免费文献传递   相关文献

Characterization of the Complete Chloroplast Genome of Apple (Malus × domestica, Rosaceae)*

苹果叶绿体基因组特征分析



全 文 :苹果叶绿体基因组特征分析∗
金桂花1ꎬ2ꎬ 陈斯云1ꎬ 伊廷双1ꎬ 张书东1∗∗
(1 中国科学院昆明植物研究所中国西南野生生物种质资源库ꎬ 云南 昆明  650201ꎻ 2 中国科学院大学ꎬ 北京  100049)
摘要: 苹果 (Malus × domestica) 是最重要的温带水果之一ꎮ 为了能更好的了解本种的分子生物学基础ꎬ
对已发布的苹果叶绿体全基因组序列进行了结构特征分析ꎮ 结果显示苹果的叶绿体基因组全长为 160 068
bpꎬ 具有典型的被子植物叶绿体基因组的环状四分体结构ꎬ 包含大单拷贝区 (LSC)ꎬ 小单拷贝区 (SSC)
和两个反向互补重复区 (IRs)ꎬ 长度分别为 88 184 bpꎬ 19 180 bp和 26 352 bpꎮ 基因组共有 135个基因 (20
个基因分布在反向互补重复区ꎬ 因此整个基因组包含 115个不同的基因)ꎮ 按照功能进行分类ꎬ 这 115 个
基因包括 81个蛋白质编码基因ꎬ 4个 rRNA编码基因和 30个 tRNA 基因ꎮ 其中ꎬ ycf15ꎬ ycf68和 infA三个
基因包含多个终止密码子ꎬ 推测可能为假基因ꎮ 苹果的基因组结构ꎬ 基因顺序ꎬ GC 含量和密码子使用偏
好均与典型的被子植物叶绿体基因组类似ꎮ 在苹果的叶绿体基因组中ꎬ 共检测到 30个大于 30 bp的重复序
列ꎬ 其中包括 21串联重复ꎬ 6个正向重复和 3个反向重复序列ꎻ 并检测到 237个简单重复序列 (SSR) 位
点ꎬ 大部分的 SSR位点都偏向于 A或者 T组成ꎮ 此外ꎬ 每 10 000 bp非编码区平均分布有 24个 SSR位点ꎬ 而
编码区平均有 5个 SSR位点ꎬ 表明 SSRs在叶绿体基因组上的分布是不均匀的ꎮ 本文对苹果叶绿体基因组序
列特征的报道ꎬ 将有助于促进该种的居群遗传学、 系统发育和叶绿体基因工程的研究ꎮ
关键词: 苹果ꎻ 叶绿体基因组ꎻ 重复分析ꎻ SSRs
中图分类号: Q 75            文献标识码: A                文章编号: 2095-0845(2014)04-468-17
Characterization of the Complete Chloroplast Genome
of Apple (Malus × domesticaꎬ Rosaceae)∗
JIN Gui ̄Hua1ꎬ2ꎬ CHEN Si ̄Yun1ꎬ YI Ting ̄Shuang1ꎬ ZHANG Shu ̄Dong1∗∗
(1 Germplasm Bank of Wild Species in Southwest Chinaꎬ Kunming Institute of Botanyꎬ Chinese Academy of Sciencesꎬ
Kunming 650201ꎬ Chinaꎻ 2 University of Chinese Academy of Sciencesꎬ Beijing 100049ꎬ China)
Abstract: Apple (Malus × domestica) is one of the most important temperate fruits. To better understand the molec ̄
ular basis of this speciesꎬ we characterized the complete chloroplast ( cp) genome sequence downloaded from Ge ̄
nome Database for Rosaceae. The cp genome of apple is a circular molecule of 160 068 bp in length with a typical
quadripartite structure of two inverted repeats (IRs) of 26 352 bpꎬ separated by a small single copy region of 19 180
bp (SSC) and a large single ̄copy region (LSC) of 88 184 bp. A total of 135 predicted genes (115 unique genesꎬ
and another 20 genes were duplicated in the IR) were identifiedꎬ including 81 protein ̄coding genesꎬ four rRNA
genes and 30 tRNA genes. Three genes of ycf15ꎬ ycf68 and infA contain several internal stop codonsꎬ which were in ̄
terpreted as pseudogenes. The genome structureꎬ gene orderꎬ GC content and codon usage of apple are similar to the
typical angiosperm cp genomes. Thirty repeat regions (≥30 bp) were detectedꎬ twenty ̄one of which are tandemꎬ six
are forward and three are inverted repeats. Two hundred thirty ̄seven simple sequence repeat (SSR) loci were re ̄
植 物 分 类 与 资 源 学 报  2014ꎬ 36 (4): 468~484
Plant Diversity and Resources                                    DOI: 10.7677 / ynzwyj201413188

∗∗
Funding: The Ministry of Science and Technologyꎬ Chinaꎬ Basic Research Project (2013FY112600)ꎬ the National Natural Science Founda ̄
tion of China (31200172)ꎬ and the Talent Project of Yunnan Province (2011CI042)
Author for correspondenceꎻ E ̄mail: sdchang@mail􀆰 kib􀆰 ac􀆰 cn
Received date: 2013-09-16ꎬ Accepted date: 2013-11-18
作者简介: 金桂花 (1988-) 女ꎬ 在读硕士ꎬ 主要从事植物生物信息学研究ꎮ E ̄mail: jinguihua@mail􀆰 kib􀆰 ac􀆰 cn
vealed and most of them are composed of A or Tꎬ contributing to a distinct bias in base composition. Additionallyꎬ
average 10 000 bp non ̄coding region contains 24 SSR sitesꎬ while protein ̄coding region contains five SSR sitesꎬ in ̄
dicating an uneven distribution of SSRs. The complete cp genome sequence of apple reported in this paper will facili ̄
tate the future studies of its population geneticsꎬ phylogenetics and chloroplast genetic engineering.
Key words: Appleꎻ Chloroplast genomeꎻ Repeat analysisꎻ SSRs
  Appleꎬ Malus × domestica Borkh.ꎬ belongs to
the tribe Pyreae of Rosaceae (Potter et al.ꎬ 2007)ꎬ
cultivated all over the world except in Tundra cli ̄
mates and the arctic regions. Apple is one of the ol ̄
dest and most economically important temperate
fruit. Globallyꎬ there are more than 7 500 known
cultivars of applesꎬ resulting in a range of desired
characteristics. According to the data from the Food
and Agriculture Organization of the United Nationsꎬ
the total apple production in 2010 was about 69 mil ̄
lion tonsꎬ and the overall area of apple plantation
was 5􀆰 62 million hectares (www􀆰 fao􀆰 org). Apple is
considered to have the best economic valueꎬ but this
species is highly susceptible to a number of fungalꎬ
bacterial diseases and insect pestsꎬ which annually
reduce the harvest by 12% to 25%. Howeverꎬ intro ̄
duction or deletion of target genes by means of con ̄
ventional hybridization is generally costlyꎬ of low ef ̄
ficiency and a long ̄term process because of the high
heterozygocity and long juvenile period of the apple
plants.
The chloroplasts (cp)ꎬ considered to be origi ̄
nated from cyanobacteria through endosymbiosis are
the photosynthetic organelles that provide essential
energy for plants and algae ( Howe et al.ꎬ 2003ꎻ
Grayꎬ 1989). This intracellular organelle encodes a
number of chloroplast ̄specific components and in ̄
volves in major functions such as sugar synthesisꎬ
starch storageꎬ the production of several amino
acidsꎬ lipidsꎬ vitamins and pigments and also in key
sulfur and nitrogen metabolic pathways (Martin et
al.ꎬ 2013). Earlier studies have demonstrated that
gene contentꎬ gene orderꎬ and genome organization
of cp genome are largely conserved within land
plants with restriction site mapping (Raubeson and
Jansenꎬ 2005ꎻ Palmerꎬ 1991). Howeverꎬ with the
increasing number of whole cp genome availableꎬ
many structural rearrangementsꎬ large IR expansion /
contraction and gene loss have been found (Chumley
et al.ꎬ 2006ꎻ Millen et al.ꎬ 2001ꎻ Guisinger et al.ꎬ
2010). These events coupled with sequences per se
provide sufficient information for genome ̄wide evolu ̄
tionary studies. It has shown great potentials in resol ̄
ving phylogenetic questions at both high and low ta ̄
xonomic levelsꎬ and sometimes it is necessary to use
complete cp genome sequences for resolving complex
evolutionary relationships ( Givnish et al.ꎬ 2010ꎻ
Downie and Palmerꎬ 1992ꎻ Jansen et al.ꎬ 2007).
Meanwhileꎬ comparative analysis of cp genomes from
distant and closely related species will facilitate the
association of important traits controlled by plastid
genomes (Liu et al.ꎬ 2013).
Velasco et al. (2010) reported a high ̄quality
draft genome sequence of apple and reconstructed
the phylogeny of the genus Malus applying 23 nucle ̄
ar genesꎬ the progenitor of the cultivated apple have
been identified as M􀆰 sieversii. Compared with the
nuclear genome sequenceꎬ our understanding of ap ̄
ple’s cp genome is left behindꎬ although the com ̄
plete chloroplast genome of apple has been released
alonged with nuclear genome sequence (Velasco et
al.ꎬ 2010ꎬ http: / / www􀆰 rosaceae􀆰 org / projects / ap ̄
ple_genome). In this articleꎬ we annotated the cp
genome of apple in detail. In additionꎬ we deter ̄
mined the distribution and location of microsatellites
(SSRs) and repeats in the apple cp genome. The
obtained cp genome information will be widely used
for its population genetics and breeding programs.
1  Materials and methods
1􀆰 1  Genome annotation
Velasco et al. (2010) have assembled Malus ×
9644期            JIN Gui ̄Hua et al.: Characterization of the Complete Chloroplast Genome of Apple 􀆺              
domestica cp genome sequence with 847 × coverage.
This high ̄quality cp genome sequence can be down ̄
loaded from GDR / Genome Database for Rosaceae
(http: / / www􀆰 rosaceae􀆰org / projects / apple_genome).
The cp genome was annotated using the program
DOGMA (Wyman et al.ꎬ 2004)ꎬ coupled with man ̄
ual corrections for start and stop codons and intron /
exon boundaries. The tRNA genes were identified u ̄
sing DOGMA and tRNAscan ̄SE ( Schattner et al.ꎬ
2005). Codon usage was analyzed using VB script.
The circular cp genome map was drawn using OG ̄
DRAW program (Lohse et al.ꎬ 2007).
1􀆰 2  Repeat analysis
REPuter (Kurtz et al.ꎬ 2001) was used to vi ̄
sualize both forward and inverted repeats. The mini ̄
mal repeat size was set to 30 bp and the identity of
repeats was no less than 90% (hamming distance e ̄
qual to 3). Tandem repeats were analyzed using
Tandem Repeats Finder ( TRF) v4􀆰 04 ( Bensonꎬ
1999) with parameter settings as described by Nie et
al. ( 2012). Overlapping repeats were merged into
one repeat motif whenever possible. A given region
in the genome was designated as only one repeat
typeꎬ and tandem repeat was prior to other repeats if
one repeat motif could be identified as both tandem
and other ones.
1􀆰 3  SSR analysis
We detected SSRs longer than 8 bp from apple
cp genome. This threshold was set because SSRs of 8
bp or longer are prone to slip ̄strand mispairingꎬ
which is thought to be the primary mutational mecha ̄
nism causing their high level of polymorphism (Huo ̄
tari and Korpelainenꎬ 2012ꎻ Raubeson et al.ꎬ 2007ꎻ
Rose and Falushꎬ 1998). Microsatellites ( mono ̄ꎬ
di ̄ꎬ tri ̄ꎬ tetra ̄ꎬ penta ̄ꎬ and hexa ̄nucleotide re ̄
peats) detection was performed using MISA (Thiel
et al.ꎬ 2003) with minimum number of repeats of 8ꎬ
4ꎬ 4ꎬ 3ꎬ 3ꎬ 3 for 1ꎬ 2ꎬ 3ꎬ 4ꎬ 5ꎬ 6 unit sizeꎬ re ̄
spectively. SSRs analysis only considered one invert ̄
ed repeat region ( IRb). All of the repeats found
were manually verifiedꎬ and the redundant results
were removed.
2  Results
2􀆰 1  Genome organization
The complete cp genome of apple is a circular
DNA molecule of 160 068 bp with a quadripartite
structure typical of the majority of the land plant
chloroplast chromosomes. It has the largest cp ge ̄
nome size among five Rosaceae species (Table 1).
The cp genome harbors a pair of identical inverted
repeat regions (IRa and IRb)ꎬ which are 26 352 bp
each. The inverted repeat regions are separated by
the large (LSC) and small ( SSC) single ̄copy re ̄
gions of 88 184 and 19 180 bpꎬ respectively (Table
1ꎬ Fig􀆰 1). The IRs span from rps19 to portion of
ycf1. The overall GC content of the apple cp genome
is 36􀆰 5%ꎬ 42􀆰 7% within the inverted repeat regionꎬ
34􀆰 2% and 30􀆰 4% within the LSC and SSC (Table
2). The high GC content of IRs is caused by four
GC ̄rich rRNA genes (with an average GC content of
55􀆰 5%).
2􀆰 2  Gene content
The positions of all the genes identified in the
apple cp genome and category ̄wise distribution of
these genes are presented in Figure 1 and Table 3.
The apple cp genome encodes 135 predicted genesꎬ
of which 115 are unique. The unique genes include
Table 1  Summary of the Rosaceae cp genome features
Taxon Genbank Genome Size/ bp
LSC length
/ bp
IRa length
/ bp
SSC length
/ bp Reference
Fragaria vesca subsp. vesca NC_015206 155691 85606 25555 18175 Shulaev et al.ꎬ 2011
Pentactina rupicola NC_016921 156612 84970 26350 19237 Lee and Hongꎬ 2011
Prunus persica NC_014697 157790 85969 26381 19060 Jansen et al.ꎬ 2011
Pyrus pyrifolia NC_015996 159922 87901 26392 19237 Terakami et al.ꎬ 2012
Malus × domestica 160068 88184 27352 19180 This study
074                                  植 物 分 类 与 资 源 学 报                            第 36卷
81 protein ̄codingꎬ 30 tRNA and four rRNA genes
(Table 3). Nine protein ̄codingꎬ seven tRNA and
all four rRNA genes are duplicated in the IR regions.
Protein ̄coding genesꎬ tRNAs and rRNAs make up
Fig􀆰 1  Map of the apple cp genome
The thick lines indicate the extent of the IRs (IRa and IRb) which separate the genome into SSC and LSC regions. Genes lying outside the
map are transcribed clockwise whereas gene inside are transcribed counter clockwise. Genes belonging to different functional groups are color
coded. Area dashed darker gray in the inner circle indicates GC content while the lighter gray corresponds to AT content of the genome
Table 2  Base composition in the apple chloroplast genome
Genome features Codon composition A / % T(U) / % G / % C / % Length / bp
LSC 32􀆰 2 33􀆰 6 16􀆰 6 17􀆰 6 88 184
SSC 34􀆰 8 34􀆰 8 14􀆰 5 15􀆰 9 19 180
IRa 28􀆰 6 28􀆰 7 20􀆰 6 22􀆰 1 26 352
IRb 28􀆰 7 28􀆰 6 22􀆰 1 20􀆰 6 26 352
Total 35􀆰 1 32􀆰 1 17􀆰 9 18􀆰 6 160 068
CDS 30􀆰 9 31􀆰 4 20􀆰 1 17􀆰 5 79 650
1st position 31􀆰 0 23􀆰 8 26􀆰 7 18􀆰 5 26 550
2nd position 29􀆰 6 32􀆰 5 17􀆰 8 20􀆰 1 26 550
3rd position 32􀆰 2 38􀆰 0 15􀆰 9 13􀆰 9 26 550
CDS: Coding DNA Sequence
1744期            JIN Gui ̄Hua et al.: Characterization of the Complete Chloroplast Genome of Apple 􀆺              
47􀆰 9%ꎬ 1􀆰 7% and 5􀆰 4% of the genomeꎬ respective ̄
lyꎬ while introns and intergenic spacers constitute the
remaining 45􀆰 0%. The LSC region contains 61 pro ̄
tein ̄coding genes and 22 tRNA genesꎬ whereas the
SSC region contains 11 protein ̄coding genes and one
tRNA gene. Eighteen genes in the apple cp genome
contain intronsꎬ three (clpPꎬ rps12 and ycf3) of which
consisted of two introns ( Table 4). The trnK ̄UUU
has the largest intron ( 2 516 bp)ꎬ where another
geneꎬ matKꎬ is nested within it. For the rps12 geneꎬ
the 5’ exon is located in the LSC regionꎬ and the 3’
exon is located in the IR regions. The ycf1 and rps19
are located in the boundary regions between IRb / SSC
and IRa / LSCꎬ respectively. Incomplete duplications
of the normal copy of ycf1 and rps19 at these bounda ̄
ries have resulted in a lack of protein ̄coding ability.
The psbD ̄psbC and ycf1 ̄ndhF are two cases of over ̄
lapping genes.
2􀆰 3  Codon usage
Based on the sequences of protein ̄coding genes
Table 3  Genes present in the apple chroloplast genome
Group of genes Gene names
Photosystem I psaAꎬ psaBꎬ psaCꎬ psaIꎬ psaJ
Photosystem II psbAꎬ psbBꎬ psbCꎬ psbDꎬ psbEꎬ psbFꎬ psbHꎬ psbIꎬ psbJꎬ psbKꎬ psbLꎬ psbMꎬ psbNꎬ psbTꎬ psbZ
Cytochrome b / f complex petAꎬ petB∗ꎬ petD∗ꎬ petGꎬ petLꎬ petN
ATP synthase atpAꎬ atpBꎬ atpEꎬ atpF∗ꎬ atpHꎬ atpI
NADH dehydrogenase ndhA∗ꎬ ndhB∗(×2)ꎬ ndhCꎬ ndhDꎬ ndhEꎬ ndhFꎬ ndhGꎬ ndhHꎬ ndhIꎬ ndhJꎬ ndhK
RubisCO large subunit rbcL
RNA polymerase rpoAꎬ rpoBꎬ rpoC1∗ꎬ rpoC2
Ribosomal proteins (SSU) rps2ꎬ rps3ꎬ rps4ꎬ rps7 (×2)ꎬ rps8ꎬ rps11ꎬ rps12∗∗(×2)ꎬ rps14ꎬ rps15ꎬ rps16∗ꎬ rps18ꎬ rps19
Ribosomal proteins (LSU) rpl2∗(×2)ꎬ rpl14ꎬ rpl16∗ꎬ rpl20ꎬ rpl22ꎬ rpl23 (×2)ꎬ rpl32ꎬ rpl33ꎬ rpl36
Other genes clpP∗∗ꎬ matKꎬ accDꎬ ccsAꎬ infAꎬ cemA
Proteins of unknown function ycf1ꎬ ycf2 (×2)ꎬ ycf3∗∗ꎬ ycf4ꎬ ycf15 (×2)ꎬ ycf68 (×2)
Transfer RNAs 37 tRNAs (6 contain an intronꎬ 7 in the IRs)
Ribosomal RNAs rrn4􀆰 5 (×2)ꎬ rrn5 (×2)ꎬ rrn16 (×2)ꎬ rrn23 (×2)
One or two asterisks after genes indicate that gene contains one or two intronsꎬ respectively
Table 4  The genes with introns in the apple cp genome and the length of the exons and introns
Gene Location Exon I / bp Intron I / bp Exon II / bp Intron II / bp Exon III / bp
atpF LSC 411 733 144
clpP LSC 228 650 291 824 69
ndhA SSC 540 1141 552
ndhB IR 756 670 777
petB LSC 6 798 642
petD LSC 9 725 474
rpl16 LSC 399 989 9
rpl2 IR 435 687 390
rpoC1 LSC 1611 742 435
rps12∗ LSC 114 — 26 542 231
rps16 LSC 231 860 42
trnA ̄UGC IR 38 808 35
trnG ̄GCC LSC 23 707 37
trnI ̄GAU IR 42 944 35
trnK ̄UUU LSC 35 2516 37
trnL ̄UAA LSC 37 515 50
trnV ̄UAC LSC 37 593 39
ycf3 LSC 153 745 228 709 126
The rps12 is a trans ̄spliced gene with the 5’ end located in the LSC region and the duplicated 3’ end in the IR regions
274                                  植 物 分 类 与 资 源 学 报                            第 36卷
and tRNA genes within the chloroplast genomeꎬ the
relative synonymous codon usage ( RSCU) ( Sharp
and Liꎬ 1986) was deduced for the apple genome
and summarized in Supplementary Table 1. The co ̄
don usage of the apple chloroplast genome strongly
reflects the AT bias. Within coding DNA sequence
(CDS)ꎬ the percentage of AT content for the firstꎬ
second and third codon positions are 54􀆰 8%ꎬ 62􀆰 1%
and 70􀆰 2%ꎬ respectively (Table 2). Moreoverꎬ the
81 protein ̄coding genes comprise 79 650 bp coding
for 26 550 codons. Among these codonsꎬ 2 781
(10􀆰 5%) encode leucineꎬ and 307 (1􀆰 1%) encode
cysteineꎬ which are the most and least prevalent a ̄
mino acidsꎬ respectively. The highest codon usage
was observed for ATT or isoleucine ( Ile). High co ̄
don usage was also observed for Lysine (Lys) and
Glutamine (Glu) (Supplementary Table 1). Instead
of a common ATG start codonꎬ we identified GTG as
start codon for rps19. All of three stop codons are
present with UAA being the most frequently used
(UAA 58􀆰 8%ꎬ UAG 23􀆰 3% and UGA 17􀆰 8%).
2􀆰 4  Non ̄functional genes
The gene ycf15 employs GTG as start codon and
several stop codons were detectedꎬ which indicates
that it is most likely to be a non ̄functional gene. The
reading frame of this gene contains one insertion
‘ACTA’ unitꎬ causing the frameshift and the resul ̄
ting internal stop codons (Fig􀆰 2: A). On the other
handꎬ the ycf68 gene is a truncated pseudogene with
accumulated stop codons in its reading frameꎬ which
caused by one absence ‘AAAC’ unit and two dele ̄
tion events ( total 13 bp) ( Fig􀆰 2: B). We also
found infA gene was probably non ̄functional in apple
chloroplast genome due to the presence of several
premature stop codons caused by insertion of one
‘TATC’ unit (Fig􀆰 2: C).
2􀆰 5  Repeat analysis
For repeat structure analysisꎬ we detected six
directꎬ three inverted and 21 tandem repeats in the
apple cp genome (Supplementary Table 2). Most of
these repeats exhibit length between 30 and 41 bp
(Fig􀆰 3: A). The longest repeat of 91 bp is located
in the intergenic region between psbZ and trnG ̄UCC
within the LSC. Tandem repeatsꎬ accounting for 70%
of total repeatsꎬ are the most common among three re ̄
peat types (Fig􀆰 3: B). Most of the repeats (76%)
are distributed within the intergenetic spacer regionsꎬ
together with 8% in the intronsꎬ 8% in the CDS re ̄
gion and 8% in the tRNAꎬ respectively (Fig􀆰 3: C).
2􀆰 6  SSR analysis
Chloroplast simple sequence repeats (SSRs) of
apple were examined and listed in Supplementary
Table 3ꎬ along with their nucleotide sequences and
positions within the cp genome. We indentified 237
SSR loci (≥8 bp) totallyꎬ of which 164 mononucle ̄
otideꎬ 68 dinucleotideꎬ four tetranucleotideꎬ and
one hexanucleotide. Among these cpSSR nucleotide
unitsꎬ the longest one is a polyT of 26 bpꎬ and the
majority of mononucleotide repeat units are com ̄
posed of A (64) or T (94)ꎬ while only six are com ̄
posed of tandem G or C. The majority of repeat units
are ~ 9 bp long (62 with 8 bpꎬ 39 with 9 bpꎬ 21
with 10 bp )ꎬ which are accounted for 51􀆰 48%
(122 / 237) of all cpSSRs. CpSSRs are unevenly dis ̄
tributed across the whole genome: 175 in the LSCꎬ
23 in the IRbꎬ and 39 in the SSC regions. Analyses
of function ̄related location revealed 158 cpSSRs lo ̄
cate in intergenic spacer regionsꎬ 38 in intronsꎬ and
41 in CDS of 18 genesꎬ among whichꎬ 17 genes
were found to harbor at least two SSRs.
3  Discussion
3􀆰 1  Genome Organization
In generalꎬ the size of photosynthetic land plant
plastid chromosomes ranges from 108 kb to 165 kb
(Palmerꎬ 1991ꎻ Raubeson and Jansenꎬ 2005). The
cp genome of apple is at the upper boundaryꎬ which
is also the largest one among the five available Rosa ̄
ceae cp genomes. It is about 0􀆰 1 kbꎬ 2􀆰 2 kbꎬ 3􀆰 4
kb and 4􀆰 3 kb larger than Pyrus pyrifoliaꎬ Prunus
persicaꎬ Pentactina rupicola and Fragaria vestica
subsp. vesticaꎬ respectively. The genome size varia ̄
tion is mainly caused by differences in the length of
SSC and IR regions (Table 1).
3744期            JIN Gui ̄Hua et al.: Characterization of the Complete Chloroplast Genome of Apple 􀆺              
Fig􀆰 2  Alignment of three pseudogenes
A. Alignment of the ycf15 gene and protein sequences in the two representative species of angiosperms [Nicotiana (NC_001879) and Atropa
(NC_004561)]. Black asterisks indicate stop codon in protein. Red arrows indicate the insertion region ‘TCTA’ in apple. B. Alignment of
the ycf68 gene and protein sequences in the two representative species of angiosperms [Zea (NC_001666) and Oryza (NC_001320)]. Red
arrows of box indicate the ‘AAAC’ unit missing in apple. C. Alignment of the infA gene and protein sequences in the three representative
species of angiosperms [Vitis (NC_007957) and Sasamum (NC_016433)]. Red arrows indicate the ‘AGAT’ unit missing in apple
474                                  植 物 分 类 与 资 源 学 报                            第 36卷
Fig􀆰 3  Repeat structure analysis in the apple cp genome
The cutoff value for tandem repeat is 15 bp and 30 bp for dispersed repeat. (A) Histogram showing the number of repeats in the
apple chloroplast genome. (B) Composition of the 30 repeats. (C) Location of 30 repeats
  The apple cp genome exhibits largely identical
gene order and content to most sequenced angio ̄
sperm cp genomesꎬ emphasizing the highly con ̄
served nature of these land plant cp genomes
(Wicke et al.ꎬ 2011). Its GC content is in accor ̄
dance with the typical angiosperm cp genomes (Shi ̄
nozaki et al.ꎬ 1986ꎻ Kim and Leeꎬ 2004ꎻ Hiratsuka
et al.ꎬ 1989ꎻ Sato et al.ꎬ 1999ꎻ Terakami et al.ꎬ
2012). The codon usage bias towards a higher AT
representation at the third codon position was also ob ̄
served in other land plant cp genomes (Yang et al.ꎬ
2010ꎻ Nie et al.ꎬ 2012ꎻ Yi and Kimꎬ 2012ꎻ Tang ̄
phatsornruang et al.ꎬ 2010ꎻ Qian et al.ꎬ 2013).
Three genes are non ̄functional in the apple cp
genomeꎬ the ycf15ꎬ infA and ycf68. Both ycf15 and
ycf68 contain four internal stop codons. These two
pseudogenes has been rarely mentioned in previous
studies (Ravi et al.ꎬ 2007ꎻ Shi et al.ꎬ 2013) and
were not annotated in the other four reported Rosace ̄
ae cp genomes. The validity of ycf15 as a protein ̄
coding gene has long been questioned (Chumley et
al.ꎬ 2006ꎻ Steaneꎬ 2005). Thoughꎬ Shi et al. (2013)
have suggested the ycf15 gene was transcribed as
precursor polycistronic transcript which contained
ycf2ꎬ ycf15 and antisense trnL ̄CAA in the Camellia
transcriptome. This gene is disabled in some of angi ̄
osperms such as Amborella ( Goremykin et al.ꎬ
2003) and Nuphar (Raubeson et al.ꎬ 2007)ꎬ mono ̄
cotsꎬ most rosidsꎬ and some other separate lineages
(Shi et al.ꎬ 2013). In appleꎬ the imperfect ycf15
gene indicates that it is probably a remnant of a
functional gene in one of its predecessors. The ycf68
sequenceꎬ which occurs in the trnI ̄GAU intronꎬ has
been proved to be a functional protein encoding gene
in riceꎬ cornꎬ maize and Pinus (Raubeson et al.ꎬ
2007). Howeverꎬ Raubeson et al. (2007) analyzed
this gene in 14 angiosperms and exhibit multiple
frameshifts caused internal stop codons in most ca ̄
sesꎬ which is proved again in apple. Coding transla ̄
tion initiation factor 1ꎬ infA gene stands out as an
unusually unstable angiosperm chloroplast geneꎬ
which has been detected to be lost from the chloro ̄
plast genome on many separate occasions especially
in Eurosids and transferred to the nucleus multiple
times (Millen et al.ꎬ 2001). The three eurosids taxa
(Eucalyptusꎬ Populus and Jatropha) contain infAꎬ
however was proved to be pseudogene with multiple
stop codons (Asif et al.ꎬ 2010). Our results tell a
same story of infA in apple. Why these three genes
degenerated in some land plant cp genome deserve
further study.
Most repeats are located in the intergenic spac ̄
ers and intronsꎬ but several occur in tRNA genes
and CDS. Short dispersed repeats are considered to
be one of the major factors promoting cp genome re ̄
combination and rearrangement because they are
common in highly rearranged algal and angiosperm
genomesꎬ and many rearrangement endpoints are as ̄
5744期            JIN Gui ̄Hua et al.: Characterization of the Complete Chloroplast Genome of Apple 􀆺              
sociated with such repeats (Lee et al.ꎬ 2007ꎻ Yue et
al.ꎬ 2007ꎻ Haberle et al.ꎬ 2008ꎻ Pombert et al.ꎬ
2005ꎻ Chumley et al.ꎬ 2006). In the un ̄rearranged
cp genomeꎬ most of the repeats are located mostly in
intergenic spacer regions and intronsꎬ although sev ̄
eral are located in the protein ̄coding genes of psaAꎬ
psaB and ycf2 (Daniell et al.ꎬ 2006ꎻ Timme et al.ꎬ
2007ꎻ Saski et al.ꎬ 2005). Repeat analysis of apple
cp genome was carried out for the five available Ro ̄
saceae cp genomes for the first timeꎬ which will pro ̄
vide more informative sources for developing markers
for its population and phylogeny studies.
In our studyꎬ we detected 237 SSRs with une ̄
ven distribution in the apple cp genome. Most of the
SSRs were found in the nocoding regionsꎬ which is
not unusual as a result of the higher number of muta ̄
tions within these regions compared with more con ̄
served coding regions (Ebert and Peakallꎬ 2009).
Additionallyꎬ there was a significantly larger number
of A and T microsatellites than G and Cꎬ which has
been reported previously in other taxa ( Kuang et
al.ꎬ 2011ꎻ Qian et al.ꎬ 2013ꎻ Raubeson et al.ꎬ
2007). SSR is another repeat type which is based on
simpler motif and shorter than aforementioned re ̄
peats. SSRs have been used to obtain high resolution
in some closely related plant taxaꎬ proving to be ef ̄
fective genetic markers to study plant breedingꎬ pop ̄
ulation geneticsꎬ biological conservationꎬ mating
systemsꎬ and uniparental lineages ( Terrab et al.ꎬ
2006ꎻ Cardle et al.ꎬ 2000ꎻ Peakall et al.ꎬ 1998).
By analyzing the complete chloroplast genome of ap ̄
pleꎬ we hope to facilitate future studies by selecting
target regions for more in ̄depth population studies
within the genus.
3􀆰 2  Implications for Chloroplast Genetic Engi ̄
neering
Chloroplast genetic engineering is exemplary for
its unique advantages including the possibility of
multi ̄gene engineering in a single transformation e ̄
ventꎬ transgene containment due to maternal inheri ̄
tanceꎬ high levels of transgene expression and lack
of gene silencing (Daniellꎬ 2007ꎻ Verma and Daniellꎬ
2007ꎻ Verma et al.ꎬ 2008). Foreign gene integra ̄
tion in to the chloroplast genome occurs via homolo ̄
gous recombination of flanking sequences used in
chloroplast vectors ( Verma and Daniellꎬ 2007 ).
Chloroplast transformation has made significant pro ̄
gress in the model species tobacco as well as in a
few major cropsꎬ such as potatoꎬ tomato and cotton
(Verma et al.ꎬ 2008ꎻ Verma and Daniellꎬ 2007).
Although the trnI ̄trnA and accD ̄rbcL intergenic
spacer regions have been widely used as gene intro ̄
duction sites for vector construction (Verma et al.ꎬ
2008)ꎬ the transformation efficiency is impaired
when the sequences for homologous recombination
are divergent among distantly related species (Ruhl ̄
man et al.ꎬ 2006). Howeverꎬ spacer regions are not
100% identical even in members of the same family.
Comparison of intergenic spacer regions among mem ̄
bers of Solanaceae revealed that only four regions are
identical (Daniell et al.ꎬ 2006). Similarlyꎬ compar ̄
ison of intergenic spacer regions of nine grass cp ge ̄
nomes revealed that not even a single spacer region
is identical among all sequenced cp genomes (Saski
et al.ꎬ 2007). Terakami et al. (2012) investigated
several deletions and insertions in the intergenic
spacer regions amongst the Pyrusꎬ Malus and Prunus
cp genomesꎬ such as ndhC ̄trnVꎬ trnR ̄atpAꎬ rpl33 ̄
rps18ꎬ psbI ̄trnS and accD ̄psaI. There are no inter ̄
genic spacer regions with 100% identity in the Rosa ̄
ceae available cp genome. The availability of the
complete cp genome sequence of apple is helpful to
identify the optimal intergenic spacers for transgene
integration and to develop site ̄specific cp transfor ̄
mation vectors. Using cp genetic engineering to in ̄
troduce useful traitsꎬ such as pests resistance and
drought toleranceꎬ might be other applications to im ̄
prove this economic plant.
References:
Asif MHꎬ Mantri SSꎬ Sharma A et al.ꎬ 2010. Complete sequence and
organisation of the Jatropha curcas (Euphorbiaceae) chloroplast
genome [J] . Tree Genetics & Genomesꎬ 6: 941—952
Benson Gꎬ 1999. Tandem repeats finder: A program to analyze DNA
sequences [J] . Nucleic Acids Researchꎬ 27: 573—580
674                                  植 物 分 类 与 资 源 学 报                            第 36卷
Cardle Lꎬ Ramsay Lꎬ Milbourne D et al.ꎬ 2000. Computational and
experimental characterization of physically clustered simple se ̄
quence repeats in plants [J] . Geneticsꎬ 156: 847—854
Chumley TWꎬ Palmer JDꎬ Mower JP et al.ꎬ 2006. The complete chlo ̄
roplast genome sequence of Pelargonium × hortorum: Organiza ̄
tion and evolution of the largest and most highly rearranged chlo ̄
roplast genome of land plants [ J] . Molecular Biology and Evo ̄
lutionꎬ 23: 2175—2190
Daniell Hꎬ 2007. Transgene containment by maternal inheritance: Ef ̄
fective or elusive? [ J] . Proceedings of the National Academy of
Sciences of the United States of Americaꎬ 104: 6879—6880
Daniell Hꎬ Lee SBꎬ Grevich J et al.ꎬ 2006. Complete chloroplast ge ̄
nome sequences of Solanum bulbocastanumꎬ Solanum lycopersi ̄
cum and comparative analyses with other Solanaceae genomes
[J] . Theoretical and Applied Geneticsꎬ 112: 1503—1518
Downie SRꎬ Palmer JDꎬ 1992. Use of chloroplast DNA rearrange ̄
ments in reconstructing plant phylogeny [ A]. In: Soltis PSꎬ
Soltis DEꎬ Doyle JJ ( eds.)ꎬ Molecular Systematics of Plants
[M]. New York: Chapman and Hallꎬ 14—35
Ebert Dꎬ Peakall Rꎬ 2009. Chloroplast simple sequence repeats
(cpSSRs): Technical resources and recommendations for expan ̄
ding cpSSR discovery and applications to a wide array of plant
species [J] . Molecular Ecology Resourcesꎬ 9: 673—690
Givnish TJꎬ Ames Mꎬ McNeal JR et al.ꎬ 2010. Assembling the tree of
the monocotyledons: Plastome sequence phylogeny and evolution
of Poales [ J] . Annals of the Missouri Botanical Gardenꎬ 97:
584—616
Goremykin VVꎬ Hirsch ̄Ernst KIꎬ Wölfl S et al.ꎬ 2003. Analysis of
the Amborella trichopoda chloroplast genome sequence suggests
that Amborella is not a basal angiosperm [J] . Molecular Biology
and Evolutionꎬ 20: 1499—1505
Gray MWꎬ 1989. The evolutionary origins of organelles [J] . Trends in
Geneticsꎬ 5: 294—299
Guisinger MMꎬ Chumley TWꎬ Kuehl JV et al.ꎬ 2010. Implications of
the plastid genome sequence of Typha (Typhaceaeꎬ Poales) for
understanding genome evolution in Poaceae [J] . Journal of Mo ̄
lecular Evolutionꎬ 70: 149—166
Haberle RCꎬ Fourcade HMꎬ Boore JL et al.ꎬ 2008. Extensive rear ̄
rangements in the chloroplast genome of Trachelium caeruleum
are associated with repeats and tRNA genes [J] . Journal of Mo ̄
lecular Evolutionꎬ 66: 350—361
Hiratsuka Jꎬ Shimada Hꎬ Whittier R et al.ꎬ 1989. The complete se ̄
quence of the rice (Oryza sativa) chloroplast genome: Intermo ̄
lecular recombination between distinct tRNA genes accounts for a
major plastid DNA inversion during the evolution of the cereals
[J] . Molecular and General Geneticsꎬ 217: 185—194
Howe CJꎬ Barbrook ACꎬ Koumandou VL et al.ꎬ 2003. Evolution of
the chloroplast genome [ J] . Philosophical Transactions of the
Royal Society of London Series B ̄Biological Sciencesꎬ 358: 99—
106
Huotari Tꎬ Korpelainen Hꎬ 2012. Complete chloroplast genome se ̄
quence of Elodea canadensis and comparative analyses with other
monocot plastid genomes [J] . Geneꎬ 508: 96—105
Jansen RKꎬ Cai Zꎬ Raubeson LA et al.ꎬ 2007. Analysis of 81 genes
from 64 plastid genomes resolves relationships in angiosperms and
identifies genome ̄scale evolutionary patterns [ J] . Proceedings of
the National Academy of Sciences of the United States of Americaꎬ
104: 19369—19374
Jansen RKꎬ Saski Cꎬ Lee SB et al.ꎬ 2011. Complete plastid genome
sequences of three rosids (Castaneaꎬ Prunusꎬ Theobroma): Evi ̄
dence for at least two independent transfers of rpl22 to the nucleus
[J] . Molecular Biology and Evolutionꎬ 28: 835—847
Kim KJꎬ Lee HLꎬ 2004. Complete chloroplast genome sequences from
Korean ginseng (Panax schinseng Nees) and comparative analy ̄
sis of sequence evolution among 17 vascular plants [ J] . DNA
Researchꎬ 11: 247—261
Kuang DYꎬ Wu Hꎬ Wang YL et al.ꎬ 2011. Complete chloroplast ge ̄
nome sequence of Magnolia kwangsiensis (Magnoliaceae): Im ̄
plication for DNA barcoding and population genetics [ J] . Ge ̄
nomeꎬ 54: 663—673
Kurtz Sꎬ Choudhuri JVꎬ Ohlebusch E et al.ꎬ 2001. REPuter: The
manifold applications of repeat analysis on a genomic scale [ J] .
Nucleic Acids Researchꎬ 29: 4633—4642
Lee Cꎬ Hong SPꎬ 2011. Phylogenetic relationships of the rare Korean
monotypic endemic genus Pentactina nakai in the tribe Spiraeeae
(Rosaceae) based on molecular data [J] . Plant Systematics and
Evolutionꎬ 294: 159—166
Lee HLꎬ Jansen RKꎬ Chumley TW et al.ꎬ 2007. Gene relocations
within chloroplast genomes of Jasminum and Menodora (Oleace ̄
ae) are due to multipleꎬ overlapping inversions [ J] . Molecular
Biology and Evolutionꎬ 24: 1161—1180
Liu Yꎬ Huo NXꎬ Dong LL et al.ꎬ 2013. Complete chloroplast genome
sequences of Mongolia medicine Artemisia frigida and phylogenetic
relationships with other plants [J] . PLOS ONEꎬ 8: e57533
Lohse Mꎬ Drechsel Oꎬ Bock Rꎬ 2007. OrganellarGenomeDRAW
(OGDRAW): A tool for the easy generation of high ̄quality cus ̄
tom graphical maps of plastid and mitochondrial genomes [ J] .
Current Geneticsꎬ 52: 267—274
Martin Gꎬ Baurens FCꎬ Cardi C et al.ꎬ 2013. The complete chloro ̄
plast genome of banana (Musa acuminataꎬ Zingiberales): Insight
into plastid monocotyledon evolution [J] . PLOS ONEꎬ 8: e67350
Millen RSꎬ Olmstead RGꎬ Adams KL et al.ꎬ 2001. Many parallel los ̄
ses of infA from chloroplast DNA during angiosperm evolution with
multiple independent transfers to the nucleus [ J] . The Plant
Cellꎬ 13: 645—658
Nie XJꎬ Lv SZꎬ Zhang YX et al.ꎬ 2012. Complete chloroplast genome
sequence of a major invasive speciesꎬ crofton weed ( Ageratina
adenophora) [J] . PLOS ONEꎬ 7: e36869
Palmer JDꎬ 1991. Plastid chromosomes: Structure and evolution
[A]. In: Bogorad Lꎬ Vasil IK (eds.)ꎬ Cell Culture and Somatic
7744期            JIN Gui ̄Hua et al.: Characterization of the Complete Chloroplast Genome of Apple 􀆺              
Genetics of Plants [M]. San Diego: Academic Pressꎬ 5—53
Peakall Rꎬ Gilmore Sꎬ Keys W et al.ꎬ 1998. Cross ̄species amplifica ̄
tion of soybean (Glycine max) simple sequence repeats (SSRs)
within the genus and other legume genera: Implications for the
transferability of SSRs in plants [J] . Molecular Biology and Evo ̄
lutionꎬ 15: 1275—1287
Pombert JFꎬ Otis Cꎬ Lemieux C et al.ꎬ 2005. The chloroplast genome
sequence of the green alga Pseudendoclonium akinetum ( Ulvo ̄
phyceae) reveals unusual structural features and new insights in ̄
to the branching order of chlorophyte lineages [ J] . Molecular
Biology and Evolutionꎬ 22: 1903—1918
Potter Dꎬ Eriksson Tꎬ Evans RC et al.ꎬ 2007. Phylogeny and classifi ̄
cation of Rosaceae [ J] . Plant Systematics and Evolutionꎬ 266:
5—43
Qian Jꎬ Song Jꎬ Gao H et al.ꎬ 2013. The complete chloroplast genome
sequence of the medicinal plant Salvia miltiorrhiza [ J] . PLOS
ONEꎬ 8: e57607
Raubeson LAꎬ Jansen RK. 2005. Chloroplast genomes of plants [A].
In: Henry RJ ed. Diversity and Evolution of Plants ̄Genotypic and
Phenotypic Variation in Higher Plants [M]. Wallingford: CABI
Publishingꎬ 45—68
Raubeson LAꎬ Peery Rꎬ Chumley TW et al.ꎬ 2007. Comparative
chloroplast genomics: Analyses including new sequences from
the angiosperms Nuphar advena and Ranunculus macranthus
[J] . BMC Genomicsꎬ 8: 174
Ravi Vꎬ Khurana JPꎬ Tyagi AK et al.ꎬ 2007. The chloroplast genome
of mulberry: Complete nucleotide sequenceꎬ gene organization
and comparative analysis [ J] . Tree Genetics & Genomesꎬ 3:
49—59
Rose Oꎬ Falush Dꎬ 1998. A threshold size for microsatellite expansion
[J] . Molecular Biology and Evolutionꎬ 15: 613—615
Ruhlman Tꎬ Lee SBꎬ Jansen RK et al.ꎬ 2006. Complete plastid ge ̄
nome sequence of Daucus carota: Implications for biotechnology
and phylogeny of angiosperms [J] . BMC Genomicsꎬ 7: 222
Saski Cꎬ Lee SBꎬ Daniell H et al.ꎬ 2005. Complete chloroplast ge ̄
nome sequence of Glycine max and comparative analyses with oth ̄
er legume genomes [J] . Plant Molecular Biologyꎬ 59: 309—322
Saski Cꎬ Lee SBꎬ Fjellheim S et al.ꎬ 2007. Complete chloroplast ge ̄
nome sequences of Hordeum vulgareꎬ Sorghum bicolor and Agros ̄
tis stoloniferaꎬ and comparative analyses with other grass genomes
[J] . Theoretical and Applied Geneticsꎬ 115: 571—590
Sato Sꎬ Nakamura Yꎬ Kaneko T et al.ꎬ 1999. Complete structure of
the chloroplast genome of Arabidopsis thaliana [ J] . DNA Re ̄
searchꎬ 6: 283—290
Schattner Pꎬ Brooks ANꎬ Lowe TMꎬ 2005. The tRNAscan ̄SEꎬ
snoscan and snoGPS Web servers for the detection of tRNAs and
snoRNAs [J] . Nucleic Acids Researchꎬ 33: W686—W689
Sharp PMꎬ Li WHꎬ 1986. Codon usage in regulatory genes in Esche ̄
richia coli does not reflect selection for ‘ rare’ codons [ J] . Nu ̄
cleic Acids Researchꎬ 14: 7737—7749
Shi Cꎬ Liu Yꎬ Huang H et al.ꎬ 2013. Contradiction between plastid
gene transcription and function due to complex posttranscriptional
splicing: An exemplary study of ycf15 function and evolution in
angiosperms [J] . POLS ONEꎬ 8: e59620
Shinozaki Kꎬ Ohme Mꎬ Tanaka M et al.ꎬ 1986. The complete nucleo ̄
tide sequence of the tobacco chloroplast genome: Its gene organi ̄
zation and expression [J] . Embo Journalꎬ 5: 2043—2049
Shulaev Vꎬ Sargent DJꎬ Crowhurst RN et al.ꎬ 2011. The genome of
woodland strawberry (Fragaria vesca) [J] . Nature Geneticsꎬ 43:
109—116
Steane DAꎬ 2005. Complete nucleotide sequence of the chloroplast ge ̄
nome from the Tasmanian blue gumꎬ Eucalyptus globulus (Myrta ̄
ceae) [J] . DNA Researchꎬ 12: 215—220
Tangphatsornruang Sꎬ Sangsrakru Dꎬ Chanprasert J et al.ꎬ 2010. The
chloroplast genome sequence of mungbean (Vigna radiata) de ̄
termined by high ̄throughput pyrosequencing: Structural organiza ̄
tion and phylogenetic relationships [ J] . DNA Researchꎬ 17:
11—22
Terakami Sꎬ Matsumura Yꎬ Kurita K et al.ꎬ 2012. Complete sequence
of the chloroplast genome from pear (Pyrus pyrifolia): Genome
structure and comparative analysis [ J ] . Tree Genetics & Ge ̄
nomesꎬ 8: 841—854
Terrab Aꎬ Paun Oꎬ Talavera S et al.ꎬ 2006. Genetic diversity and
population structure in natural populations of Moroccan Atlas ce ̄
dar (Cedrus atlanticaꎻ Pinaceae) determined with cpSSR markers
[J] . American Journal of Botanyꎬ 93: 1274—1280
Thiel Tꎬ Michalek Wꎬ Varshney RK et al.ꎬ 2003. Exploiting EST da ̄
tabases for the development and characterization of gene ̄derived
SSR ̄markers in barley (Hordeum vulgare L.) [ J] . Theoretical
and Applied Geneticsꎬ 106: 411—422
Timme REꎬ Kuehl JVꎬ Boore JL et al.ꎬ 2007. A comparative analysis
of the Lactuca and Helianthus (Asteraceae) plastid genomes: I ̄
dentification of divergent regions and categorization of shared re ̄
peats [J] . American Journal of Botanyꎬ 94: 302—312
Velasco Rꎬ Zharkikh Aꎬ Affourtit J et al.ꎬ 2010. The genome of the
domesticated apple (Malus × domestica Borkh.) [J] . Nature Ge ̄
neticsꎬ 42: 833—839
Verma Dꎬ Daniell Hꎬ 2007. Chloroplast vector systems for biotechnol ̄
ogy applications [J] . Plant Physiologyꎬ 145: 1129—1143
Verma Dꎬ Samson NPꎬ Koya V et al.ꎬ 2008. A protocol for expression
of foreign genes in chloroplasts [J] . Nature Protocolsꎬ 3: 739—
758
Wicke Sꎬ Schneeweiss GMꎬ dePamphilis CW et al.ꎬ 2011. The evolu ̄
tion of the plastid chromosome in land plants: Gene contentꎬ
gene orderꎬ gene function [ J] . Plant Molecular Biologyꎬ 76:
273—297
Wyman SKꎬ Jansen RKꎬ Boore JLꎬ 2004. Automatic annotation of or ̄
ganellar genomes with DOGMA [ J ] . Bioinformaticsꎬ 20:
3252—3255
Yang Mꎬ Zhang XWꎬ Liu GM et al.ꎬ 2010. The complete chloroplast
874                                  植 物 分 类 与 资 源 学 报                            第 36卷
genome sequence of date palm (Phoenix dactylifera L.) [ J] .
PLOS ONEꎬ 5: e12762
Yi DKꎬ Kim KJꎬ 2012. Complete chloroplast genome sequences of im ̄
portant oilseed crop Sesamum indicum L. [ J] . PLOS ONEꎬ 7:
e35872
Yue Fꎬ Cui LYꎬ Depamphilis CW et al.ꎬ 2007. Gene rearrangement
analysis and ancestral order inference from chloroplast genomes
with inverted repeat [J] . BMC Genomicsꎬ 9: S25
Supplementary Table 1  Codon usage and codon ̄anticodon recognition pattern for tRNA in the apple cp genome
Amino acid Codon No. RSCU tRNA Amino acid Codon No. RSCU tRNA
Phe UUU 976 1. 30 Ile AUU 1114 1. 46
Phe UUC 529 0. 70 trnF ̄GAA Ile AUC 436 0. 57 trnI ̄GAU
Leu UUA 901 1. 94 trnL ̄UAA Ile AUA 732 0. 96 trnI ̄CAU
Leu UUG 567 1. 22 trnL ̄CAA Met AUG 627 1. 00 trnfM ̄CAU
Leu CUU 585 1. 26 Thr ACU 545 1. 59
Leu CUC 186 0. 40 Thr ACC 253 0. 74 trnT ̄GGU
Leu CUA 362 0. 78 trnL ̄UAG Thr ACA 422 1. 23 trnT ̄UGU
Leu CUG 180 0. 39 Thr ACG 151 1. 23
Ser UCU 573 1. 68 Asn AAU 990 1. 53
Ser UCC 331 0. 97 trnS ̄GGA Asn AAC 305 0. 47 trnN ̄GUU
Ser UCA 409 1. 20 trnS ̄UGA Lys AAA 1067 1. 49 trnK ̄UUU
Ser UCG 190 0. 56 Lys AAG 369 0. 51
Ser AGU 409 1. 20 Val GUU 521 1. 45
Ser AGC 138 0. 40 trnS ̄GCU Val GUC 162 0. 45 trnV ̄GAC
Tyr UAU 796 1. 61 Val GUA 552 1. 53 trnV ̄UAC
Tyr UAC 194 0. 39 trnY ̄GUA Val GUG 205 0. 57
Cys UGU 228 1. 49 Ala GCU 633 1. 83
Cys UGC 79 0. 51 trnC ̄GCA Ala GCC 216 0. 62
Trp UGG 457 1. 00 trnW ̄CCA Ala GCA 390 1. 13 trnA ̄UGC
Pro CCU 415 1. 54 Ala GCG 145 0. 42
Pro CCC 208 0. 77 Asp GAU 890 1. 62
Pro CCA 304 1. 13 trnP ̄UGG Asp GAC 211 0. 38 trnD ̄GUC
Pro CCG 149 0. 55 Glu GAA 1036 1. 49 trnE ̄UUC
His CAU 494 1. 55 Glu GAG 358 0. 51
His CAC 145 0. 45 trnH ̄GUG Gly GGU 581 1. 31
Gln CAA 721 1. 53 trnQ ̄UUG Gly GGC 188 0. 42 trnG ̄GCC
Gln CAG 219 0. 47 Gly GGA 718 1. 62 trnG ̄UCC
Arg CGU 341 1. 27 trnR ̄ACG Gly GGG 289 0. 65
Arg CGC 116 0. 43 Stop UAA 53 1. 77
Arg CGA 367 1. 37 Stop UAG 21 0. 70
Arg CGG 123 0. 46 Stop UGA 16 0. 53
Arg AGA 491 1. 83 trnR ̄UCU
Arg AGG 171 0. 64
RSCU: Relative Synonymous Codon Usage. Values in bold represent that the most common code for that amino acid
9744期            JIN Gui ̄Hua et al.: Characterization of the Complete Chloroplast Genome of Apple 􀆺              
Supplementary Table 2  Repeated sequences in the apple chloroplast genome
Repeat
number Size / bp Type Location Repeat Unit Region
1 31 F trnS ̄GCUꎬ trnS ̄UGA AAACGGAAAGAGAGGGATTCGAACCCTCGGTA LSC
2 32 F psaB (CDS)ꎬ psaA (CDS) CGCAATAGCTAAATGATGATGAGCCATATCGGT LSC
3 31 F IGS ( trnR ̄UCUꎬ atpA)ꎬ IGS ( trnT ̄UGUꎬ trnL ̄UAA) ATATAATAAATATATTTTATATTCTAATATAT LSC
4 30 F IGS (ndhCꎬ trnV ̄UAC) TTTTTTATTTTATATACTATATACATATACT LSC
5 39 F ycf3 (intron)ꎬ IGS ( rps12_3’endꎬtrnV ̄GAC)
TCAGAACCGTACATGAGATTTTCATCTCATAC
GGCTCCTC LSCꎬ IRb
6 40 F IGS ( rps12_3’endꎬ trnV ̄GAC)ꎬndhA (intron)
CTACAGAACCGTACATGAGATTTTCACCTCAT
ACGGCTCCT IRbꎬ SSC
7 30 I trnS ̄UGAꎬ IGS (ycf3ꎬ trnS ̄GGA) AAAGGAGAGAGAGGGATTCGAACCCTCGATA LSC
8 30 I rpl16 (CDS)ꎬ IGS (ndhFꎬ rpl32) ATTGTTTTTTTTTTTTTTTTTTTATGTAAAA LSCꎬ SSC
9 40 I ndhA (intron)ꎬ IGS (trnV ̄GACꎬ rps12) TTACAGAACCGTACATGAGATTTTCACCTCATACGGCTCCT SSCꎬ IRa
10 37 T IGS ( trnK ̄UUUꎬ matK) TTAATTTTTTGTTATCTC (X2) LSC
11 33 T IGS ( rps16ꎬ trnQ ̄UUG) ATTATAGATTAATAAA (X2) LSC
12 43 T IGS ( trnG ̄GCCꎬ trnR ̄UCU) TAATAAGAAATAAGAAAAAAA (X2) LSC
13 45 T IGS ( trnR ̄UCUꎬ atpA) ATAAAGATATTCTAAATTAATAA (X2) LSC
14 33 T IGS (atpFꎬ atpH) TGGAAATTTCCAATAAG (X2) LSC
15 39 T IGS ( trnC ̄GCAꎬ petN) TTCTAATAGATCTAATTAAA (X2) LSC
16 39 T IGS ( trnT ̄GGUꎬ psbD) GTAATAAAGTAATAAAAAAA (X2) LSC
17 40 T IGS ( trnT ̄GGUꎬ psbD) ATATGTATTTAATTCAATACAATATATTAATTTAATAATAG LSC
18 36 T IGS ( trnT ̄GGUꎬ psbD) AGTAGAAAGTAATAAAAT (X2) LSC
19 91 T IGS (psbZꎬ trnG ̄UCC) TATTAAATATGGATTGTATATATTGTA (X3) LSC
20 39 T IGS ( trnT ̄UGUꎬ trnL ̄UAA) AGAACATACCTATTAATATA (X2) LSC
21 45 T IGS ( trnT ̄UGUꎬ trnL ̄UAA) TTTTTTTGTTATGTTATAATGTT (X2) LSC
22 31 T IGS (ndhJꎬ ndhK) TTTGTTATTCTGTACA (X2) LSC
23 36 T IGS ( trnV ̄UACꎬ trnM ̄CAU) TTTGATTGGTATTGCTTA (X2) LSC
24 45 T IGS (accDꎬ psaI) TAGAAACATGTAGAAAGATGAAT (X2) LSC
25 39 T IGS (accDꎬ psaI) AATTAATATATATTTCTTA (X2) LSC
26 30 T IGS (petAꎬ psbJ) TTTATTAGATTAAATA (X2) LSC
27 44 T IGS (psbEꎬ petL) TTTCAATTGAATTTATCC (X2) LSC
28 37 T IGS ( rpl33ꎬ rps18) TAAATAGAAATAAATATAA (X2) LSC
29 45 T clpP (intron) AAATATCAAATAAATTAAATATA (X2) LSC
30 38 T IGS (ndhEꎬ ndhG) AGATTCAATTGACTAGAAT (X2) SSC
F: Forwardꎻ I: Invertedꎻ T: Tandemꎻ IGS: Intergenic spacerꎻ CDS: Coding DNA Sequence
084                                  植 物 分 类 与 资 源 学 报                            第 36卷
书书书
!
# #
$ %
&
%
( )
* +
, )
- $
%
. /
0 1
2 ( *
1 -
(
1 3

3 4
2 1 &
# $
%
2 %
5
%
6 %
* %
# %
) (
2
! !
! 7
2
$ 3
6 1
1
( 8
%
) #
# $
%
6 8
$ 3
* 3
# $
) 2
( 9
%
3 &
%
7 %
9 1
3
:
1 (
$ %
9
( 8
! !
7
! 1
; %
! (
) *
(
<
=
/
/
/
/
> 3
6 )
( 1 3

7 %
9 1
3
:
1 (
$ %
9
( 8
! !
7
! 1
; %
! (
) *
(
<
=
/
/
/
/
> 3
6 )
( 1 3

> !
?
@
! ,
A
B
C
D
C
E F
!
! !
#
$ %
#
& !
(
) *
+ *

> !
?
D
! ,
D
G
D G
D .
@ H
B
D .
@ D
I
, &
-
! 1
(
* 3

> !
?
D
! ,
D
H
D H
D I
G
@ H
J
E F
!
! &
!
(
) *
+ *
#
#
. /

> !
?
D
! A
C
C
D .
. G
G
D .
. K
.
, &
-
! 1
(
* 3

> !
?
D
! A
D
.
D .
@ H
I
@ @
D
E F
!
! &
!
(
) *
+ *
#
#
. /

> !
?
D
! ,
I
I
D .
J G
H
D .
J G
C
, &
-
! 1
(
* 3

> !
?
D
! ,
D
D
D D
@ K
G H
@ K
K H
0
, &
1
! ?
0 !

> !
?
D
! ,
I
I
D .
J I
G
D .
G H
G
, &
-
! 1
(
* 3

> !
?
D
! ,
C
C
@ I
@ B
@ I
. D
0
, &
1
! ?
0 !

> !
?
D
! A
C
C
D .
G C
@
D .
G C
I
, &
-
! ?
0 !

> !
?
D
! ,
C
C
B H
H H
B H
H K
E F
!
! 0
, &
1 #
& !
1 )
+ +
+

> !
?
D
! ,
C
C
D .
I B
C
D .
I J
J
E F
!
! ,
&
- #
, &
(

> !
?
D
! A
C
C
B @
I D
B @
I C
E F
!
! &
!
1 )
+ +
+
#
!
# $
2
> !
?
D
! A
D
@
D @
D B
J .
H
D B
J B
D
E F
!
! ,
&
(
#
, &
3

> !
?
@
! ,
A
B
C
B B
I .
B J
H H
E F
!
! &
!
1 )
+ +
+
#
!
# $
2
> !
?
D
! ?
D
@
D @
D J
H G
J
D J
H K
G
E F
!
! ,
&
(
#
, &
3

> !
?
@
! ,
A
B
C
J H
D I
J H
@ G
E F
!
! &
!
1 )
+ +
+
#
!
# $
2
> !
?
D
! ,
I
I
D J
H K
K
D J
H C
J
E F
!
! ,
&
(
#
, &
3

> !
?
D
! ,
C
C
J @
H I
J @
D G
E F
!
! &
!
1 )
+ +
+
#
!
# $
2
> !
?
D
! ,
C
C
D J
D H
D
D J
D H
C
E F
!
! ,
&
(
#
, &
3

> !
?
D
! ?
D
H
D H
J B
K J
J B
C B
!
# $
2
! 1
(
* 3

> !
?
D
! A
D
B
D B
D J
@ C
D
D J
@ I
B
E F
!
! ,
&
(
#
, &
3

> !
?
D
! ?
D
H
D H
J G
. D
J G
B H
!
# $
4
! 1
(
* 3

> !
?
D
! ,
D
@
D @
D J
J .
C
D J
J B
I
E F
!
! ,
&
(
#
, &
3

> !
?
D
! A
D
H
D H
J G
B D
J G
J H
!
# $
5
! 1
(
* 3

> !
?
D
! ,
D
.
D .
D K
. C
H
D K
. I
@
E F
!
! !
#
6 #
!
7 8
6
> !
?
D
! A
D
D
D D
G C
D H
G C
@ H
E F
!
! !
#
$ 2
#
& !
9
) +
+ *

> !
?
D
! A
C
C
D K
. I
G
D K
B H
.
E F
!
! !
#
6 #
!
7 8
6
> !
?
D
! A
D
@
D @
G I
G K
G I
K C
E F
!
! !
#
$ 2
#
& !
9
) +
+ *

> !
?
D
! ,
C
C
D I
@ @
C
D I
@ .
J
!
7 8
6
! ?
0 !

> !
?
@
! A
,
B
C
K H
C K
K H
I B
E F
!
! !
#
$ 2
#
& !
9
) +
+ *

> !
?
D
! ,
I
I
D I
J D
I
D I
J @
K
!
7 8
6
! ?
0 !

> !
?
D
! ,
I
I
K K
G D
K K
G I
#
. 1
! 1
(
* 3

> !
?
D
! ,
D
D
D D
D I
G @
J
D I
G .
J
!
7 8
6
! ?
0 !

> !
?
D
! A
D
.
D .
K C
J J
K C
G K
E F
!
!
# .
1 #
#
. 3

> !
?
D
! A
C
C
D I
K G
C
D I
K K
J
!
7 8
6
! ?
0 !

> !
?
D
! A
C
C
C H
B J
C H
J @
E F
!
!
# .
1 #
#
. 3

> !
?
@
! ,
A
J
D H
@ D
H H
G
@ D
H D
J
!
7 8
6
! ?
0 !

> !
?
D
! ,
C
C
C B
G K
C B
K B
E F
!
! &
!
: )
* 8
+
#
& !
* )
* 8
8
> !
?
D
! A
C
C
@ @
@ B
K
@ @
@ J
B
!
7 8
$
! ?
0 !

> !
?
D
! ,
I
I
C J
G .
C J
K D
E F
!
! &
!
: )
* 8
+
#
& !
* )
* 8
8
> !
?
D
! A
C
C
@ .
B J
B
@ .
B G
D
!
7 8
$
! ?
0 !

> !
?
D
! ,
D
H
D H
I @
C G
I @
I J
& !
* )
* 8
8
! 1
(
* 3

> !
?
D
! ,
I
I
@ B
H C
H
@ B
H C
C
!
7 8
$
! 1
(
* 3

> !
?
D
! ,
I
I
I G
B C
I G
J G
& !
* )
* 8
8
! 1
(
* 3

> !
?
D
! ,
C
C
@ B
B C
I
@ B
B I
G
!
7 8
$
! ?
0 !

> !
?
D
! ,
I
I
D H
D .
H
D H
D .
C
E F
!
! &
!
; )
+ 8
+
#
, &
/

> !
?
D
! ,
D
H
D H
@ K
. @
K
@ K
. .
G
!
7 <
! ?
0 !

> !
?
@
! A
,
B
C
D H
. H
D
D H
. H
C
E F
!
! &
!
; )
+ 8
+
#
, &
/

> !
?
D
! ,
D
D
D D
@ K
I K
@
@ K
I C
@
E F
!
! !
7
< #
& !
8 )
* 8
/
> !
?
@
! A
,
B
C
D H
. @
J
D H
. .
@
E F
!
! &
!
; )
+ 8
+
#
, &
/

> !
?
D
! A
D
.
D .
@ C
B H
B
@ C
B D
G
E F
!
! !
7
< #
& !
8 )
* 8
/
> !
?
@
! ,
A
B
C
D H
. C
H
D H
. C
K
E F
!
! &
!
; )
+ 8
+
#
, &
/

> !
?
D
! ,
C
C
@ C
B B
G
@ C
B J
.
E F
!
! !
7
< #
& !
8 )
* 8
/
> !
?
@
! ,
A
B
C
D H
B H
B
D H
B D
D
E F
!
! &
!
; )
+ 8
+
#
, &
/

> !
?
@
! ,
A
B
C
@ C
J G
G
@ C
J K
.
E F
!
! !
7
< #
& !
8 )
* 8
/
> !
?
@
! ,
A
B
C
D H
B D
K
D H
B @
B
E F
!
! &
!
; )
+ 8
+
#
, &
/

> !
?
D
! A
D
@
D @
@ C
C @
J
@ C
C .
G
E F
!
! !
7
< #
& !
8 )
* 8
/
> !
?
D
! ,
D
H
D H
D @
B C
J
D @
B I
B
E F
!
! ,
&
/ #
, &
-

> !
?
D
! ,
C
C
. H
. @
G
. H
. .
.
E F
!
!
= & >
#
#
. ?

1844期            JIN Gui ̄Hua et al.: Characterization of the Complete Chloroplast Genome of Apple 􀆺              
书书书
!
# #
$ %
&
%
( )
* +
( )
, $
%
-
. /
(
0
%
1
!
# $
% &
&
$ (
)
& #
( *
+ +
!
+ $
,
+ (
- .
(
/ &
0
1
1
1
1
2 %
3 -
( $ %
&
!
# $
% &
&
$ (
)
& #
( *
+ +
!
+ $
,
+ (
- .
(
/ &
0
1
1
1
1
2 %
3 -
( $ %
&
2 +
4
5
! 6
7
7
8 9
8 :
;
8 9
8 <
9
= >
+
! !
# $
#
! %
&

2 +
4
5
! 6
7
7
? :
@ ?
7
? :
@ :
A
( )
* +
! $
& (
. %
&
2 +
4
;
! B
6
?
@
8 9
? @
5
8 9
? @
@
= >
+
! !
# $
#
! %
&

2 +
4
5
! 6
@
@
? A
; 7
5
? A
; 7
@
( )
* +
! $
& (
. %
&
2 +
4
5
! 6
@
@
8 9
< @
9
8 9
< @
A
= >
+
! !
# $
#
! %
&

2 +
4
5
! B
5
5
5 5
? A
< A
@
? A
< @
@
= >
+
! (
) * +
#
# , -
. /
0 0
1
2 +
4
;
! 6
B
:
5 9
8 5
; ;
7
8 5
; 8
@
= >
+
! !
# $
#
! %
&

2 +
4
5
! B
@
@
? 7
; 7
8
? 7
8 9
9
= >
+
! ,
! %
2 #
# , -
3 /
4 0
4

2 +
4
;
! 6
B
?
@
8 5
; ?
9
8 5
; ?
A
= >
+
! !
# $
#
! %
&

2 +
4
5
! 6
@
@
? 7
@ A
?
? 7
@ @
5
= >
+
! #
, -
3 /
4 0
4
#
# , -
5 /
4 1
1
2 +
4
;
! 6
B
:
5 9
8 5
; <
<
8 5
; A
:
= >
+
! !
# $
#
! %
&

2 +
4
;
! B
6
?
@
? 7
7 ;
7
? 7
7 8
<
= >
+
! #
, -
3 /
4 0
4
#
# , -
5 /
4 1
1
2 +
4
?
! 6
6 6
B
8
5 ;
8 5
@ 7
?
8 5
7 9
:
= >
+
! !
% &

#
# , -
6
/ 0
4 7

2 +
4
;
! 6
B
?
@
? 7
7 8
7
? 7
7 ?
<
= >
+
! #
, -
3 /
4 0
4
#
# , -
5 /
4 1
1
2 +
4
5
! B
@
@
8 ;
9 8
7
8 ;
9 ?
<
= >
+
! !
% &

#
# , -
6
/ 0
4 7

2 +
4
;
! B
6
:
5 9
? 7
7 :
9
? 7
7 :
7
= >
+
! #
, -
3 /
4 0
4
#
# , -
5 /
4 1
1
2 +
4
;
! 6
B
?
@
8 ;
5 @
:
8 ;
5 7
;
= >
+
! !
% &

#
# , -
6
/ 0
4 7

2 +
4
;
! 6
B
?
@
: 9
9 7
@
: 9
5 9
:
= >
+
! #
, -
3 /
4 0
4
#
# , -
5 /
4 1
1
2 +
4
5
! B
5
9
5 9
8 ;
; 8
5
8 ;
; ?
9
= >
+
! !
% &

#
# , -
6
/ 0
4 7

2 +
4
5
! 6
7
7
: 9
; @
8
: 9
; 7
5
= >
+
! #
, -
3 /
4 0
4
#
# , -
5 /
4 1
1
2 +
4
5
! B
7
7
8 ;
? ?
8
8 ;
? :
5
= >
+
! !
% &

#
# , -
6
/ 0
4 7

2 +
4
5
! B
5
8
5 8
: 9
? 9
7
: 9
? ;
5
= >
+
! #
, -
3 /
4 0
4
#
# , -
5 /
4 1
1
2 +
4
5
! 6
@
@
8 ;
? 7
9
8 ;
? 7
A
= >
+
! !
% &

#
# , -
6
/ 0
4 7

2 +
4
;
! B
6
?
@
: 9
? 7
?
: 9
: 9
5
= >
+
! #
, -
3 /
4 0
4
#
# , -
5 /
4 1
1
2 +
4
5
! 6
5
9
5 9
8 8
5 :
;
8 8
5 <
5
= >
+
! #
, -
6
/ 0
4 7
#
# , -
8 /
0 4
1
2 +
4
;
! B
6
?
@
: 9
: 5
5
: 9
: 5
@
= >
+
! #
, -
3 /
4 0
4
#
# , -
5 /
4 1
1
2 +
4
;
! 6
B
?
@
8 ?
9 A
8
8 ?
9 @
9
= >
+
! #
, -
6
/ 0
4 7
#
# , -
8 /
0 4
1
2 +
4
5
! B
@
@
: 9
A ?
8
: 9
A :
9
= >
+
! #
, -
3 /
4 0
4
#
# , -
5 /
4 1
1
2 +
4
5
! B
7
7
8 ?
8 9
?
8 ?
8 5
;
= >
+
! #
, -
3 /
0 0
4
#
! %
& 6

2 +
4
;
! 6
>
?
@
: 5
: 9
A
: 5
: 5
?
= >
+
! #
, -
5 /
4 1
1 #
# , -
9 /
0 1
1
2 +
4
5
! 6
@
@
8 ?
< @
5
8 ?
< @
@
= >
+
! #
, -
3 /
0 0
4
#
! %
& 6

2 +
4
;
! B
6
?
@
: 5
: 5
:
: 5
: ;
;
= >
+
! #
, -
5 /
4 1
1 #
# , -
9 /
0 1
1
2 +
4
5
! 6
@
@
8 @
; ;
:
8 @
; 8
;
= >
+
! !
% &
7 #
# , -
. /
4 0
1
2 +
4
5
! 6
7
7
: 5
< ;
5
: 5
< ;
7
= >
+
! #
, -
5 /
4 1
1 #
# , -
9 /
0 1
1
2 +
4
;
! >
B
?
@
8 @
8 <
;
8 @
8 <
7
# , -
. /
4 0
1
! 4
C +

2 +
4
;
! 6
B
?
@
: 5
7 :
5
: 5
7 :
@
= >
+
! #
, -
9 /
0 1
1 #
- :
; <

2 +
4
;
! 6
B
:
5 9
8 @
: @
A
8 @
: 7
<
= >
+
! #
, -
. /
4 0
1 #
! %
& =

2 +
4
5
! B
@
@
: ;
9 ?
8
: ;
9 :
9
= >
+
! #
, -
9 /
0 1
1 #
- :
; <

2 +
4
5
! B
5
A
5 A
8 @
< 8
@
8 @
< :
?
= >
+
! #
, -
. /
4 0
1 #
! %
& =

2 +
4
5
! 6
5
5
5 5
: ;
8 A
9
: ;
8 @
9
= >
+
! #
, -
9 /
0 1
1 #
- :
; <

2 +
4
5
! 6
5
<
5 <
8 @
< @
<
8 @
A 9
5
= >
+
! #
, -
. /
4 0
1 #
! %
& =

2 +
4
5
! B
5
A
5 A
: ;
? 5
8
: ;
? ;
7
= >
+
! #
, -
9 /
0 1
1 #
- :
; <

2 +
4
;
! B
6
?
@
8 7
5 ;
9
8 7
5 ;
A
= >
+
! !
% &
= #
# , -
0 /
4 7
7
2 +
4
5
! 6
5
9
5 9
: 8
@ ?
8
: 8
@ :
;
= >
+
! -
: ;
> #
- :
; 7

2 +
4
5
! B
5
9
5 9
8 7
8 8
@
8 7
8 ?
A
= >
+
! !
% &
= #
# , -
0 /
4 7
7
2 +
4
;
! 6
B
?
@
: ?
: <
@
: ?
: A
:
= >
+
! -
: ;
7 #
# , -
? /
4 1
7
2 +
4
?
! 6
6 6
B
8
5 ;
8 7
8 :
7
8 7
8 A
9
= >
+
! !
% &
= #
# , -
0 /
4 7
7
2 +
4
;
! 6
B
?
@
: ?
< ;
;
: ?
< ;
7
= >
+
! -
: ;
7 #
# , -
? /
4 1
7
2 +
4
;
! 6
B
?
@
8 7
8 A
A
8 7
8 @
?
= >
+
! !
% &
= #
# , -
0 /
4 7
7
2 +
4
;
! 6
B
?
@
: ?
< ?
A
: ?
< :
?
= >
+
! -
: ;
7 #
# , -
? /
4 1
7
2 +
4
;
! 6
B
?
@
8 7
? <
@
8 7
? A
:
= >
+
! !
% &
= #
# , -
0 /
4 7
7
2 +
4
;
! 6
B
:
5 9
: ?
@ 9
:
: ?
@ 5
?
= >
+
! -
: ;
7 #
# , -
? /
4 1
7
2 +
4
5
! 6
7
7
8 7
< 7
5
8 7
< 7
7
= >
+
! !
% &
= #
# , -
0 /
4 7
7
2 +
4
;
! B
6
?
@
: ?
@ 5
<
: ?
@ ;
8
= >
+
! -
: ;
7 #
# , -
? /
4 1
7
2 +
4
5
! B
5
9
5 9
8 7
A 9
8
8 7
A 5
;
= >
+
! !
% &
= #
# , -
0 /
4 7
7
2 +
4
5
! 6
5
9
5 9
: A
@ A
A
: A
@ @
<
@ #
! A
! 4
C +

2 +
4
5
! 6
@
@
? 9
5 @
:
? 9
5 7
;
, !
% B
2
! 4
C +

2 +
4
;
! >
B
?
@
: 7
5 <
;
: 7
5 <
7
, &
) 5
! 4
C +

2 +
4
5
! B
7
7
? :
8 ;
7
? :
8 8
A
= >
+
! !
% @
1 #
( )
* +

2 +
4
5
! 6
@
@
< 9
8 ;
?
< 9
8 8
5
= >
+
! ,
& )
5 #
@ )
) 6

284                                  植 物 分 类 与 资 源 学 报                            第 36卷
书书书
!
# #
$ %
&
%
( )
* +
( )
, $
%
-
. /
(
0
%
1
!
# $
% &
&
$ (
)
& #
( *
+ +
!
+ $
,
+ (
- .
(
/ &
0
1
1
1
1
2 %
3 -
( $ %
&
!
# $
% &
&
$ (
)
& #
( *
+ +
!
+ $
,
+ (
- .
(
/ &
0
1
1
1
1
2 %
3 -
( $ %
&
2 +
4
5
! 6
7
7
8 9
: ;
<
8 9
< 9
5
= >
+
! !
#
$ #
% #
# &

2 +
4
5
! 6
5
?
5 ?
@ ?
5 8
?
@ ?
5 @
:
= >
+
! !
(
) *
#
!
+ ,
-
2 +
4
5
! 6
5
;
5 ;
8 9
A ;
?
8 9
8 5
9
= >
+
! !
#
$ #
% #
# &

2 +
4
5
! B
7
7
@ ?
? 5
?
@ ?
? 5
;
= >
+
! !
(
) *
#
!
+ ,
)
2 +
4
?
! 6
B
A
5 9
8 ?
@ 5
8
8 ?
@ ?
A
= >
+
! %
# #
&
#
(
% .

2 +
4
5
! 6
5
?
5 ?
@ ?
7 7
?
@ ?
7 ;
:
= >
+
! !
+
, -
#
!
( )
,
2 +
4
?
! B
6
<
7
8 ?
7 5
;
8 ?
7 ?
8
= >
+
! %
# #
&
#
(
% .

2 +
4
5
! 6
5
<
5 <
@ <
: A
:
@ <
: 8
8
= >
+
! !
+
, -
#
!
( )
,
2 +
4
?
! B
6
<
7
8 ?
7 :
7
8 ?
7 <
A
= >
+
! %
# #
&
#
(
% .

2 +
4
5
! 6
7
7
@ <
: 7
<
@ <
: ;
5
# +
/
! $
& (
. %
&
2 +
4
?
! 6
B
A
5 9
8 ?
7 7
@
8 ?
7 ;
8
= >
+
! %
# #
&
#
(
% .

2 +
4
5
! B
5
?
5 ?
@ A
9 :
A
@ A
9 <
8
# +
/
! $
& (
. %
&
2 +
4
?
! 6
B
A
5 9
8 :
5 @
8
8 :
5 7
A
= >
+
!
( %
. #
0 #
1 2

2 +
4
5
! 6
5
8
5 8
@ A
9 7
8
@ A
5 9
5
# +
/
! $
& (
. %
&
2 +
4
5
! B
7
7
8 :
< 7
7
8 :
< ;
A
= >
+
!
( %
. #
0 #
1 2

2 +
4
5
! B
7
7
@ A
5 7
A
@ A
5 ;
?
# +
/
! $
& (
. %
&
2 +
4
5
! B
7
7
8 :
< ;
7
8 :
A 9
A
= >
+
!
( %
. #
0 #
1 2

2 +
4
?
! B
6
A
5 9
@ 8
9 <
?
@ 8
9 A
5
= >
+
! #
+
/ #
(
3

2 +
4
5
! 6
7
7
8 :
@ :
?
8 :
@ :
;
0 #
1 2
! 4
C +

2 +
4
5
! B
;
;
@ ;
< :
:
@ ;
< <
5
4
5 3
! $
& (
. %
&
2 +
4
5
! 6
7
7
8 <
? @
A
8 <
? 7
?
= >
+
! 0
# 1 2
#
# 4
6
7
2 +
4
5
! B
5
5
5 5
7 9
: 5
;
7 9
: ?
;
= >
+
!
4 5 3
#
4
5 &

2 +
4
5
! 6
;
;
8 <
: @
;
8 <
: 7
@
= >
+
! 0
# 1 2
#
# 4
6
7
2 +
4
5
! B
7
7
7 5
8 A
<
7 5
8 8
5
= >
+
!
4 5 &
#
!
8 7

2 +
4
?
! 6
4
A
5 9
8 <
@ 5
8
8 <
@ ?
A
# 4
6
7
! 4
C +

2 +
4
5
! B
5
5
5 5
7 5
7 ?
9
7 5
7 :
9
= >
+
!
4 5 &
#
!
8 7

2 +
4
?
! B
6
<
7
8 A
8 ?
:
8 A
8 :
9
4
5 7
! 4
C +

2 +
4
5
! 6
5
@
5 @
7 :
< 9
7
7 :
< ?
<
= >
+
! !
(
) )
#
!
+ 9
:
2 +
4
5
! B
7
7
8 A
; 7
:
8 A
; ;
9
4
5 7
! 4
C +

2 +
4
5
! 6
5
9
5 9
7 <
A @
@
7 <
A 7
8
= >
+
! !
(
* #
!
+ )
2
2 +
4
5
! 6
5
A
5 A
8 8
; 8
<
8 8
; @
7
= >
+
!
4 5 7
#
(
;

2 +
4
5
! 6
5
9
5 9
7 A
9 8
<
7 A
9 @
:
= >
+
! !
+
) 2
#
!
+ )
:
2 +
4
?
! 6
B
<
7
8 8
; @
;
8 8
; 7
8
= >
+
!
4 5 7
#
(
;

2 +
4
5
! B
5
:
5 :
7 A
5 9
<
7 A
5 5
8
= >
+
! !
+
) 2
#
!
+ )
:
2 +
4
5
! 6
5
<
5 <
8 @
9 9
@
8 @
9 ?
9
= >
+
!
4 5 7
#
(
;

2 +
4
5
! 6
7
7
7 A
5 A
;
7 A
5 8
8
= >
+
! !
+
) 2
#
!
+ )
:
2 +
4
5
! B
;
;
8 @
5 5
?
8 @
5 ?
9
= >
+
!
4 5 7
#
(
;

2 +
4
5
! B
;
;
7 A
@ 5
?
7 A
@ ?
9
!
+ )
:
! $
& (
. %
&
2 +
4
5
! B
;
;
8 @
: ;
5
8 @
: ;
;
= >
+
!
4 5 7
#
(
;

2 +
4
5
! B
7
7
7 A
; 5
8
7 A
; ?
:
!
+ )
:
! $
& (
. %
&
2 +
4
5
! >
7
7
8 7
: 5
5
8 7
: 5
7
= >
+
!
(
< #
4
5 $

2 +
4
5
! 6
5
;
5 ;
7 8
: ;
:
7 8
< 5
5
!
+ )
:
! $
& (
. %
&
2 +
4
5
! 6
5
8
5 8
8 7
@ :
A
8 7
@ A
9
= >
+
!
(
< #
4
5 $

2 +
4
5
! 6
;
;
7 8
8 A
?
7 8
8 8
9
!
+ )
:
! $
& (
. %
&
2 +
4
5
! B
;
;
8 ;
9 :
?
8 ;
9 <
9
= >
+
!
(
< #
4
5 $

2 +
4
?
! 6
B
<
7
7 @
< 5
@
7 @
< ?
<
= >
+
! !
(
9 #
!
+ ,
,
2 +
4
5
! B
5
?
5 ?
8 ;
9 8
?
8 ;
9 @
:
= >
+
!
(
< #
4
5 $

2 +
4
5
! 6
5
9
5 9
7 @
< A
9
7 @
< A
;
= >
+
! !
(
9 #
!
+ ,
,
2 +
4
?
! 6
B
<
7
8 ;
? 5
7
8 ;
? ?
A
= >
+
!
(
< #
4
5 $

2 +
4
5
! 6
7
7
7 @
< @
9
7 @
< @
@
= >
+
! !
(
9 #
!
+ ,
,
2 +
4
?
! B
6
A
5 9
@ 9
5 A
5
@ 9
5 8
9
= >
+
! 5
! =
>
? @
@ 7
#
5 ! =
/ ?
A B
B
= !
D
5
! 6
;
;
7 7
? @
8
7 7
? 7
<
= >
+
! !
+
, ,
#
!
( )
C
2 +
4
5
! B
5
8
5 8
@ 5
9 9
5
@ 5
9 5
8
= >
+
!
( %
; #
!
+ 9
9
= !
D
?
! 6
B
<
7
7 7
; 5
8
7 7
; ?
:
!
+ ,
! $
& (
. %
&
2 +
4
?
! 6
B
<
7
@ 5
8 9
7
@ 5
8 5
A
= >
+
! !
+
9 9
#
!
( )
*
= !
D
?
! 6
B
<
7
7 7
; :
8
7 7
; <
:
!
+ ,
! $
& (
. %
&
2 +
4
?
! B
6
8
5 ?
@ 5
8 5
;
@ 5
8 :
9
= >
+
! !
+
9 9
#
!
( )
*
= !
D
?
! >
B
<
7
; 9
A <
A
; 9
A A
?
0 #
1 ,
! $
& (
. %
&
2 +
4
5
! B
7
7
@ ?
9 7
@
@ ?
9 ;
<
!
( )
*
! 4
C +

= !
D
,
! >
B
2
*
C -
D D
E
C -
D :
2
0 #
1 ,
! $
& (
. %
&
3844期            JIN Gui ̄Hua et al.: Characterization of the Complete Chloroplast Genome of Apple 􀆺              
书书书
!
# #
$ %
&
%
( )
* +
( )
, $
%
-
. /
(
0
%
1
!
# $
% &
&
$ (
)
& #
( *
+ +
!
+ $
,
+ (
- .
(
/ &
0
1
1
1
1
2 %
3 -
( $ %
&
!
# $
% &
&
$ (
)
& #
( *
+ +
!
+ $
,
+ (
- .
(
/ &
0
1
1
1
1
2 %
3 -
( $ %
&
4 !
5
6
! 7
8
9
:
; <
= 9
9
; <
= =
<
!
# $
! $
& (
. %
&
+ +
>
<
! ?
;
;
< <
: 9
9 @
< <
: 9
= <
4 7
+
! %
&
( $
#
) % *
+ ,
- .
/
4 !
5
<
! 8
;
;
; @
A @
:
; @
A 9
B
!
# $
! $
& (
. %
&
+ +
>
6
! 8
?
B
< 6
< <
: A
C =
< <
: A
< B
4 7
+
! %
&
( $
#
) % *
+ ,
- .
/
4 !
5
6
! 7
8
9
:
; @
A =
;
; @
A B
B
!
# $
! $
& (
. %
&
+ +
>
<
! ?
:
:
< <
; C
@ =
< <
; C
9 6
4 7
+
! %
&
( $
#
) % *
+ ,
- .
/
4 !
5
6
! ?
8
9
:
; A
C ;
A
; A
< C
9
!
# $
! $
& (
. %
&
+ +
>
<
! 8
;
;
< <
; 6
; ;
< <
; @
C A
4 7
+
! %
&
( $
#
) % *
+ ,
- .
/
4 !
5
6
! ?
8
9
:
; :
= 9
@
; :
= =
C
4 7
+
! )
% *
+ ,
0 .
. #
* 1
2 3

+ +
>
6
! ?
8
9
:
< 6
C =
= A
< 6
C =
B 9
4 7
+
!
4
. #
* 1
2 5

4 !
5
6
! 8
?
9
:
; :
= B
6
; :
= B
;
4 7
+
! )
% *
+ ,
0 .
. #
* 1
2 3

+ +
>
9
! 8
? ?
?
@
< 6
< 6
C B
B ;
< 6
C B
: C
* 1
2 5
! >
D +

4 !
5
6
! 8
7
9
:
; ;
@ 6
@
; ;
@ @
C
* 1
2 3
! $
& (
. %
&
+ +
>
<
! 8
:
:
< 6
< C
A B
< 6
< C
: @
* 1
2 5
! >
D +

4 !
5
<
! ?
:
:
< C
@ C
= 6
< C
@ C
= ;
4 7
+
! %
& 4
6 #
) % *
7 ,
/ .
0
+ +
>
<
! ?
:
:
< 6
< @
A 6
< 6
< @
A ;
* 1
2 5
! >
D +

4 !
5
<
! ?
<
C
< C
< C
9 <
; 9
< C
9 6
C @
4 7
+
! %
& 4
6 #
) % *
7 ,
/ .
0
+ +
>
<
! 8
:
:
< 6
@ 6
; :
< 6
@ @
C =
* 1
2 8
! >
D +

4 !
5
=
! 7
7 >
8 8
@
< =
< C
9 =
6 6
< C
9 =
@ B
4 7
+
! %
& 4
6 #
) % *
7 ,
/ .
0
+ +
>
<
! ?
;
;
< 6
9 C
= C
< 6
9 C
= :
4 7
+
! *
1 2
/ #
* 1
2 9

4 !
5
<
! 7
:
:
< C
B 6
9 6
< C
B 6
9 ;
% % *
: ;
! $
& (
. %
&
+ +
>
<
! 8
?
=
< C
< 6
9 :
A A
< 6
9 :
: B
4 7
+
! *
1 2
9 #
* 1
2 .

4 !
5
<
! ?
:
:
< C
A <
C C
< C
A <
C A
) % *
9 ,
/ .
-
! $
& (
. %
&
+ +
>
<
! 8
;
;
< 6
= :
= A
< 6
= :
B =
* 1
2 .
! $
& (
. %
&
4 !
5
6
! >
?
9
:
< <
C 9
9 =
< <
C 9
= 6
% % *
$ (
! $
& (
. %
&
+ +
>
<
! ?
6
B
6 B
< 6
= ;
B <
< 6
= ;
: B
* 1
2 .
! $
& (
. %
&
4 !
5
<
! 8
<
C
< C
< <
6 <
: @
< <
6 <
; 6
4 7
+
! %
% *
< #
) % *
= ,
. 0
/
+ +
>
6
! ?
8
9
:
< 6
B 9
B 9
< 6
B 9
A <
* 1
2 .
! $
& (
. %
&
4 !
5
6
! 8
7
9
:
< <
6 6
: A
< <
6 6
; 9
4 7
+
! %
% *
< #
) % *
= ,
. 0
/
+ +
>
<
! 8
<
C
< C
< 6
B =
@ <
< 6
B =
9 C
* 1
2 .
! $
& (
. %
&
4 !
5
<
! ?
:
:
< <
6 @
9 =
< <
6 @
= 6
4 7
+
! %
% *
< #
) % *
= ,
. 0
/
+ +
>
<
! ?
;
;
< 6
; 6
; =
< 6
; @
C @
!
# :
! >
D +

4 !
5
9
! ?
? ?
8
@
< 6
< <
6 =
: A
< <
6 =
; :
4 7
+
! )
% *
= ,
. 0
/ #
) % *
>
, /
- -

+ +
>
<
! ?
:
:
< 6
; 9
B <
< 6
; 9
B :
!
# :
! >
D +

4 !
5
6
! ?
8
=
< C
< <
@ @
: 9
< <
@ @
; @
4 7
+
! )
% *
>
, /
- -
#
!
# :

+ +
>
<
! ?
:
:
< 6
; =
@ 6
< 6
; =
@ ;
!
# :
! >
D +

+ +
>
<
! 8
:
:
< <
9 =
6 A
< <
9 =
@ 9
* 1
2 ?
! >
D +

+ +
>
<
! ?
:
:
< @
C C
9 =
< @
C C
= 6
!
# :
! >
D +

+ +
>
<
! ?
;
;
< <
= @
C =
< <
= @
< @
* 1
2 ?
! >
D +

+ +
>
<
! ?
;
;
< @
C <
6 <
< @
C <
6 ;
!
# :
! >
D +

+ +
>
<
! 8
6
@
6 @
< <
B A
: <
< <
B :
C @
4 7
+
! *
1 2
? #
% &
(
$
+ +
>
<
! ?
;
;
< @
C A
@ 9
< @
C A
9 6
!
# :
! >
D +

+ +
>
<
! 8
<
C
< C
< <
B :
A <
< <
B :
: C
4 7
+
! *
1 2
? #
% &
(
$
+ +
>
<
! ?
;
;
< @
< 6
A C
< @
< 6
A :
!
# :
! >
D +

+ +
>
<
! 8
:
:
< <
A @
9 A
< <
A @
= 9
4 7
+
! *
1 2
? #
% &
(
$
+ +
>
<
! ?
;
;
< @
< =
A A
< @
< =
: =
!
# :
! >
D +

+ +
>
<
! 8
:
:
< <
A 9
; B
< <
A =
C @
4 7
+
! *
1 2
? #
% &
(
$
+ +
>
<
! ?
<
C
< C
< @
< :
: C
< @
< :
: ;
!
# :
! >
D +

+ +
>
<
! ?
;
;
< <
A =
< @
< <
A =
6 <
4 7
+
! *
1 2
? #
% &
(
$
+ +
>
<
! ?
;
;
< @
6 9
C C
< @
6 9
C :
!
# :
! >
D +

+ +
>
<
! ?
<
=
< =
< <
A B
6 6
< <
A B
@ B
4 7
+
! *
1 2
? #
% &
(
$
+ +
>
<
! 8
<
B
< B
< @
6 =
< <
< @
6 =
6 B
!
# :
! >
D +

+ +
>
<
! >
;
;
< <
A A
C 6
< <
A A
< C
4 7
+
! *
1 2
? #
% &
(
$
+ +
>
<
! ?
:
:
< @
6 :
; :
< @
6 ;
C =
!
# :
! >
D +

+ +
>
<
! ?
<
<
< <
< <
A A
< <
< <
A A
6 <
4 7
+
! *
1 2
? #
% &
(
$
+ +
>
<
! 8
:
:
< @
@ =
: 9
< @
@ =
; <
!
# :
! >
D +

+ +
>
<
! ?
:
:
< <
A ;
B <
< <
A ;
B :
% &
(
$
! >
D +

484                                  植 物 分 类 与 资 源 学 报                            第 36卷