免费文献传递   相关文献

悬钩子属植物化学成分及药理活性研究进展



全 文 :天然产物研究与开发 Nat Prod Res Dev 2011,23:767-775,788
文章编号:1001-6880(2011)04-0767-10
收稿日期:2009-12-28 接受日期:2010-04-08
* 通讯作者 Tel:86-10-84738629;E-mail:liubinyn67@ 163. com
悬钩子属植物化学成分及药理活性研究进展
孟祥娟,刘 斌* ,热增才旦,折改梅,姜艳艳
北京中医药大学,北京 100102
摘 要:本文对近 10 年来悬钩子属植物的化学成分和药理活性研究进行了综述,为该属植物的进一步开发利用
提供参考。悬钩子属植物的化学成分主要包括黄酮、萜、鞣质、甾等。药理活性主要包括抗菌、抗炎、抗肿瘤、抗
氧化、抗过敏、保肝、镇痛等。
关键词:悬钩子属;黄酮;萜;鞣质;抗肿瘤;抗过敏;保肝
中图分类号:R284. 2 文献标识码:A
Progress of Chemical Constituents and Pharmacology of Genus Rubus
MENG Xiang-juan,LIU Bin* ,RE Zeng-cai-dan,SHE Gai-mei,JIANG Yan-yan
Beijing University of Chinese Medicine,Beijing 100102,China
Abstract:The chemical constituents and pharmacology of Rubus in the latest 10 years were summarized to supply the
scientific basis for further exploitation of Rubus. Flavonoids,terpenoids,tannins and steroids are the main constituents of
Rubus. It has wide range of pharmacological effects including antibiosis,antiinflammatory,antitumor,antioxidant,anti-al-
lergic,hepatoprotective and antinociceptive.
Key words:Rubus L.;flavonoids;terpenoids;tannins;antitumor;anti-allergic;hepatoprotective
悬钩子属(Rubus L.)是蔷薇科(Rosaceae)蔷薇
亚科的一个大属,现已知 750 余种,分布于全世界,
集中分布于北美和东亚。我国有 200 余种,南北各
省均有,主要分布于长江以南及西北地区[1]。该属
许多植物在我国传统中医药中的应用十分广泛,如
覆盆子具有益肾、固精、缩尿的功效,用于肾虚遗尿、
小便频数、阳痿早泄、遗精滑精;山莓具有活血、止
血、祛风利湿的功效,用于吐血、便血、肠炎、痢疾、风
湿关节痛、跌打损伤、月经不调、白带,其叶可消肿解
毒,外用治痈疖肿毒;茅莓散瘀止痛、清热解毒、祛风
除湿;高粱泡根疏风清热、凉血活血,用于月经不调、
崩漏、白带、闭经、胎动不安等症;寒莓根清热解毒、
凉血止痛[2]。近年来,国内外许多学者对本属植物
进行了一系列化学成分和药理活性研究,发现悬钩
子属植物含有多种化学成分,具有多种药理作用,药
用价值很高,对调节机体的生命活动及医疗保健作
用有重要意义。
1 化学成分
该属植物化学成分的系统研究始于 20 世纪 70
年代末 80 年代初,迄今为止,国内外化学工作者已
从该属植物川莓 R. setchuenensis Bur. (1)、茅莓 R.
parvifolius L. (2)、木莓 R. swinhoei Hance(3)、寒莓
R. buergeri Mip.(4)、山莓 R. corchorifolius L.(5)、钻
地风 R. ellipticus Smith var. obcordatus Focke(6)、覆
盆子 R. chingii Hu(7)、红树莓 R. idaeus L.(8)、黑草
莓 R. ursinus L. (9)、黑莓 R. allegheniensis Port.
(10)、榆叶黑莓 R. ulmifolius Schott.(11)、广西甜茶
R. suavissimus S. (12)、灰毛泡 R. irenaeus Focke
(13)、毛萼梅 R. chroosepalus Focke(14)、乌泡子 R.
parkeri Hance(15)、白叶莓 R. innominatus S. (16)、
粗叶悬钩子 R. alceaefolius Poir (17)、粉枝莓 R. biflo-
rus Buch.(18)、紫色悬钩子 R. irritans Focke(19)、
菰帽悬钩子 R. pileatus Focke(20)、黄果悬钩子 R.
xanthocarpus Bureau et Franch(21)、红毛悬钩子 R.
pinfaesis Levl. et Vant. (22)、灰白毛莓 R. tephrodes
Hance(23)、托盘 R. crataegiflolius Bge.(24)、秀丽莓
R. amabilis Focke (25)、蓬蘽 R. hirsutus Thunb.
(26)、二花悬钩子 R. biflorus Buch.(27)、空心泡 R.
rosaefolius Smith(28)、R. pinnatus Willd. (29)、R.
rigidus Sm.(30)、插田泡 R. coreanus Miq.(31)、裂叶
悬钩子 R. laciniatus Willd. (32)、刺悬钩子 R. pun-
DOI:10.16333/j.1001-6880.2011.04.022
gens Camb.(33)、R. sanctus Schreb.(34)等植物中分
离得到多种化学成分,主要包括黄酮、萜、鞣质、甾,
以及少量醌、有机酸、生物碱等[3]。
1. 1 黄酮类
刘明生等[4]已对 1999 年之前从该属植物中分
离得到的黄酮类化合物进行了综述。近 10 年来从
该属植物中分离得到的黄酮类化合物基本骨架见图
1,结构见表 1。
图 1 悬钩子属植物中的黄酮类化合物基本骨架
Fig. 1 Structure of flavones isolated from Rubus L.
表 1 悬钩子属植物中的黄酮类化合物
Table 1 Flavones isolated from Rubus L.
编号
No.
化 合 物
Compound
基本骨架
Structure
基团
Group
来源
Source
1 槲皮素-3-O-2″-没食子酰吡喃葡萄糖苷
[5]
quercetin-3-O-glucopyranoside-2″-gallate
B 5,7,3,4-OH,3-O-β-D-glc(2″-O-gallate) 25
2 金丝桃苷[5] hyperoside B 5,7,3,4-OH,3-O-β-D-gal 25
3 木犀草素-7-O-葡萄糖苷[5]luteolin-7-O-glucoside A 5,3,4-OH ,7-O-β-D-glc 25
4 芹菜素-7-O-葡萄糖苷[5]apigenin-7-O-glucoside A 5,4-OH ,7-O-β-D-glc 25
5 槲皮素-3-O-葡萄糖酸苷[6]quercetin-3-O-glucuronide B 5,7,3,4-OH,3-O-β-D-glc A 11
6 山柰酚-3-O-葡萄糖酸苷[6]kaempferol-3-O-glucuronide B 5,7,4-OH,3-O-β-D-glc A 11
7 椴树苷[7] tilliroside B 5,7,4-OH,3-O-glc(1→6)coumaroyl 8
8 山柰酚-3-O-半乳糖苷[7]kaempferol-3-O-galactoside B 5,7,4-OH,3-O-β-D-gal 8
9 山柰酚-3-O-阿拉伯吡喃糖苷[7]kaempferol-3-O-α-L-arabinopyranoside B 5,7,4-OH,3-O-β-L-ara 8
10 矢车菊-3-O-芸香糖苷[8]cyanidin-3-O-rutinoside C 5,7,3,4-OH,3-O-α-L-rha (1→6)β-D-glc 29
11 矢车菊-3-O-葡萄糖苷[8]cyanidin-3-O-glucoside C 5,7,3,4-OH,3-O-β-D-glc 29
12 矢车菊-3-O-接骨木二糖苷[9]cyanidin-3-O-sambubioside C 5,7,3,4-OH,3-O-β-D-xyl (1→2)β-D-glc 31
13 矢车菊-3-O-木糖基芸香糖苷[9]cyanidin-3-O-xylosylrutionside C
5,7,3,4-OH,3-O-α-L-rha(1→6)
β-D-xyl (1→2)β-D-glc
31
14 天竺葵-3-O-芸香糖苷[9]pelargonidin-3-O-rutinoside C 5,7,4-OH,3-O-α-L-rha (1→6)β-D-glc 31
15 飞燕草-3-O-葡萄糖酸苷[9]delphinidin-3-O-glucuronide C 5,7,3,4,5-OH,3-O-β-D-glc A 31
16 槲皮苷[10]quercitrin B 5,7,3,4-OH,3-O-α-L-rha 2
17 3,5,7,3,4,5-六羟基黄酮[10]herahydroxy dihydroflavanonol E 3,5,7,3,4,5-OH 2
18 异槲皮苷[11]isoquercitrin B 5,7,3,4-OH,3-O-β-D-glc 8
19 槲皮素[12] quercetin B 3,5,7,3,4-OH 11
20 山柰酚[12] kaempferol B 3,5,7,4-OH 11
21 芦丁[12] rutin B 5,7,3,4-OH,3-O-α-L-rha (1→6)β-D-glc 11
22 粉枝莓素 A[13]fenzhimines A A
8-Me,6-(3-methylbut-2-enyl) ,5-OMe,
5,7-OH,3',4'-methylenedioxy 27
23 粉枝莓素 B[13] fenzhimines B A
8-Me,5-(3-methylbut-2-enyl) ,5-OMe,
6,7-(2,2-dimethylpyran) ,3,4-methylenedioxy 27
24 矢车菊-3-O-槐糖苷[14]cyanidin-3-O-sophoroside C 5,7,3,4-OH,3-O-β-D-glc (1→2)β-D-glc 7
25 矢车菊-3-O-二草酰基葡萄糖苷 [15]cyanidin 3-dioxalylglucoside C 5,7,4-OH,3-O-β-D-glc(6″-dioxalyl) 32
1. 2 萜类
悬钩子属植物中的萜类化合物主要包括二萜、
三萜以及少数单萜[4]。根据母核结构,二萜类化合
物可分为半日花烷型和贝壳杉烷型,三萜类化合物
867 天然产物研究与开发 Vol. 23
主要为齐墩果烷型和乌苏烷型,少数为羽扇豆烷型。
1. 2. 1 二萜类
傅正生等[3]综述了 1999 年之前从该属植物中
分离得到的半日花烷型二萜类化合物,该类二萜属
于对映-半日花烷型,主要存在于覆盆子叶、灰毛果
莓果实、广西甜茶叶和果实中。其后未从该属植物
中分离得到新的该类型二萜成分。
Takashi Tanaka 等[3]从广西甜茶叶中分离得到
贝壳杉烷型二萜苷 Rubusoside(13-O-β-D-glucosyl-
steviol) ,系首个从该属植物中分离得到的贝壳杉烷
型二萜苷。近 10 年来从该属植物中分离得到的贝
壳杉烷型二萜类化合物的基本骨架见图 2,结构见
表 2。
图 2 贝壳杉烷型二萜类化合物基本骨架
Fig. 2 Structure of the Kaursane-type diterpenes
表 2 悬钩子属植物中贝壳杉烷型二萜类化合物
Table 2 The Kaursane-type diterpenes isolated from Rubus L.
编号
No.
化 合 物
Compound
基团
Group
来源
Source
1 悬钩子苷[16]rubusoside 13-O-glc,16(17)-en,19-CO2 glc 12
2 对映-16β,17-二羟基-贝壳杉-3-酮
[17]
ent-16β,17-dihydoxy-kauran-3-one
3-oxo,16β,17-OH 12
3 对映-16β,17-二羟基-贝壳杉-19-羧酸
[17]
ent-16β,17-dihydoxy-kauran-19-oic acid
16β,17-OH,19-CO2H 12
4 对映-贝壳杉-16β,17-二醇-3-酮-17-O-β-D-葡萄糖苷
[17]
ent-kauran-16β,17-diol-3-one-17-O-β-D-glucoside
3-oxo,16β,17-OH,17-O-glc 12
5 对映-13-羟基-贝壳杉-l6-烯-l9-羧酸
[18]
ent-13-dihydoxy-kauran-16-en-19-oic acid
13-OH,16(17)-en ,19-CO2H 12
6 对映-贝壳杉-l6-烯-l9-酸-13-O-β-D-葡萄糖苷
[18]
ent-kauran-16-en-19-oic-13-O-β-D-glucoside
13-O-glc,16(17)-en ,19-CO2H 12
7 对映-贝壳杉烷-3β,16β,17,19-四羟基
[19]
ent-kauran-3β,16β,17,19-tetrol
3β,16β,17,19-OH 5
8 对映-2-羰基-16β-羟基-贝壳杉烷-17-β-D-葡糖苷
[19]
ent-2-carbonyl-16β-hydroxy-kauran-17-β-D-glucoside
2-oxo,16β-OH,17-O-glc 5
1. 2. 2 三萜类
日本学者通过对本属 39 种植物叶的研究,提出
19α-羟基乌苏酸-28-β-D-葡萄糖酯苷型三萜在本属
植物中具有分类学意义[4]。近年来国内外化学工
作者相继对该属植物的三萜类成分做了进一步研
究,从中分离出一系列三萜类化合物,其基本骨架见
图 3 ~ 5,结构见表 3 ~ 5。
另外,Hao XJ等[22]从刺悬钩子地上部分得到
了新的乌苏烷型三萜苷二聚体 Rubupungenosides A
和 Rubupungenosides B。
图 3 齐墩果烷型三萜类化合物基本骨架
Fig. 3 Structure of the oleane-type triterpenes
表 3 悬钩子属植物中齐墩果烷型三萜类化合物
Table 3 The oleane-type triterpenes isolated from Rubus L.
编号
No.
化 合 物
Compound
基团
Group
来源
Source
1 2α,3α,19α-三羟基齐墩果-12-烯-28-酸
[20]
2α,3α,19α-trihydroxyole-12-en-28-oic acid
2α,3α,19α-(OH)3,12-en,28-CO2H 13
2 2α-羟基齐墩果酸[21]2α-hydroxyoleanolic acid 2α,3β-(OH)2,12-en,28-CO2H 18
3 arjungenin[23] 2α,3β,19α,23-(OH)4,12-en,28-CO2H 19
967Vol. 23 孟祥娟等:悬钩子属植物化学成分及药理活性研究进展
4 齐墩果酸[23]oleanolia acid 3β-OH,12-en,28-CO2H 20
5 arjunolic acid[24] 2α,3β,19α-(OH)3,12-en,28-CO2H 3
6 寒莓酸甲酯[25]methyl buergericate 2α,3α,19α,24-(OH)4,12-en,28-CO2CH3 4
7 canmelliagenin A[26] 3β,16α,22α(OH)3,12-en,28-CH2OH 2
8 canmelliagenin C[26] 3β,16α,22α-(OH)3,12-en,23,28-CH2OH 2
9 sericoside[27] 2α,3β,19α,24-(OH)4,12-en,28-CO2 glc 6
10 sericic acid[27] 2α,3β,19α,24-(OH)4,12-en,28-CO2H 6
11 buergericic acid[27] 2α,3α,19α,24-(OH)4,12-en,28-CO2H 6
12 crataegioside[28] 3β,19α,23-(OH)3,12-en,28-CO2 glc 24
13 arjunglucoside I[28] 2α,3β,19α,23-(OH)4,12-en,28-CO2 glc 24
14 2α,3β,19α-三羟基齐墩果-12-烯-23-酸-28-葡萄糖苷
[28]
2α,3β,19α-trihydroxyolean-12-en-23-oic acid-28-β-D-glucoside
2α,3β,19α-(OH)3,12-en,23-COOH,28-CO2 glc 24
图 4 乌苏烷型三萜类化合物基本骨架
Fig. 4 Structure of the ursane-type triterpenes
表 4 悬钩子属植物中乌苏烷型三萜类化合物
Table 4 The ursane-type triterpenes isolated from Rubus L.
编号
No.
化 合 物
Compound
基团
Group
来源
Source
1 苦莓苷 F1[5]niga-ichigoside F1 2α,3β,19α,23-(OH)4,12-en,28-CO2 glc 25
2 熊果酸[29]ursolic acid 3β-OH,12-en,28-CO2H 6
3 坡曼酸[29]pomolic acid 3β,19α-(OH)2,12-en,28-CO2H 6
4 蔷薇酸[29]euscaphic acid 2α,3α,19α-(OH)3,12-en,28-CO2H 6
5 kaji-ichigoside F1[29] 2α,3α,19α-(OH)3,12-en,28-CO2 glc 6
6 野蔷薇苷[29]rosamultin 2α,3β,19α-(OH)3,12-en,28-CO2 glc 6
7 23-hydroxytormentic acid[30] 2α,3β,19α,23-(OH)4,12-en,28-CO2H 31
8 2α,3β,19α,24-四羟基乌索-12-烯-28-酸
[23]
2α,3β,19α,24-tetrahydroxyurs-12-en-28-oic acid
2α,3β,19α,24-(OH)4,12-en,28-CO2H 19
9 3β,19α-二羟基乌索-12-烯-24,28-二酸
[23]
3β,19α-dihydroxylurs-12-en-24,28-dioic acid
3β,19α-(OH)2,12-en,24,28-(CO2H)2 20
10 2-羰基坡曼酸[24]2-oxo-pomolic acid 2-oxo,3β,19α-(OH)2,12-ene,28-CO2H 3
11 pinfaenoic acid[24] 2α,3β,23-(OH)3,12,18-dien,28-CO2H 3
12 isopinfaenic acid[24] 2α,3β,23-(OH)3,12,19-dien,28-CO2H 3
13 goreishic acid[24] 2α,3β-(OH)2,12,18-dien,28-CO2H 3
14 科罗索酸[24]corosolic acid 2α,3β-(OH)2,12-ene,28-CO2H 3
15 2α,3β,23-三羟基乌索-12-烯-28-酸
[24]
2α,3β,23-trihydroxyurs-12-en-28-oic acid
2α,3β,23-(OH)3,12-en,28-CO2H 3
16 2α,3α,19α,23-四羟基乌索-12-烯-28-酸
[31]
2α,3α,19α,24-tetrahydroxyurs-12-en-28-oic acid
2α,3α,19α,23 -(OH)4,12-en,28-CO2H 2
17 悬钩子皂苷 R1[31]suavissimoside R1 2α,3β,19α-(OH)3,12-en,23-CO2H,28-CO2 glc 2
077 天然产物研究与开发 Vol. 23
18 覆盆子酸[32]fupenzic acid 2α,19α-(OH)2,3-oxo,1,12 -dien,28-CO2H 16
19 2α,19α-二羟基-3-氧-乌索-12-烯-28-酸
[32]
2α,19α-dihydroxylurs-12-en-3-oxo-28-oic acid
2α,19α-(OH)2,3-oxo,12 -en,28-CO2H 16
20 2α,3α-二羟基乌索-12,18-二烯-28-酸
[32]
2α,3α-dihydroxylurs-12,18-dien-28-oic acid
2α,3α-(OH)2,12,18-dien,28-CO2H 16
21 2α,3α-二羟基乌索-12,19-二烯-28-酸
[32]
2α,3α-dihydroxylurs-12,19-dien-28-oic acid
2α,3α-(OH)2,12,19-dien,28-CO2H 16
22 3β,19α-二羟基乌索-12-稀-28-葡萄糖苷
[25]
3β,19α-dihydroxylurs-12-en-28-oic acid 28-O-β-D-glucopyranoside
3β,19α-(OH)2,12-en,28-CO2 glc 4
23 坡曼酸-3-阿拉伯糖苷
[25]
3-O-β-D-arabinopyranosyl pomolic acid
3-O-β-ara,19α-(OH)2,12-en,28-CO2H 4
24 2α,3β-二羟基乌苏-12,19-二烯-23,28-二酸
[33]
2α,3β-dihydroxylurs-12,19-dien-23,28-dioic acid
2α,3β-(OH)2,12,19-dien,23,28-(CO2H)2 14
25 rubusside A[34] 3,23-O-butylidene,2α,19α-(OH)2,12-en,28-CO2 glc 10
26 委陵菜酸[35]tormentic acid 2α,3β,19α-(OH)3,12-en,28-CO2H 28
27 28-methoxytormentic acid[35] 2α,3β,19α-(OH)3,12-en,28-CO2CH3 28
28 rubuside A[27] 2α,3β-(OH)2,12,18-dien,28-CO2 glc 6
29 rubuside B[27] 2α,3α-(OH)2,12,18-dien,28-CO2 glc 6
30 rubuside C[27] 2α,3α,23-(OH)3,12,18-dien,28-CO2 glc 6
31 rubuside D[27] 2α,3β-(OH)2,12,19-dien,28-CO2 glc 6
32 rubuside E[27] 2α,3α-(OH)2,12,19-dien,28-CO2 glc 6
33 rubuside F[27] 2α,3β-(OH)2,12,19(29)-dien,28-CO2 glc 6
34 rubuside G[27] 2α,3α-(OH)2,11,13(18)-dien,28-CO2 glc 6
35 rubuside H[27] 2α,3β,23-(OH)3,11,13(18)-dien,28-CO2 glc 6
36 rubuside J[27] 2α,3α,19α-(OH)3,12-en,23-CHO,28-CO2H 6
37
2α,3β,23-三羟基乌索-12,18-二烯-28-葡萄糖苷[27]
2α,3β,23-trihydroxyurs-12,18-dien-28-
oic acid 28-O -β-D-glucopyranoside
2α,3β,23-(OH)3,12,18-dien,28-CO2 glc 6
38
2α,3β,23-三羟基乌索-12,19-二烯-28-葡萄糖苷[27]
2α,3β,23-trihydroxyurs-12,19-dien-28-
oic acid 28-O -β-D-glucopyranoside
2α,3β,23-(OH)3,12,19-dien,28-CO2 glc 6
39 alpinoside[27] 2α,3α-(OH)2,12,19(29)-dien,28-CO2 glc 6
40 quadranoside VIII[27] 2α,3β,23-(OH)2,12,19(29)-dien,28-CO2 glc 6
41 sericoside[27] 2α,3β,19α,24-(OH)4,12-en,28-CO2 glc 6
42 pinfaensin[27] 2α,3β,19α-(OH)3,12-en,23-CHO,28-CO2H 6
43 苦莓苷 F2[27]niga-ichigoside F2 2α,3α,19α,23-(OH)4,12-en,28-CO2 glc 6
44 4-epi-niga-ichigoside F1[27] 2α,3β,19α,23-(OH)4,12-en,28-CO2 glc 6
45 trachelosperoside A1[27] 2α,3β,19α-(OH)3,12-en,24-CO2H,28-CO2 glc 6
46 pedunculoside[27] 3β,19α,23-(OH)3,12-en,28-CO2 glc 6
47 ziyu-glycoside[27] 19α-OH,3-ara,28-CO2 glc 6
177Vol. 23 孟祥娟等:悬钩子属植物化学成分及药理活性研究进展
48 1α,2α,3β,19α-四羟基乌索-12-烯-28-酸
[27]
1α,2α,3β,19α-tetrahydroxyurs-12-en-28-oic acid
1α,2α,3β,19α-(OH)4,12-en,28-CO2H 6
49 2α,3β,19α-三羟基乌索-12-烯-23,28-二酸
[27]
2α,3β,19α-trihydroxyurs-12-en-23,28-dioic acid
2α,3β,19α-(OH)3,12-en,23,28-(CO2H)2 6
图 5 羽扇豆烷型三萜类化合物基本骨架
Fig. 5 Structure of the lupane-type triterpenes
表 5 悬钩子属植物中羽扇豆烷型三萜类化合物
Table 5 The lupane -type triterpenes isolated from Rubus L.
编号
No.
化 合 物
Compound
基团
Group
来源
Source
1 羽扇豆醇乙酸酯[21] lupeolacetate 3β-O2CCH3,20(29)-en 27
2 2α,3β-二羟基羽扇豆烷-20(29)烯-28-酸
[20]
2α,3β-dihydroxyl-lup-20(29)-en-28-oic acid
2α,3β-(OH)2,20(29)-en,28-CO2H 13
3 rubuside I[27] 2α,3β,24-(OH)3,20(29)-dien,28-CO2 glc 6
1. 3 鞣质类
从悬钩子属植物中分离得到的鞣质主要是可水
解鞣质,包括没食子鞣质、逆没食子鞣质、可水解鞣
质低聚体和咖啡鞣质等。
赵庆春等[36]从粗叶悬钩子中分离到一个新的
鞣质 sanguiin H-2 ethyl ester 及 1,2,3,4,6-五-没食
子酰葡萄糖(1,2,3,4,6-penta-O-galloyl-β-D-gluco-
pyranose)和 1,2,3,6-四-没食子酰葡萄糖(1,2,3,6-
tetra-O-galloyl-β-D-glucopyranose)。Haizhou Li 等[37]
从甜茶提取物中分离到 6 个新的可水解鞣质和 7 个
已知鞣质成分。6 个新的可水解鞣质均属逆没食子
鞣质及其低聚体和衍生物,分别是 Rubusuaviins A ~
F,其中,Rubusuaviin A 的结构是 1-O-galloyl-2,3-O-
(S)-HHDP-4,6-O-(S)-sanguisorboyl-β-D-glucopyr-
anose;Rubusuaviins B、C 和 E 分别是逆没食子鞣质
的二、三、四聚体;Rubusuaviins D 和 F 分别是 Ru-
busuaviins C and E的衍生物。7 个已知鞣质分别是
pedunculagin、1(β)-O-galloyl pedunculagin、strictinin、
sanguiin H-5、lambertianin A、sanguiin H-6 和 1-des-
galloyl sanguiin H-6;Sahar A. M. Hussein等[38]从 Ru-
bus sanctus 的地上部分分离出 1 个新鞣质 2,3-O-
hexahhexahydroxydiphenoyl-4,6-O-sanguisorboyl-(α /
β)-glucose 和 2 个已知鞣质 2,3-hexahydroxydiphe-
noyl-(α /β)- glucose、bis-2,3,4,6-hexahydroxydiphe-
noyl-(α /β)-glucose。
1. 4 甾类
悬钩子属植物所含甾类化合物主要有植物甾
醇、C21甾等。黄可新等
[39]从川莓中分离出胡萝卜
苷-6’-棕榈油酯;阮金兰等[40]从黑草莓果实冻干粉
的正丁醇提取部分分离得到△5,22-豆甾烯醇﹑ β-谷
甾醇和胡萝卜苷;王明奎等[32]从白叶莓根分离得到
β-谷甾醇和胡萝卜苷;Márcia Kanegusuku 等[35]从空
心泡中分离得到豆甾醇(stigmasterol)﹑(3β,24R)-
麦角 甾-5-烯-3-醇 (campesterol)。 Xiaochun chen
等[5]从秀丽莓中分离得到 1 个 C21甾体化合物 3-O-
β-D-glucopyranosyl-3β, 15α-dihydroxypregn-5-en-20-
one。
1. 5 其它类
Guido Flamini 等[41]从榆叶黑莓中分离到 3 个
新的蒽醌类化合物 rubanthrone A、B 和 C;Sahar A.
M. Hussein等[38]从 R. sanctus Schreb.的地上部分分
离出 2 个新的天然咖啡酰酯 3,6-di-O-caffeoyl-(α /
β)-glucose 和 1-O-caffeoyl-β-xylose;Xiaochun chen
等[5]从秀丽莓中分离得到(-)-secoisolariciresinol-O-
α-L-rhamnopyranoside 和(+)-pinoresinol-O-β-D-glu-
copyranoside;赵庆春等[36]从粗叶悬钩子中分离得到
1 个新的酚酸类化合物 rubuphenol及鞣花酸(ellagic
acid)和没食子酸乙酯(ethyl gallate)。L. Panizzi
277 天然产物研究与开发 Vol. 23
等[6]从榆叶黑莓中分离得到没食子酸、阿魏酸;Sil-
via Martini等[12]自榆叶黑莓中分离得到鞣花酸、咖
啡酸、香豆酸;Gudej J 等[7]从红树莓叶中分离得到
没食子酸甲酯;谢一辉等[42]自华东覆盆子中分离得
到对羟基间甲氧基苯甲酸和对羟基苯甲酸。
2 药理作用
2. 1 抗菌作用
黑莓叶的提取物对幽门螺杆菌具有明显的抗菌
活性,尤其是从黑莓中提取分离得到的鞣花酸类成
分和黄酮类成分抗菌活性显著,其最低杀菌浓度远
远小于黑莓叶粗提物[12]。Guido Flamini 等[41]从榆
叶黑莓中分离得到的 rubanthrone A 在浓度为 4. 5
mg /ml时表现出对金黄色葡萄球菌显著的抗菌活
性。兴安悬钩子 R. chamaemorus Linn. 叶的甲醇提
取物对某些革兰氏阳性、革兰氏阴性菌和白色念珠
菌具有显著的抗菌活性[43]。
2. 2 抗炎作用
Choi J[44]等人研究了插田泡果实的提取物对小
鼠和大鼠的抗炎活性,结果显示,从插田泡果实分离
到的苦莓苷 F1 和 23-hydroxytormentic acid均有显著
的抗炎作用,且 23-hydroxytormentic acid 比苦莓苷
F1 具有更高的抗炎活性。
2. 3 抗肿瘤作用
茅莓总皂苷对体内、外黑色素瘤细胞有抑制作
用,通过促进黑色素瘤细胞凋亡而发挥抗肿瘤活性,
并呈量效依赖关系[45]。
Choi SH 等[46]研究了托盘根甲醇提取物对
MCF-7 人乳腺癌细胞生长周期的影响,结果表明托
盘根甲醇提取物具有显著的诱导癌细胞凋亡活性,
并能显著抑制 MCF-7 人乳腺癌细胞的扩散,对
MCF-7 人乳腺癌细胞的生长有很强的抑制效应。另
外,R. coreanum 的水提取物能抑制人结肠癌细胞
TH-29 的增殖,并能促进该细胞的凋亡[47]。
2. 4 抗氧化作用
Hyun Kyoung Ju 等[48]对覆盆子中酚酸的含量
及相关的抗氧化活性在其发酵前后的变化进行了研
究。结果显示,覆盆子所含的酚酸具有显著的抗氧
化活性,经过发酵过程后不仅含量有了提高,其清除
自由基能力也大大增强。插田泡种子乙醇提取物对
DPPA·,H2O2 等有较强的清除能力,尤其是发酵后
的种子乙醇提取物比新鲜种子具有更高的抗氧化活
性[49]。
2. 5 抗过敏作用
方耀高等[50]对广西甜茶提取物的抗过敏作用
进行了研究。结果表明,广西甜茶提取物能显著抑
制 2,4-二硝基氟苯诱发的小鼠耳肿胀及血管通透
性增高、绵羊红细胞诱发的小鼠迟发型过敏反应足
跖肿胀,减轻小鼠异种被动皮肤过敏反应,而表现出
显著的抗过敏作用,其作用机制可能与抑制肥大细
胞释放组胺有关。
刺莓 R. croceacanthus Leveille 甲醇提取物能抑
制肥大细胞介导的过敏样反应,具有很高的抗过敏
活性[51]。
2. 6 保肝作用
R. sanctus Schreb.乙醇提取物能显著抑制四氯
化碳诱导的细胞死亡效应,减少谷胱甘肽消耗量,对
四氯化碳诱导的小鼠离体肝细胞毒性损伤有显著保
护作用[52]。
洪振丰等[53]采用 CCl4 致小鼠急性肝损伤模
型,通过测定血清中谷丙转氨酶(ALT)、谷草转氨酶
(AST)、肝组织损伤程度,以及肝组织中细胞色素
CYP2E1 和 CYP3A1 的 mRNA表达,研究粗叶悬钩子
总生物碱对模型大鼠急性肝损伤药物代谢酶的影
响。结果表明,粗叶悬钩子总生物碱可显著降低
ALT和 AST 水平,保护肝细胞免受伤害,并抑制细
胞色素 CYP2E1 和 CYP3A1 在肝组织中的 mRNA 表
达。
2. 7 镇痛作用
空心泡地上部分提取物具有很强的镇痛作用,
其中 28-methoxytormentic acid 的镇痛活性强于阿司
匹林和对乙酰氨基酚数倍[35]。从 R. imperialis 中分
离得到的苦莓苷 F1 也具有显著的镇痛效果
[54]。
2. 8 其它作用
从插田泡的未成熟果实中分离得到的苦莓苷
F1 和 23-hydroxytormentic acid具有较好的抗风湿作
用[30];茅莓总皂苷具有较好的抗脑缺血作用[55];从
广西甜茶水提取物中分离得到的没食子酸具有显著
的抗血管生成活性[56]。从茅莓根中分离得到的甜
叶苷 R1 对多巴胺能神经元有保护作用
[57]。插田泡
果实乙醇提取物能加强成骨细胞的功能,对骨质疏
松症和骨炎性疾病具有一定的预防作用[58]。
3 讨论
悬钩子属植物含有黄酮、萜、鞣质、甾、醌、生物
碱、有机酸等多种化学成分,具有抗菌、抗炎、抗肿
377Vol. 23 孟祥娟等:悬钩子属植物化学成分及药理活性研究进展
瘤、抗氧化、抗过敏、保肝、镇痛等多方面的药理活
性,具有很高的医疗保健价值,且在我国传统中医药
中应用广泛。但如何在广泛搜集整理民间治疗经验
的基础上,确切地阐明该属植物的活性成分及其作
用机制,并将其开发应用于临床是一个亟待解决的
问题。进一步加强对该属植物有效成分药理活性、
作用机制、构效关系、结构修饰改造等的多学科研究
和关联分析,对该属植物成分的有效利用和新的药
物先导化合物的发现具有重要意义。
参考文献
1 Delectis Florae Reipublicae Popularis Sinicae,Agendae Aca-
demiae Sinicae Edita(中国科学院中国植物志编辑委员
会). Flora Reipublicae Popularis Sin(中国植物志) ,Tomus
57. Beijing:Science Press,1985. 10-218.
2 Sun CQ(孙长清) ,et al. The exploitation and utilization of
raspberry(Rubus L.). Guihaia(广西植物) ,2004,24:578-
582.
3 Fu ZS(傅正生) ,et al. The progress of chemical composition
and bioactivity of Rubus L. . Nat Prod Res Dev(天然产物研
究与开发) ,2001,13:86-91.
4 Liu MS(刘明生) ,et al. The research of chemical composi-
tion of Rubus L. . Lishizhen Med Mat Med Res(时珍国医国
药) ,1999,11:866-867.
5 Chen XC,et al. Pregnane glycoside,lignan glycosides,triter-
pene glycosyl ester and flavonoid glycosides from Rubus ama-
bilis. Planta Medica,2001,67:270-273.
6 Panizzi L,et al. In vitro antimicrobial activity of extracts and
isolated constituents of Rubus ulmifolius. J Ethnopharmacol,
2002,79:165-168.
7 Gudej J. Kaempferol and quercetin glycosides from Rubus
idaeus L. leaves. Acta Pol Pharm,2003,60:313-315.
8 Robert Byamukama,et al. Anthocyanins from fruits of Rubus
pinnatus and Rubus rigidus. J Food Compos Anal,2005,18:
599-605.
9 Ku CS,Mun SP. Optimization of the extraction of anthocyanin
from Bokbunja(Rubus coreanus Miq.)marc produced during
traditional wine processing and characterization of the ex-
tracts. Bioresour Technol,2008,99:8325-8330.
10 Wang Y(汪瑗) ,et al. Analysis of flavones in Rubus parvifo-
lius Linn by high performance liquid chromatography com-
bined with electrospray ionization-mass spectrometry and
thin-layer chromatography combined with fourier transform
surface enhanced raman spectroscopy. Chin J Anal Chem(分
析化学) ,2006,34:1073-1077.
11 Venskutonis PR,et al. Radical scavenging activity and com-
position of raspberry(Rubus idaeus)leaves from different lo-
cations in Lithuania. Pitoterapia,2007,78:162-165.
12 Silvia Martini,et al. Antimicrobial activity against Helico-
bacter pylori strains and antioxidant properties of blackberry
leaves(Rubus ulmifolius)and isolated compounds. Int J Anti-
microb Agents,2009,34:50-59.
13 Kang SH(康淑荷) ,Zheng SZ(郑尚珍). Two new flavones
from Rubus biflorus Buch. Acta Pharm Sin(药学学报) ,
2007,42:1288-1291.
14 Mtt-Riihinen KR,et al. Identification and quantification of
phenolic compounds in berries of Fragaria and Rubus species
(family Rosaceae). J Agric Food Chem,2004,52:6178-
6187.
15 Carle R,et al. A novel zwitterionic anthocyanin from ever-
green blackberry(Rubus laciniatus Willd.). J Agric Food
Chem,2002,50:396-399.
16 Du JW(杜晋伟) ,et al. The research of chemical composi-
tion of Rubus suavissimus S. Lee. China Tradit Herb Drugs
(中草药) ,2007,38:346-348.
17 Wang JX(王剑霞) ,Lv HC(吕华冲). Studies on the diter-
penoids of Rubus suavissimus S. Lee. Lishizhen Med Mat Med
Res(时珍国医国药) ,2008,19:664-665.
18 Wang JX(王剑霞) ,Lv HC(吕华冲). Studies on the chemi-
cal constituents of Rubus suavissimus S. Lee. J Chin Med Ma-
ter(中药材) ,2007,30:800-802.
19 Zhang M(张敏) ,et al. Isolation and identification of two new
diterpenoid from Rubus corchorifolius L. . Acta Pharm Sin(药
学学报) ,2007,42:1155-1158.
20 Liu R(刘戎) ,et al. Chemical constituents from root of Rubus
irenaeus. China Tradit Herb Drugs(中草药) ,2003,34:394-
396.
21 Kang SH(康淑荷) ,et al. Triterpenoids and steroids of root
of Rubus biflorus. J Chin Med Mater(中药材) ,2008,31:
1669-1670.
22 Hao XJ,et al. Rubupungenosides A and B,two novel triterpe-
noid saponin dimers from the aerial parts of Rubus pungens. J
Nat Prod,2000,63:851-854.
23 Wang BG(王斌贵) ,Jia ZJ(贾忠建). Studies on the chemi-
cal constituents of two species of raspberry(Rubus L.). Chi-
na Tradit Herb Drugs(中草药) ,1999,30:83-87.
24 Zhao WQ(赵卫权) ,et al. Studies on chemical constituents
in radicular part of Rubus swinhoei. China Tradit Herb Drugs
(中草药) ,2001,32:874-875.
25 Deng Y(邓烨) ,et al. Triterpenoids from Rubus buergeri. Ac-
ta Bot Sin(植物学报) ,2001,43:644-646.
26 Du SH(都述虎) ,et al. Isolation and identification of chemi-
cal constituents from Rubus Parvifolius L. . Chin J Nat Med
477 天然产物研究与开发 Vol. 23
(中国天然药物) ,2005,3:17-20.
27 Li W,et al. Triterpenoid saponins from Rubus ellipticus var.
obcordatus. J Nat Prod,2009,72:1755-1760.
28 Jung SW,et al. A triterpene glucosyl ester from the roots of
Rubus crataegifolius. Arch Pharmacal Res,2001,24:412-
415.
29 Zuo GY(左国营) ,et al. Triterpenoids from the roots of Ru-
bus obcordatus(Rosaceae). Acta Bot Yunnan(云南植物研
究) ,2008,30:381-385.
30 Nam JH,et al. The anti-gastropathic and anti-rheumatic effect
of niga-ichigoside F1 and 23-hydroxytormentic acid isolated
from the unripe fruits of Rubus coreanus in a rat model. Biol
Pharm Bull,2006,29:967-970.
31 Tan MX(谭明雄) ,et al. Studies on the chemical constitu-
ents from the Chinese traditional medicine Rubus parvifolius.
Guihaia(广西植物) ,2003,23:282-284.
32 Wang MK(王明奎) ,et al. Studies on chemical constituents
from root of Rubus innominatus. China Tradit Herb Drugs(中
草药) ,2003,34:295-297.
33 Liu R(刘戎) ,et al. Chemical constituents from the root of
Rubus chroosepalus. Acta Pharm Sin(药学学报) ,2001,36:
38-41.
34 Ono M,et al. A new triterpene glucosyl ester from the fruit of
the Blackberry(Rubus allegheniensis). Chem Pharm Bull,
2003,51:200-202.
35 Kanegusuku M,et al. Phytochemical and analgesic activity of
extract,fractions and a 19-hydroxyursane-type triterpenoid
obtained from Rubus rosaefolius (Rosaceae). Biol Pharm
Bull,2007,30:999-1002.
36 Cui CB,et al. Two new and four known polyphenolics ob-
tained as new cell-cycle inhibitors from Rubus Aleaefolius
Poir. J Asian Nat Prod Res,2002,4:243-252.
37 Haizhou Li,et al. Rubusuaviins A-F,monomeric and oligo-
meric ellagitannins from Chinese Sweet Tea and their α-am-
ylase inhibitory activity. Chem Pharm Bull,2007,55:1325-
1331.
38 Hussein SA,et al. Caffeoyl sugar esters and an ellagitannin
from Rubus sanctus. Phytochemistry,2003,63:905-911.
39 Huang KX(黄可新) ,et al. Chemical constituents from Ru-
bus setchuenensis. Chin J Appl Environ Biol(应用与环境生
物学报) ,2000,6:194-196.
40 Ruan JL(阮金兰) ,Zhao XY(赵晓亚) ,John M Cassady,et
al. Study on the constituents from freeze-dried Power of
blackberries(Rubus ursinus). J Chin Med Mater(中药材) ,
2001,24:645-647.
41 Guido Flamini,et al. Three anthrones from Rubus ulmifolius.
Phytochemistry,2002,59:873-876.
42 Xie YH(谢一辉) ,et al. Studies on the chemical constituents
from Fructus Rubi. J Chin Med Mater(中药材) ,2005,28:
99-100.
43 Goslinska O,Thiem B. Antimicrobial activity of Rubus
chamaemorus leaves. Fitoterapia,2004,75:93-95.
44 Choi J,et al. Antinociceptive and antiinflammatory effects of
Niga-ichigoside F1 and 23-hydroxytormentic acid obtained
from Rubus coreanus. Biol Pharm Bull,2003,26:1436-1441.
45 Zhen ZJ(郑振洨) ,et al. Antitumour effect of total saponins
of Rubus parvifolius on malignant melanoma. China J Chin
Mat Med(中国中药杂志) ,2007,32:2055-2057.
46 Choi SH,et al. Activity of crude extract of Rubus crataegifoli-
us roots as a potent apoptosis inducer and DNA topoisomer-
ase I inhibitor. Arch Pharmacal Res,2000,23:338-343.
47 Kim EJ,et al. Induction of apoptosis by the aqueous extract of
Rubus coreanum in HT-29 human colon cancer cells. Nutri-
tion,2005,21:1141-1148.
48 Ju HK,et al. Characterization of increased phenolic com-
pounds from fermented Bokbunja(Rubus coreanus Miq.)and
related antioxidant activity. J Pharm Biomed Anal,2009,49:
820-827.
49 Ku CS,Mun SP. Antioxidant activities of ethanol extracts
from seeds in fresh Bokbunja(Rubus coreanus Miq.)and
wine processing waste. Bioresour Technol,2008,99:503-
4509.
50 Fang YG(方耀高),et al. Anti-allergic effects of Rubus suavissi-
mus extract. J Chin Med Mater(中药材),2008,31:710-714.
51 Choi IY,et al. Rubus croceacanthus Leveille inhibits mast cell-
mediated anaphylactic-like reaction and tumor necrosis factor-
alpha secretion. Biol Pharm Bull,2004,27:1359-1363.
52 Abdel-Naim AB,et al. Rubus sanctus protects against carbon
tetrachloride-induced toxicity in rat isolated hepatocytes:iso-
lation and characterization of its galloylated flavonoids. J
Pharm Pharmacol,2009,61:1511-1520.
53 Hong ZF(洪振丰) ,et al. Effect of total alkaloids of Rubus
alceaefolius poiron on gene expressions of CYP2E1 and
CYP3A1 in rats with acute liver injury. Chin J Integr Tradit
West Med(中国中西医结合杂志) ,2009,29:711-715.
54 Ardenghi JV,et al. Analysis of the mechanism of antinocicep-
tive action of niga-ichigoside F1 obtained from Rubus imperi-
alis(Rosaceae). J Pharm Pharmacol,2006,58:1669-1675.
55 Wang JS(王继生) ,et al. Effect of total saponins of Rubus
parviflolius(TSRP)on change of hydrated amount and blood-
brain barrier in rats during focal cerebral ischemic / reperfu-
sion. Chin J Chin Mat Med(中国中药杂志) ,2007,32:
2166-2169.
(下转第 788 页)
577Vol. 23 孟祥娟等:悬钩子属植物化学成分及药理活性研究进展
72 Xu SH(徐淑梅) ,et al. Effect of Uncaria on evoked field po-
tential of hippocampal slice in epileptogenic rat. Chin J Appl
Phy(中国应用生理学杂志) ,2001,17:259-261.
73 Kai L(开丽) ,et al. Effect of rhynchophylline on the change
of NOS in cerebral ischemia-reperfusion rats. Chin J Mod Ap-
pl Pharm(中国现代应用药学)1999,16:10-12.
74 Wu EB(吴二兵) ,et al. Experimental study of the protective
effect and mechanism of rhynchophylline on cerebral ische-
mia reperfusion injury. J Sichuan Physi Sci(四川生理科学
杂志) ,2001,23:121.
75 Shimada Y,et al. Evaluation of the protective effects of alka-
loids isolated from the hooks and stems of Uncaria sinensis on
glutamate-induced neuronal death in cultured cerebellar
granule cells from rats. J Pharm Pharmacol,1999,51:715-
722.
76 Keplinger K,et al. Uncaria tomentosa (Willd.)DC. -Ethno-
medicinal use and new pharmacological,toxicological and bo-
tanical results. J Ethnopharmacol,1999,64:23-34.
77 Sandoval M,et al. Anti-inflammatory and antioxidant activi-
ties of cat's claw (Uncaria tomentosa and Uncaria guianen-
sis)are independent of their alkaloid content. Phytomedi-
cine,2002,9:325-337.
78 Sheng Y,et al. Treatment of chemotherapy-induced leukope-
nia in a rat model with aqueous extract from Uncaria tomen-
tosa. Phytomedicine,2000,7:137-143.
79 Lee KK,et al. Bioactive indole alkaloids from the bark of Un-
caria guianensis. Planta Med,1999,65:759-760.
80 Reis SR,et al. Immunomodulating and antiviral activities of
Uncaria tomentosa on human monocytes infected with Dengue
Virus-2. Int Immunopharm,2008,8:468-476.
81 Sheng Y,et al. Enhanced DNA repair,immune function and
reduced toxicity of C-MED-100,a novel aqueous extract from
Uncaria tomentosa. J Ethnophamacol. 2000,69:115-126.
82 Sheng Y,et al. DNA repair enhancement of aqueous extracts
of Uncaria tomentosa in a human volunteer study. Phytomedi-
cine. 2001,8:275-282.
83 Riva L,et al. The antiproliferative effects of Uncaria tomento-
sa extracts and fractions on the growth of breast cancer cell
line. Anticancer Res,2001,21:2457-2461.
84 Sheng Y,et al. Treatment of chemotherapy-induced leukope-
nia in a rat model with aqueous extract from Uncaria tomen-
tosa. Phytomedicine,2000,7:137-143.
85 Yoshikado N,et al. Uncariagambiriine and gambircatechol:
novel constituents of Uncaria gambir leaves. Heterocycles,
2009,77:793-800.
86 Ma B,et al. Three New Alkaloids from the leaves of Uncaria
rhynchophylla. Helv Chim Acta,2009,92:1575-1585.
87 Koson S,et al. Isolation and structural determination of ptero-
podine (Uncarin C) from the plant Uncaria macrophylla
Wall. growing in Laos. Tap Chi Duoc Hoc,2009,49:40-42.
88 Tao ZY(陶朝阳) ,et al. The studies on the chemical constit-
uents of Uncaria yunanensis HSIA. C. C. Chin New Drugs J,
2000,9:31-32.
89 Zhang J(张峻) ,et al. Study on the chemical constituents of
Uncaria (Ⅲ). Chin Tradit Herb Drugs(中草药) ,1999,30:
12-14.
90 Xin WB(辛文波) ,et al. Studies on alkalodial constituents in
leaves of Uncaria hirsuta. Chin J Nat Med(中国天然药物) ,
2008,33:2124-2128.
91 Carbonezi CA,et al. Determination of relative configurations
and conformations of oxindole alkaloids from Uncaria
guianensis by NMR. Quimica Nova,2004,27:878-881.
92 Sun JY,et al. Indole alkaloids from Nauclea officinalis with
weak antimalarial activity. Phytochemistry,2008,69:1405-
櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵
1410.
(上接第 775 页)
56 Greenway FL,et al. Gallic acid is partially responsible for the
antiangiogenic activities of Rubus leaf extract. Phytother Res,
2006,20:806-813.
57 Yu ZY(于占洋) ,et al. Isolation and identification of suavis-
simoside R1 from roots of Rubus parvifollus used for protec-
ting dopaminergic neurons against MPP + toxicity. J Chin Med
Mater(中药材) ,2008,31:554-557.
58 Choi EM,Lee KH. Rubus coreanus Miq. extract promotes os-
teoblast differentiation and inhibits bone-resorbing mediators
in MC3T3-E1 cells. Am J Chin Med,2006,34:643-654.
887 天然产物研究与开发 Vol. 23