试验选用持绿型冬小麦(Triticum aestivum) ‘豫麦66’ (‘Ym66’)和‘潍麦8号’ (‘Wm8’)为研究材料, 以当地生产上起主导作用的冬小麦品种‘小偃22’ (‘XY22’)和‘小偃6号’ (‘XY6’)为对照。花后用塑料薄膜搭建成增温棚进行高温处理, 测定各品种绿叶数目、叶绿素和丙二醛(MDA)含量及叶片细胞膜透性, 并研究籽粒灌浆成熟期高温对持绿型小麦籽粒淀粉合成相关酶及粒重的影响。结果表明, 高温处理后, 各品种的绿叶数目和叶绿素含量都减少, MDA含量和膜透性都增加, 说明高温加速了小麦叶片衰老。同时, 各品种籽粒中与淀粉合成相关的酶(蔗糖合成酶(SS)和腺苷二磷酸葡萄糖焦磷酸化酶(AGPP)、可溶性淀粉合酶(SSS))活性都低于正常生长下的籽粒中的酶活性, 其中高温对籽粒SS和AGPP活性的影响不显著,而对籽粒SSS活性的影响显著(p = 0.015)。品种间比较, 持绿型小麦在两种处理下, 都表现出较多的绿叶数目和较高的叶绿素含量; 且3种与淀粉合成相关的酶活性也都高于非持绿型小麦, 说明持绿型小麦酶活性受高温抑制程度较小。相关性分析表明, 所有品种籽粒SS、AGPP、SSS活性都与籽粒灌浆速率成极显著的正相关(相关系数r分别为0.905、0.419和0.801)。因而, 持绿型小麦不仅具有较好的持绿特性, 而且籽粒中与淀粉合成相关的3种酶活性都较高, 这有利于其籽粒淀粉的合成, 从而增加籽粒产量。
Aims Our objectives were to explore the influence of high temperature on enzymes of grain starch synthesis in stay-green wheat (Triticum aestivum) and reveal heat tolerance in stay-green wheat. Methods We used the stay-green wheat ‘Wm8’ and ‘Ym66’ and the control varieties ‘XY6’ and ‘XY22’ as experimental materials. A warming cover of plastic film was used to carry out the high-temperature treatment. After anthesis, we measured green leaf number, chlorophyll content, malonaldehyde (MDA) and membrane permeability, as well as the activities of the enzymes of grain starch synthesis were measured. Important findings High temperature after anthesis promotes rapid leaf senescence. For all four varieties, the green leaf number and chlorophyll content significantly decreased, but the MDA content and the relative electric conductivity increased markedly. The stay-green wheat varieties had higher green leaf number and chlorophyll content and lower MDA content and relative electric conductivity than the control cultivars after high temperature treatment. In grains, the activities of the enzymes of grain starch synthesis (sucrose synthase, SS; adenosine diphosphate glucose pyrophosphorylase, AGPP; and soluble starch synthase, SSS) in all four varieties decreased after high temperature treatment. But activities of these enzymes in the stay-green wheat were also higher than those in the control wheat, suggesting that it was beneficial for the starch accumulation in grain of stay-green wheat under high temperature. Among the three enzymes, a significant difference existed in SSS activity between the high temperature treatment and the control, and activities of the above three enzymes were positively and significantly correlated with grain-filling rate (r = 0.905, 0.419 and 0.801, respectively), so they play a key role in starch synthesis in the grain of wheat. Above all, the stay-green wheats have better resistance to high temperature than other varieties, and they have strong photosynthesis capacity and higher grain weight. Hence, breeding new cultivars with the stay-green characteristic would reduce the influence of high temperature stress during grain filling in wheat production.
全 文 :植物生态学报 2011, 35 (7): 769–778 doi: 10.3724/SP.J.1258.2011.00769
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2011-02-21 接受日期Accepted: 2011-05-04
* 通讯作者Author for correspondence (E-mail: gongyh01@163.com)
花后高温对持绿型小麦叶片衰老及籽粒淀粉合成
相关酶的影响
石慧清 龚月桦* 张东武
西北农林科技大学生命科学学院, 陕西杨凌 712100
摘 要 试验选用持绿型冬小麦(Triticum aestivum) ‘豫麦66’ (‘Ym66’)和‘潍麦8号’ (‘Wm8’)为研究材料, 以当地生产上起主
导作用的冬小麦品种‘小偃22’ (‘XY22’)和‘小偃6号’ (‘XY6’)为对照。花后用塑料薄膜搭建成增温棚进行高温处理, 测定各品
种绿叶数目、叶绿素和丙二醛(MDA)含量及叶片细胞膜透性, 并研究籽粒灌浆成熟期高温对持绿型小麦籽粒淀粉合成相关
酶及粒重的影响。结果表明, 高温处理后, 各品种的绿叶数目和叶绿素含量都减少, MDA含量和膜透性都增加, 说明高温加
速了小麦叶片衰老。同时, 各品种籽粒中与淀粉合成相关的酶(蔗糖合成酶(SS)和腺苷二磷酸葡萄糖焦磷酸化酶(AGPP)、可
溶性淀粉合酶(SSS))活性都低于正常生长下的籽粒中的酶活性, 其中高温对籽粒SS和AGPP活性的影响不显著,而对籽粒
SSS活性的影响显著(p = 0.015)。品种间比较, 持绿型小麦在两种处理下, 都表现出较多的绿叶数目和较高的叶绿素含量; 且
3种与淀粉合成相关的酶活性也都高于非持绿型小麦, 说明持绿型小麦酶活性受高温抑制程度较小。相关性分析表明, 所有
品种籽粒SS、AGPP、SSS活性都与籽粒灌浆速率成极显著的正相关(相关系数r分别为0.905、0.419和0.801)。因而, 持绿型
小麦不仅具有较好的持绿特性, 而且籽粒中与淀粉合成相关的3种酶活性都较高, 这有利于其籽粒淀粉的合成, 从而增加籽
粒产量。
关键词 酶活性, 籽粒, 高温, 淀粉合成, 持绿, 冬小麦
Effect of high temperature on leaf senescence and related enzymes of grain starch synthesis in
stay-green wheat after anthesis
SHI Hui-Qing, GONG Yue-Hua*, and ZHANG Dong-Wu
College of Life Sciences, Northwest Sci-Tech University of Agriculture & Forestry, Yangling, Shaanxi 712100, China
Abstract
Aims Our objectives were to explore the influence of high temperature on enzymes of grain starch synthesis in
stay-green wheat (Triticum aestivum) and reveal heat tolerance in stay-green wheat.
Methods We used the stay-green wheat ‘Wm8’ and ‘Ym66’ and the control varieties ‘XY6’ and ‘XY22’ as ex-
perimental materials. A warming cover of plastic film was used to carry out the high-temperature treatment. After
anthesis, we measured green leaf number, chlorophyll content, malonaldehyde (MDA) and membrane permeabil-
ity, as well as the activities of the enzymes of grain starch synthesis were measured.
Important findings High temperature after anthesis promotes rapid leaf senescence. For all four varieties, the
green leaf number and chlorophyll content significantly decreased, but the MDA content and the relative electric
conductivity increased markedly. The stay-green wheat varieties had higher green leaf number and chlorophyll
content and lower MDA content and relative electric conductivity than the control cultivars after high temperature
treatment. In grains, the activities of the enzymes of grain starch synthesis (sucrose synthase, SS; adenosine di-
phosphate glucose pyrophosphorylase, AGPP; and soluble starch synthase, SSS) in all four varieties decreased
after high temperature treatment. But activities of these enzymes in the stay-green wheat were also higher than
those in the control wheat, suggesting that it was beneficial for the starch accumulation in grain of stay-green
wheat under high temperature. Among the three enzymes, a significant difference existed in SSS activity between
the high temperature treatment and the control, and activities of the above three enzymes were positively and sig-
nificantly correlated with grain-filling rate (r = 0.905, 0.419 and 0.801, respectively), so they play a key role in
starch synthesis in the grain of wheat. Above all, the stay-green wheats have better resistance to high temperature
770 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (7): 769–778
www.plant-ecology.com
than other varieties, and they have strong photosynthesis capacity and higher grain weight. Hence, breeding new
cultivars with the stay-green characteristic would reduce the influence of high temperature stress during grain fill-
ing in wheat production.
Key words enzyme activity, grain granule, high temperature, starch synthesis, stay-green, winter wheat
小麦(Triticum aestivum)属于喜凉的C3作物, 籽
粒灌浆过程的适宜温度为20–24 ℃, 最高温度为
30–32 ℃ (田良才等, 1995)。而在我国黄淮麦区, 小
麦生育后期常出现日最高温度超过30 ℃的天气,
导致植株叶片早衰, 籽粒灌浆期缩短而使粒重降
低, 致使小麦产量下降3.5%–7.1%, 严重地区和年
份减产可达10%–20% (Wardlaw, 1980; 李永庚等,
2005)。据Wiegand和Cuellar (1981)和闫长生等
(2003)的研究, 在小麦灌浆期日平均气温15.8–27.7
℃范围内, 温度每升高1 ℃约使灌浆时间缩短3.1
天, 单穗粒重下降2.8 mg。持绿型小麦叶片衰老延
迟, 功能期延长, 可为籽粒灌浆提供充足的营养物
质, 从而具有较高的千粒重、单茎产量和生物学产
量, 具有较好的增产潜力(武永胜等, 2010)。但是,
关于持绿型小麦是否具有耐热性, 目前还未见这方
面的研究。
淀粉占小麦胚乳重量的3/4, 是小麦主要的能
量贮存物质(李永庚等, 2003)。温度对小麦淀粉代谢
的影响会影响到小麦的产量。目前研究表明, 在造
粉体中合成淀粉所需的己糖来源于蔗糖的分解, 蔗
糖合成酶(SS)主要催化蔗糖的分解(潘庆民等, 2002;
李永庚等, 2003)。而由己糖合成淀粉主要受腺苷二
磷酸葡萄糖焦磷酸化酶(AGPP)、可溶性淀粉合酶
(SSS)和束缚态淀粉合成酶(GBSS)的控制(Simth et
al., 1995; Schaffer & Petreikov, 1997)。王文静(2004)
认为, SS、AGPP和SSS与水稻籽粒中的淀粉合成关
系密切; 李永庚等(2001)发现, SS、AGPP、SSS和
GBSS可能是影响小麦籽粒淀粉积累的关键酶。高
温对小麦籽粒淀粉合成相关酶活性的研究已有少
量报道(闫素辉等, 2008; Dai et al., 2009), 但是关于
持绿型小麦籽粒淀粉合成相关酶活性与其耐热性
关系的研究尚未报道。
因此, 本试验从开花期开始用塑料薄膜搭建成
增温棚模拟高温环境, 进行高温处理, 深入研究花
后高温对冬小麦淀粉合成关键酶的影响, 揭示温度
对小麦产量影响的主要原因, 比较不同遗传背景的
冬小麦品种间耐热性差异, 探讨持绿型小麦的耐热
性及机理, 为通过遗传改良途径提高小麦产量和培
育耐热性品种提供依据。
1 材料和方法
1.1 材料与设计
试验于2009年10月–2010年6月在西北农林科
技大学农作一站(108°7′ E, 34°20′ N)进行, 该地属
我国小麦产区中的黄淮平原冬麦区, 为暖温带半湿
润气候。土壤基础养分含量为: 有机质1.29%、速效
氮48.5 mg·kg–1、速效磷6.1 mg·kg–1、速效钾154.9
mg·kg–1、全氮1.05 g·kg–1、全磷0.70 g·kg–1、全钾1.0
g·kg–1, 有效硫20.16 mg·kg–1。全年雨水较多, 试验
田在小麦整个生长期未经灌溉。
本试验选用4个冬小麦品种 , 其中 ‘豫麦66’
(‘Ym66’)和‘潍麦8号’ (‘Wm8’)为持绿型小麦, ‘小偃
6号’ (‘XY6’)和‘小偃22’ (‘XY22’)为非持绿型小麦
(薛晖等, 2010)。设南北两个随机区组排列, 重复3
次, 小区面积为3 m × 3 m, 试验播种为行距25 cm,
每小区12行, 株距3 cm, 埂宽20 cm。播种前施尿素
474 kg·hm–2, 过磷酸钙955 kg·hm–2。所有品种小麦
在开花后对北边区组进行高温处理, 以未处理的南
边区组为对照(CK)。处理方法参考Xu等(2001)文献:
用0.06 mm厚无色透明聚乙烯塑料薄膜 (透光率
≥85%)做成增温棚, 面积与小区面积相同, 高约1.5
m, 与小麦群体表面保持60 cm左右, 以不影响群体
内通风状况。每日8:00–18:00用增温棚遮盖, 进行高
温处理, 遇到下雨天撤掉增温棚, 以确保各小区水
分状况一致。温湿计挂在棚内外距小麦群体表面约
30 cm处, 在高温处理期间, 每隔1 h记录一次棚内
外温度和相对湿度值, 累计取平均值。
小麦盛花期选择开花期和长势一致的小麦用
红绳标记和挂牌标记, 每隔5天取样一次, 部分用
于测定干鲜重, 部分叶片用于测定叶绿素、丙二醛
(MDA)和电导率, 穗粒经液氮速冻后保存于–80 ℃
冰柜中, 用于酶活性的测定。
石慧清等: 花后高温对持绿型小麦叶片衰老及籽粒淀粉合成相关酶的影响 771
doi: 10.3724/SP.J.1258.2011.00769
1.2 测定指标与方法
1.2.1 绿叶数目
自盛花期至小麦叶片全部失绿为止, 每隔5天
目测挂牌标记的12个单茎上的绿叶数目, 用百分数
表示整个叶片中的绿色部分。
1.2.2 叶绿素和MDA含量
将旗叶剪成细丝状, 混匀后称取0.2 g, 用无水
乙醇与丙酮体积之比为1:1的混合液浸提比色测定
叶绿素含量(张宪政, 1986)。称取叶片样品0.3 g, 用
硫代巴比妥酸比色法测定MDA含量(孙群和胡景江,
2006)。
1.2.3 叶片细胞膜透性
参照高俊凤等(2000)的方法, 按处理和品种将
旗叶剪成0.5 cm × 0.5 cm小片, 室温下测定外渗液
电导值(L1), 沸水冷却后测定外渗液电导值(L2)。膜
相对透性(%) = L1/L2。
1.2.4 穗粒重及灌浆速率
每次取样穗6个, 手工剥粒, 烘干至恒重, 称重
即为穗粒重。以穗粒重的增长量除以中间相隔的采
样时间, 计算出灌浆速率。
1.2.5 酶活性的测定
粗酶液提取参照Doehlert等(1988)及高俊凤和
龚月桦(2006)的方法, 取样品籽粒5–13粒,称重后加
8 mL pH 7.5的Hepes-NaOH缓冲液 , 冰浴研磨 ,
10 000 × g 离心30 min, 上清液经透析处理后用于
酶活性测定。
SS参考於新建(1999)和Nakamura等(1989)的方
法 (对照用蒸馏水代替尿苷二磷酸葡糖UDPG);
AGPP和SSS参照程方民等(2001)的方法进行, 以20
μL煮沸的粗酶液为对照, 根据OD值的增加量计算
AGPP的活力, 酶活力单位为: NADPH含量(μmol·
seed–1·min–1)
1.2.6 收获期农艺性状
材料成熟后分品种收获, 每小区收取1 m2长势
均匀的植株, 测定生物学产量及经济学产量; 采样
20株室内测定株高、穗长、穗粒重和千粒重。
1.2.7 数据处理
每个小麦材料按重复次数所测定的数据求算
术平均值, 通过Excel 2003绘图。用SPSS Statistics
17.0统计分析软件进行相关性分析和独立样本 t
检验。
2 结果和分析
2.1 花后高温处理后各时段的平均温度和湿度
从图1看出, 花后灌浆期, 高温处理后, 棚内温
度和相对湿度都比棚外高, 其中棚内温度比棚外温
度平均高2–5 , 13℃ :00温度相差最大。棚内相对湿
度比棚外平均高出7.23%。但经t检验,棚内外相对湿
度无显著性差异(p = 0.104)
2.2 花后高温对持绿型小麦持绿特性的影响
从图2可以看出, 在对照区和高温区, 各个品
种绿叶数目和叶绿素含量都随着灌浆进程的推进
而下降, 不同品种下降速度不一, 非持绿型小麦
‘XY22’和‘XY6’从花后15天就开始急速下降, 但是
持绿型小麦‘Ym66’和‘Wm8’下降速度较缓。且在整
个灌浆结实期, 持绿型小麦的绿叶数目和叶绿素含
量在不同处理下都比非持绿型小麦多, 尤其在灌浆
后期绿叶数目表现更为明显。这说明持绿型小麦
‘Ym66’和‘Wm8’叶片衰老缓慢, 持绿特性好, 对花
后高温有一定的耐性。
图1 高温处理后增温棚内外温度和相对湿度日变化图。
Fig. 1 Diurnal changes of temperature and relative humidity inside and outside the sheds after high temperature treatment.
772 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (7): 769–778
www.plant-ecology.com
图2 花后不同处理对各小麦品种绿叶数目(A, B)和叶绿素含量(C, D)的影响。‘Wm8’, ‘潍麦8号’; ‘XY6’, ‘小偃6号’; ‘XY22’,
‘小偃22’; ‘Ym66’, ‘豫麦66’。
Fig. 2 Effect of different treatments after anthesis on green leaf number (A, B) and chlorophyll content (C, D) in different types of
wheat. ‘Wm8’, ‘Weimai 8 hao’; ‘XY6’, ‘Xiaoyan 6 hao’; ‘XY22’, ‘Xiaoyan22’; ‘Ym66’, ‘Yumai 66’.
2.3 花后高温对持绿型小麦旗叶叶片细胞膜的伤害
从图3A、3C看出, 在对照区, 各品种小麦叶片
的MDA含量和膜透性在开花初期保持平稳, 之后
逐渐上升。非持绿型小麦‘XY22’与‘XY6’从花后10
天MDA含量开始上升 , 而持绿型小麦 ‘Ym66’和
‘Wm8’从花后15天MDA含量开始上升, 说明持绿
型小麦叶片衰老启动缓慢。从图3B、3D看出, 各品
种经高温处理后, MDA含量从花后10天就开始急速
上升, 但是持绿小麦‘Ym66’和‘Wm8’上升速度较
小; 且在灌浆结实后期, 持绿型小麦的MDA含量和
叶片膜透性明显低于非持绿小麦, 说明持绿小麦
‘Ym66’和‘Wm8’的叶片细胞膜受高温伤害程度较
小, 耐热性较好。
2.4 花后高温对持绿型小麦淀粉合成相关酶的影响
2.4.1 SS活性
由图4可以看出, 不同品种在对照区和高温区,
籽粒SS活性变化均呈单峰曲线, 在花后20天达到峰
值。持绿型小麦‘Ym66’和‘Wm8’籽粒SS活性在各个
时期都高于非持绿型小麦‘XY22’和‘XY6’。高温处
理下(图4B), 所有品种籽粒SS活性均有所降低, 其
中‘Ym66’和‘Wm8’的籽粒SS活性的峰值平均下降
了7.73%, ‘XY22’和‘XY6’平均下降了14.11%。在灌
浆后期, 非持绿型小麦的籽粒SS活性呈快速下降趋
势, 持绿型小麦SS酶活性保持平缓趋势, 说明高温
对持绿型小麦籽粒SS活性的影响小些。
2.4.2 AGPP活性
由图5可知, 在对照区和高温区, 4个冬小麦品
种籽粒AGPP活性变化均呈单峰曲线。对照品种
‘XY22’和‘XY6’的峰值出现在花后15天, 持绿小麦
‘Ym66’和‘Wm8’的峰值出现在花后20天, 相对较
晚。高温处理后, 4个品种AGPP活性均有降低, 非持
绿型小麦籽粒AGPP活性的峰值平均下降了27.71%,
石慧清等: 花后高温对持绿型小麦叶片衰老及籽粒淀粉合成相关酶的影响 773
doi: 10.3724/SP.J.1258.2011.00769
图3 不同处理对各小麦品种叶片丙二醛(MDA)含量(A, B)和相对电导率(C, D)的影响。‘Wm8’, ‘潍麦8号’; ‘XY6’, ‘小偃6号’;
‘XY22’, ‘小偃22’; ‘Ym66’, ‘豫麦66’。
Fig. 3 Influence of different treatments to malonaldehyde (MDA) (A, B) content and relative electric conductivity (C, D) of leaves
in different types of wheat. ‘Wm8’, ‘Weimai 8 hao’; ‘XY6’, ‘Xiaoyan 6 hao’; ‘XY22’, ‘Xiaoyan22’; ‘Ym66’, ‘Yumai 66’.
图4 花后不同处理对不同小麦品种籽粒蔗糖合成酶活性的影响。‘Wm8’, ‘潍麦8号’; ‘XY6’, ‘小偃6号’; ‘XY22’, ‘小偃22’;
‘Ym66’, ‘豫麦66’。
Fig. 4 Effect of different treatments after anthesis on sucrose synthase (SS) activity in different types of wheat grain. ‘Wm8’,
‘Weimai 8 hao’; ‘XY6’, ‘Xiaoyan 6 hao’; ‘XY22’, ‘Xiaoyan22’; ‘Ym66’, ‘Yumai 66’.
持绿型小麦平均下降了9.98%。这表明, 虽然非持绿
型小麦在对照处理下的AGPP活性峰值较高, 但是
其受高温影响较严重, 而持绿型小麦籽粒的AGPP
活性受高温影响较小。
2.4.3 SSS活性
图6表明, 在对照区和高温区, 各品种籽粒SSS
774 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (7): 769–778
www.plant-ecology.com
图5 花后不同处理对不同小麦品种籽粒腺苷二磷酸葡萄糖焦磷酸化酶(AGPP)活性的影响。‘Wm8’, ‘潍麦8号’; ‘XY6’, ‘小偃6
号’; ‘XY22’, ‘小偃22’; ‘Ym66’, ‘豫麦66’。
Fig. 5 Effect of different treatments after anthesis on adenosine diphosphate glucose pyrophosphorylase (AGPP) activity in differ-
ent types of wheat grain. ‘Wm8’, ‘Weimai 8 hao’; ‘XY6’, ‘Xiaoyan 6 hao’; ‘XY22’, ‘Xiaoyan22’; ‘Ym66’, ‘Yumai 66’.
图6 花后不同处理对不同小麦品种籽粒可溶性淀粉合成酶活性的影响。‘Wm8’, ‘潍麦8号’; ‘XY6’, ‘小偃6号’; ‘XY22’, ‘小偃
22’; ‘Ym66’, ‘豫麦66’。
Fig. 6 Effect of different treatments after anthesis on the activity of soluble starch synthase (SSS) in different types of wheat grain.
‘Wm8’, ‘Weimai 8 hao’; ‘XY6’, ‘Xiaoyan 6 hao’; ‘XY22’, ‘Xiaoyan22’; ‘Ym66’, ‘Yumai 66’.
活性均呈先上升后下降的单峰曲线, 峰值均出现在
花后20天。持绿型小麦‘Wm8’和‘Ym66’的籽粒SSS
活性一直高于非持绿型小麦‘XY22’和‘XY6’。高温
处理后, 4个品种籽粒SSS活性峰值显著下降, 下降
率分别为‘XY22’ (31.59%)、‘XY6’ (24.23%)、‘Wm8’
(22.29%)和‘Ym66’ (20.64%), 说明高温对小麦籽粒
SSS活性的影响较严重。
2.5 持绿型小麦灌浆进程和灌浆速率及其与淀粉
合成相关酶活性的关系
2.5.1 花后高温对不同品种千粒重的影响
从图7看出, 随着冬小麦灌浆进程的推进, 各
品种千粒重上升趋势呈“S”型 , 其中持绿型小麦
‘Wm8’和‘Ym66’的上升幅度比较大, 且千粒重一直
比非持绿型小麦‘XY22’和‘XY6’高。在高温处理下,
持绿型小麦亦表现出较高的千粒重, 而非持绿型小
麦的千粒重上升幅度明显受抑制, 表明高温对持绿
型小麦籽粒千粒重的影响相对较小, 持绿型小麦耐
热性能较好。
2.5.2 不同品种籽粒灌浆速率及其与淀粉合成相
关酶活性的关系
图8表明, 所有品种在不同处理下, 灌浆速率
呈先上升后下降趋势。相关性分析表明, 所有品种
石慧清等: 花后高温对持绿型小麦叶片衰老及籽粒淀粉合成相关酶的影响 775
doi: 10.3724/SP.J.1258.2011.00769
图7 花后不同处理对不同小麦品种千粒重的影响。‘Wm8’, ‘潍麦8号’; ‘XY6’, ‘小偃6号’; ‘XY22’, ‘小偃22’; ‘Ym66’, ‘豫麦66’。
Fig. 7 Effect of different treatments after anthesis on the 1000-grain weight of different types of wheat. ‘Wm8’, ‘Weimai 8 hao’;
‘XY6’, ‘Xiaoyan 6 hao’; ‘XY22’, ‘Xiaoyan22’; ‘Ym66’, ‘Yumai 66’.
图8 不同处理对不同小麦品种灌浆速率的影响。‘Wm8’, ‘潍麦8号’; ‘XY6’, ‘小偃6号’; ‘XY22’, ‘小偃22’; ‘Ym66’, ‘豫麦66’。
Fig. 8 Effect of different treatments on the rate of filling in different types of wheat. ‘Wm8’, ‘Weimai 8 hao’; ‘XY6’, ‘Xiaoyan 6
hao’; ‘XY22’, ‘Xiaoyan22’; ‘Ym66’, ‘Yumai 66’.
的灌浆速率与籽粒中与淀粉合成相关的SS、AGPP、
SSS酶活性均呈极显著的正相关关系, 相关系数分
别为: 0.905、0.419、0.801。持绿型小麦在籽粒灌浆
结实后期表现出较高的灌浆速率, 千粒重亦较高,
这与其淀粉合成相关酶活性高有关。
2.6 花后高温对持绿型小麦产量及构成产量相关
因素的影响
从表1看出, 持绿型小麦的穗长、穗粒重、千粒
重和总生物量都大于非持绿型小麦, 表明其同化能
力强, 具有明显的增产优势。同一品种不同处理间
用t检验比较发现, 非持绿型小麦‘XY22’和‘XY6’的
株高和经济学产量表现出极显著的差异性; 穗长和
生物学产量也表现出显著的差异性。而持绿型小麦
‘Ym66’和‘Wm8’的株高、穗长、生物学产量和经济
学产量的差异都不显著。所有品种的穗粒重和千粒
重都表现出极显著的差异性, 说明高温对冬小麦产
量影响较大。高温处理下, 持绿型小麦‘Ym66’和
‘Wm8’的千粒重分别下降10.02%和9.3%; 非持绿型
小麦‘XY22’和‘XY6’的千粒重分别下降17.92%和
19.45%, 说明持绿型小麦产量受高温影响较小。持
绿品种的生物学产量较高, 表明其同化能力强; 收
获指数较低, 说明其籽粒成熟时仍有大量同化物未
运输到籽粒, 这有待进一步研究探讨。
3 讨论和结论
本文用塑料棚进行增温处理的方法是目前大
776 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (7): 769–778
www.plant-ecology.com
表1 高温对不同小麦品种产量和产量相关因素的影响
Table 1 Effect of high temperature on yield and yield components of different types of winter wheat
CK, 对照; HT, 高温。‘Wm8’, ‘潍麦8号’; ‘XY6’, ‘小偃6号’; ‘XY22’, ‘小偃22’; ‘Ym66’, ‘豫麦66’。表中大小写字母分别表示在0.01水平和0.05
水平上差异显著。
CK, control; HT, high temperature. ‘Wm8’, ‘Weimai 8 hao’; ‘XY6’, ‘Xiaoyan 6 hao’; ‘XY22’, ‘Xiaoyan22’; ‘Ym66’, ‘Yumai 66’. The capital letter
and the small letter mean significant difference at 0.01 and 0.05 level separately.
田试验中简便易行的增温处理方法。当然, 用塑料
膜增温, 除了温度升高外, 其他一些气候因子也可
能发生变化, 如光照会减弱, 这在早晨和下午可能
会降低光合作用, 但中午却可能因减弱光照而减轻
光合的午休现象, 有利于光合作用, 所以, 综合看
来, 光照对光合的影响不大。另外, 塑料棚的遮盖
可能使棚内水蒸气向外扩散受阻而增加小麦冠层
的湿度, 这有利于生育后期植株生长, 减缓衰老而
缓冲高温处理效果, 但是经t检验, 棚内湿度并未显
著增加, 所以湿度对本研究的影响应该也不显著。
由于塑料棚离小麦群体表面有60 cm的高度, 周围
又开有小窗, 所以不至于影响通风状况, 估计对棚
内CO2浓度影响也不大。总体看来, 本试验所用的
增温处理方法虽然对光照、水分会有些微影响, 但
主要作用还是增温。考虑到成本、操作难易等各方
面的因素, 这不失为一种简便易行的增温处理方
法, 因而被很多国内同行(陈希勇等, 2000; Xu et al.,
2001; 闫长生等, 2003; 张英华和王志敏, 2006; 姜
春明等, 2007; 闫素辉等, 2008)所使用。
在高温胁迫下, 叶绿体的超微结构很容易受到
损伤, 同时叶绿素发生降解, 叶片叶绿素含量下降,
导致形态上表现出绿叶数目和绿叶面积显著下降
(马晓娣等, 2003)。同时高温可使质膜的结构发生变
化, 使质膜的电解质渗透率增加, 膜的稳定性变差;
膜脂过氧化产物MDA含量增多。本试验在大田模拟
高温环境, 研究结果表明高温处理后非持绿型小麦
‘XY22’和‘XY6’的叶绿素降解加快, 叶绿素含量降
低, 绿叶数目也明显降低; 膜脂氧化分解严重, 膜
透性增大 , MDA含量也多于对照。而持绿品种
‘Ym66’和‘Wm8’在受到高温胁迫后能维持相对较
高的绿叶数目和叶片叶绿素含量; 且膜脂氧化程度
低, MDA含量未明显增多, 膜透性较小。这些特征
表明持绿型小麦在高温条件下仍可保持较强的光
合能力, 从而为籽粒灌浆提供充足的物质; 此外,
细胞膜受到的伤害程度小, 膜的热稳定性较好, 表
现出一定的耐热性(俆如强等, 1998; Rehman et al.,
2004)。
小麦灌浆期高温处理使淀粉积累量下降, 一方
面是由于籽粒蔗糖供应减少引起糖源不足; 另一方
面则是由于灌浆中后期淀粉合成相关酶活性下降
使淀粉合成受抑所致(闫素辉等, 2008)。本研究表明,
经花后高温处理后, 籽粒中与淀粉合成有关的3种
酶活性均有下降, 但高温对籽粒SS和AGPP活性未
达到显著性影响, 而籽粒SSS活性下降最大, 受高
温显著影响(p = 0.015)。这可能是因为SSS的活性对
温度极为敏感, 存在“Knockdown”现象, 即温度超
过25 ℃时SSS活性显著降低, 不利于支链淀粉的生
物合成(Keeling et al., 1993), 而与淀粉合成有关的
其他酶均无“Knockdown”现象(Jenner et al., 1993)。
相关性分析表明, 3种酶活性与籽粒灌浆速率有着
极显著的相关性。持绿型小麦‘Ym66’和‘Wm8’在高
温处理后, 籽粒中SS、AGPP和SSS活性下降较少,
且显著高于对照品种‘XY22’和‘XY6’。说明在相同
的高温处理下, 持绿型小麦籽粒淀粉合成受高温影
响较小, 这是其灌浆速率较高、千粒重较大的生理
原因所在。也说明持绿型小麦具有一定的耐热性。
品种
Variety
处理
Treatment
株 高
Spike high
(cm)
穗 长
Ear length
(cm)
分糵数
Tillering
number (个)
穗粒重
Grain weight/
Spike (g)
千粒重
1 000-grain
weight (g)
生物学产量
Biological
yield (kg·m–2)
经济学产量
Economic yield
(kg·m–2)
收获指数
Harvest
index (%)
CK 74.23a 15.95a 1.78a 3.11A 46.49A 2.44a 0.64a 34.59A ‘Ym66’
HT 74.11a 15.64a 1.80a 2.81B 41.83B 2.09a 0.55a 32.48B
CK 76.13a 14.73a 2.25a 3.08A 48.98A 2.56a 0.73a 35.03A ‘Wm8’
HT 75.86a 14.53a 2.31a 2.73B 44.28B 2.25a 0.69a 32.25B
CK 82.13A 10.81a 3.38a 2.09A 39.90A 2.08a 0.74a 40.89a ‘XY6’
HT 78.87B 10.47a 3.50a 1.66B 32.14B 1.56b 0.53b 40.17b
CK 78.83A 9.95a 2.84a 2.17A 39.95A 1.92a 0.79A 32.94a ‘XY22’
HT 75.48B 9.60b 2.90a 1.74B 32.79B 1.43b 0.56B 34.20a
石慧清等: 花后高温对持绿型小麦叶片衰老及籽粒淀粉合成相关酶的影响 777
doi: 10.3724/SP.J.1258.2011.00769
综上可知, 花后高温是影响小麦产量的重要因
素之一。花后高温处理下, 不同冬小麦品种叶片衰
老加快, 籽粒中与淀粉合成相关的酶活性均下降,
致使淀粉合成受抑制, 籽粒千粒重下降。在相同的
高温处理下, 与非持绿型小麦相比, 持绿型小麦
‘Ym66’和‘Wm8’叶片衰老延迟, 光合作用时间延
长, 可同化积累较多的有机物质; 此外, 持绿型小
麦籽粒中与淀粉合成相关的酶活性亦较高, 淀粉积
累较多, 因而, 持绿型小麦具有较高的千粒重、穗
粒重和生物学产量。但在本研究中, 持绿型小麦的
经济产量优势不明显, 主要原因在于其分蘖数较
少, 单位面积上的穗数减少。因此, 在生产中应用
时应加大播种密度以提高单位面积产量。
致谢 国家自然科学青年基金(30600075)和西北农
林科技大学青年学术骨干支持计划资助。感谢张嵩
午教授对此文的修改。
参考文献
Chen XY (陈希勇), Sun QX (孙其信), Sun CZ (孙长征)
(2000). Performance and evaluation of spring wheat heat
tolerance. Journal of China Agricultural University (中国
农业大学学报), 5(1), 43–49. (in Chinese with English ab-
stract)
Cheng FM (程方民), Jiang DA (蒋德安), Wu P (吴平), Shi CH
(石春海) (2001). The dynamic change of starch synthesis
enzymes during the grain filling stage and effects of tem-
perature upon it. Acta Agronomica Sinica (作物学报), 27,
201–206. (in Chinese with English abstract)
Dai ZM, Yin YP, Wang ZL (2009). Comparison of starch ac-
cumlation and enzyme activity in grains of wheat cultivars
differing in kernel type. Journal of Plant Growth Regula-
tion, 57, 153–162.
Doehlert DC, Kuo TM, Felker FC (1988). Enzymes of sucrose
and hexose metabolism in developing kernels of two in-
breds of maize. Plant Physiology, 86, 1013–1019.
Gao JF (高俊凤), Gong YH (龚月桦) (2006). Experimental
Introduction of Plant Physiology (植物生理学试验指导).
Higher Education Press, Beijing. (in Chinese)
Gao JF (高俊凤), Sun Q (孙群), Liang ZS (梁宗锁) (2000).
Experimental Techniques in Plant Physiology (植物生理
学试验技术). World Book Publishing Company, Xi’an.
(in Chinese)
Jenner CF, Siwek K, Hawker JS (1993). The synthesis of 14C
starch from 14C sucrose in isolated wheat grain is depend-
ent upon the activity of soluble starch synthase. Australian
Journal of Plant Physiology, 20, 329–335.
Jiang CM (姜春明), Yin YP (尹燕枰), Liu X (刘霞), Wang ZL
(王振林) (2007). Response of flag leaf peroxidation and
protective enzyme activity of wheat cultivars with differ-
ent heat tolerance to high temperature stress after anthesis.
Acta Agronomica Sinica (作物学报), 33, 143–148. (in
Chinese with English abstract)
Keeling PL, Bacon PJ, Holt DC (1993). Elevation temperature
reduces starch deposition in wheat endosperm by reducing
the activity of soluble starch synthase. Planta, 191,
342–348.
Li YG (李永庚), Jiang GM (蒋高明), Yang JC (杨景成)
(2003). Effects of temperature on carbon and nitrogen
metabolism, yield and quality of wheat. Acta Phy-
toecologica Sinica (植物生态学报), 27, 164–169. (in Chi-
nese with English abstract)
Li YG (李永庚), Yu ZW (于振文), Jiang D (姜东), Yu SL (余
松烈) (2001). Studies on the dynamic changes of the syn-
thesis of sucrose in the flag leaf and starch in the grain and
related enzymes of high-yielding wheat. Acta Agronomica
Sinica (作物学报), 27, 658–664. (in Chinese with English
abstract)
Li YG (李永庚), Yu ZW (于振文), Zhang XJ (张秀杰), Gao
LM (高雷明) (2005). Response of yield and quality of
wheat to heat stress at different grain filling stages. Acta
Phytoecologica Sinica (植物生态学报), 29, 461–466. (in
Chinese with English abstract)
Ma XD (马晓娣), Wang L (王丽), Wang M (汪矛), Peng HR
(彭惠茹) (2003). Difference in relative conductivity and
ultrastructure of leaf between two wheat cultivars with dif-
ferent thermotolerance under heat acclimation and heat
stress. Journal of China Agricultural University (中国农
业大学学报), 8(5), 4–8. (in Chinese with English ab-
stract)
Nakamura Y, Yuki K, Park SY, Ohya T (1989). Carbohydrate
metabolism in the developing endosperm of rice grains.
Plant & Cell Physiology, 30, 833–839.
Pan QM (潘庆民), Han XG (韩兴国), Bai YF (白永飞), Yang
JC (杨景成) (2002). Advances in physiology and ecology
studies on stored non-structure carbohydrates in plants.
Chinese Bulletin of Botany (植物学通报), 19(1), 30–38.
(in Chinese with English abstract)
Rehman H, Malik SA, Saleem M (2004). Heat tolerance of
upland cotton during the fruiting stage evaluated during
cellular membrane thermostability. Field Crops Research,
85, 149–158.
Schaffer AA, Petreikov M (1997). Sucrose-to-starch metabo-
lism in tomato fruit undergoing transient starch accumula-
tion. Plant Physiology, 113, 739–746.
Smith AM, Denyer K, Martin CR (1995). What controls the
amount and structure of starch in storage organs? Plant
Physiology, 107, 673–677.
Sun Q (孙群), Hu JJ (胡景江) (2006). Research Technology of
778 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (7): 769–778
www.plant-ecology.com
Plant Physiology (植物生理学研究技术). Northwest A &
F Sci-Tech University Press, Xianyang, Shaanxi. (in Chi-
nese)
Tian LC (田良才), Zhang MY (张明仪), Li JC (李晋川)
(1995). High temperature stress―main barrier of high
productivity on wheat. Journal of Shanxi Agricultural
Sciences (山西农业科学), 23(2), 14–18. (in Chinese with
English abstract)
Wang WJ (王文静) (2004). The relationship between source-
sink intensity and starch accumulation during grain filling
period in two winter wheat cultivars with different spike
types. Acta Agronomica Sinica (作物学报), 30, 678–691.
(in Chinese with English abstract)
Wardlaw IF (1980). Factors limiting the rate of dry matter ac-
cumulation in the grain of wheat grown at high tempera-
ture. Australian Journal of Plant Physiology, 7, 387–400.
Wiegand CL, Cuellar JA (1981). Duration of grain filling and
kernel weight of wheat as affected by temperature. Crop
Science, 21, 95–101.
Wu YS (武永胜), Xue H (薛晖), Liu Y (刘洋), Gong YH (龚
月桦) (2010). Study on senescence and chlorophyll fluo-
rescence traits of stay-green leaf in wheat. Agricultural
Research in the Arid Areas (干旱地区农业研究), 28,
117–122. (in Chinese with English abstract)
Xu RQ (徐如强), Sun QX (孙其信), Zhang SZ (张树榛)
(1998). Current status and prospective on the investigation
of heat tolerance in wheat. Journal of China Agricultural
University (中国农业大学学报), 3(3), 33–40. (in Chinese
with English abstract)
Xu XL (徐晓玲), Wang ZM (王志敏), Zhang JP (张俊平)
(2001). Effects of heat stress on photosynthetic character-
istics of different green organs of winter wheat during
grain filling stage. Acta Botanica Sinica (植物学报), 43,
571–577. (in Chinese with English abstract)
Xue H (薛晖), Jia L (贾丽), Gong YH (龚月桦), Liu YZ (刘赢
洲), Wu YH (吴养会) (2010). Study on the stay-green
capacity and leaf senescence of winter wheat. Acta
Botanica Boreali-Occidentalia Sinica (西北植物学报),
30, 336–343. (in Chinese with English abstract)
Yan CS (闫长生), Xiao SH (肖世和), Zhang XY (张秀英), Hai
L (海林) (2003). Evaluation of heat tolerance during ma-
turity in winter wheat. Acta Agriculturae Boreali-Sinica
(华北农学报), 18(3), 15–17. (in Chinese with English ab-
stract)
Yan SH (闫素辉), Yin YP (尹燕枰), Li WY (李文阳), Li Y
(李勇), Liang TB (梁太波), Wu YH (邬云海), Wang P
(王平), Geng QH (耿庆辉), Dai ZM (戴忠民), Wang ZL
(王振林) (2008). Effect of high temperature during grain
filling on starch accumulation, starch granule distribution,
and activities of related enzymes in wheat grains. Acta
Agronomica Sinica (作物学报), 34, 1092–1096. (in Chi-
nese with English abstract)
Yu XJ (於新建) (1999). Introduction to Modern Plant Physio-
logical Experiments (现代植物生理学实验指南). Science
Press, Beijing. (in Chinese)
Zhang XZ (张宪政) (1986). Determination of chlorophyll con-
tent in plant―acetone and ethanol mixture method.
Liaoning Agricultural Sciences (辽宁农业科学 ), (3),
26–28. (in Chinese)
Zhang YH (张英华), Wang ZM (王志敏) (2006). The effect of
heat stress on grain growth in the growing period of
wheat. Chinese Journal of Eco-Agriculture (中国生态农
业学报), 14(3), 8–11. (in Chinese with English abstract)
责任编委: 李凤民 责任编辑: 李 敏