[16]。Zhao
等 [32]报道, 两种芦苇细胞质膜上的H+-ATPase 可调节其
细胞对K+的选择性吸收。NO对水分胁迫下小麦根细胞膜
K+内向通道的调节是否也与其质膜上的H+-ATPase有关,
还需进一步试验证实。
References
[1] Li J X, Wang X Q, Watson M B, Assmann S M. Regulation of
abscisic acid induced stomatal closure and anion channels by
guard cell AAPK kinase. Science, 2000, 287: 300−303
[2] Morillon R, Chrispeels M J. The role of ABA and the
transpiration stream in the regulation of the osmotic water
permeability of leaf cells. Proc Natl Acad Sci USA, 2001, 98:
14138–14143
[3] Sharp R E, LeNoble M E. ABA, ethylene and the control of shoot
and root growth under water stress. J Exp Bot, 2002, 53: 33−37
[4] Spollen W G, Lenoble M E, Samuels T D, Bernstein N, Sharp R E.
Abscisic acid accumulation maintains maize primary root
elongation at low water potentials by restricting ethylene
production. Plant Physiol, 2000, 122: 967−976
[5] Signora L, Smet I D, Foyer C H, Zhang H M. ABA plays a central
role in mediating the regulatory effects of nitrate on root
branching in Arabidopsis. Plant J, 2001, 28: 655−662
[6] Smet I D, Signora L, Beeckman T, Inze D, Foyer C H, Zhang H.
An abscisic acid-sensitive checkpoint in lateral root development
of Arabidopsis. Plant J, 2003, 33: 543−555
[7] Chen C W, Yang Y W, Lur H S, Tsai Y G, Chang M C. A novel
function of abscisic acid in the regulation of rice (Oryza sativa L.)
root growth and development. Plant Cell Physiol, 2006, 47: 1−13
[8] Giba Z, Grubisic D, Konjevic R. Nitrogen oxides as
environmental sensors for seeds. Seed Sci Res, 2003, 13: 187−196
[9] Giba Z, Grubisic D, Todorovic S, Sajc L, Stojakovic D, Konjecic
R. Effect of nitric oxide-releasing compounds on
phytochrome-controlled germination of Empress tree seeds. Plant
Growth Regul, 1998, 26: 175−181
[10] Leshem Y Y. Nitric Oxide in Plants. London, UK: Kluwer
348 作 物 学 报 第 34卷
Academic Publishers, 2001
[11] Leshem Y Y, Haramaty E. The characterisation and contrasting
effects of the nitric oxide free radical in vegetative stress and
senescence of Pisum sativum Linn. foliage. J Plant Physiol, 1996,
148: 258−263
[12] Neill S J, Desikan R, Clarke A, Hancock J T. Nitric oxide is a
novel component of abscisic acid signaling in stomatal guard cells.
Plant Physiol, 2002, 128: 13−16
[13] Pagnussat G C, Simontacchi M, Puntarulo S, Lamattina L. Nitric
oxide is required for root organogenesis. Plant Physiol, 2002, 129:
954−956
[14] Correa-Aragunde N, Graziano M, Lamattina L. Nitric oxide plays
a central role in determining lateral root development in tomato.
Planta, 2004, 218: 900−905
[15] Zhang X, Zhang L, Dong F C, Gao J F, Galbraith D W, Song C P.
Hydrogen peroxide is involved in abscisic acid-induced stomatal
closure in Vicia faba. Plant Physiol, 2001, 126: 1438−1448
[16] Zhang X, Wang H B, Takemiya A, Song C P, Kinoshita T,
Shimazaki K. Inhibition of blue light-dependent H+ pumping by
abscisic acid through hydrogen peroxide-induced
dephosphorylation of the plasma membrane H+-ATPase in guard
cell protoplasts. Plant Physiol, 2004, 136: 4150−4158
[17] Zhang X, Takemiya A, Kinoshita T, Shimazaki K. Nitric oxide
inhibits blue light-specific stomatal opening via abscisic acid
signaling pathways in vicia guard cells. Plant Cell Physiol, 2007,
48(5): 715−723
[18] Lü D(吕东), Zhang X (张骁), Jiang J(江静), An G-Y(安国勇),
Zhang L-R(张玲瑞), Song C-P(宋纯鹏). NO may function in the
downstream of H2O2 in ABA-induced stomatal closure in Vicia
faba L. Acta Phytophysiol Sin (植物生理与分子生物学学报),
2005, 31 (1): 62−70 (in Chinese with English abstract)
[19] Mata C G, Lamattina L. Nitric oxide induces stomatal closure and
enhances the adaptive plant responses against drought stress.
Plant Physiol, 2001, 126: 1196−1204
[20] Zhang Z-L(张志良 ), Di W-J(瞿伟菁 ). Laboratory Guild for
Plant Physiology (植物生理学实验指导 ). Beijing: Higher
Education Press, 2003. pp 39−41(in Chinese)
[21] Hunt J. Dilute hydrochloric acid extraction of plant material for
routine cation analysis. Commun Soil Sci Plant Anal, 1982, 13:
49−55
[22] Schachtman D P, Tyerman S D, Terry B R. The K+/Na+ selectivity
of a cation channel in the plasma membrane of root cells does not
differ in salt-tolerant and salt-sensitive wheat species. Plant
Physiol, 1991, 97: 598−605
[23] Tyerman S D, Skerrett M, Garrill A, Findlay G P, Leigh R A.
Pathways for the permeation of Na and Cl into protoplasts
derived from the cortex of wheat roots. J Exp Bot, 1997, 48:
459
+ -
−480
[24] Hamill O P, Marty A, Neher E, Sakmann B, Sigworth F J.
Improved patch-clamp techniques for high-resolution current
recording from cells and cell-free membran patches. Pfluger
Archiv, 1981, 391: 85−100
[25] Neill S J, Desikan R, Hancock J T. Nitric oxide signalling in
plants. New Phytol, 2003, 159: 11−35
[26] Foreman J, Demidchik V, Bothwell J H F, Mylona P, Miedema H,
Torres M A, Linstead P, Costa S, Brownless C, Jones J D G, Davies
J M, Dolan L. Reactive oxygen species produced by NADPH
oxidase regulated plant cell growth. Nature, 2003, 422: 442−446
[27] Gouvêa C M C P, Souza J F, Magalhâes A C N, Martins I S.
NO-releasing substances that induce growth elongation in maize
root segments. Plant Growth Regul, 1997, 21: 183−187
[28] Ryoung S, Daniel P. Schachtman. Hydrogen peroxide mediates
plant root cell response to nutrient deprivation. Proc Natl Acad
Sci USA, 2004, 101: 8827−8832
[29] Maathuis F J M, Ichida A M, Sanders D, Schroeder J I. Roles of
higher plant K+ channels. Plant Physiol, 1997, 114: 1141−1149
[30] Maathuis F J M, Sanders D. Mechanisms of potassium absorption
by higher plant roots. Plant Physiol, 1996, 96: 158−168
[31] Garcia-Mata C, Gay R, Sokolvski S, Hills A, Lamattina L, Blatt
M R. Nitric oxide regulate K+ and Cl- channels in guard cells
through a subset of abscisic scid-evoked signaling pathways. Proc
Natl Acad Sci USA, 2003, 100: 1116−1121
[32] Zhao L Q, Zhang F, Guo J K, Yang Y L, Li B B, Zhang L X.
Nitric oxide functions as a signal in salt resistance in the calluses
from two ecotypes of reed. Plant Physiol, 2004, 134: 849−857