免费文献传递   相关文献

五风藤的化学成分研究(英文)



全 文 :天然产物研究与开发 Nat Prod Res Dev 2013,25:1362-1366
文章编号:1001-6880(2013)10-1362-05
Received:27 November,2012 Accepted:27 April,2013
Foundation item:This work was supported financially by National Natu-
ral Science Foundation of China(21002098,20932007) ;‘western
light’ Research Program from Chinese Academy of Sciences
(Y1C1011) ;National New Drug Innovation Major Project of China
(2011ZX09307-002-02)
* Corresponding author E-mail:chenxz@ cib. ac. cn;huangtf@ cib. ac. cn
五风藤的化学成分研究
顾 健,李国友,杨 涛,方冬梅,黄田钫* ,张国林,陈晓珍*
中国科学院成都生物研究所,成都 610041
摘 要:从五风藤的地上部分 95%乙醇提取物中首次分离得到 12 个化合物,应用波谱方法及与已知品对照的
手段鉴定它们为:lup-20(29)-en-3-one (1) ,羽扇豆醇 (2) ,β-谷甾醇 (3) ,齐墩果酸 (4) ,乌苏酸(5) ,β-胡萝卜
苷 (6) ,五加苷 K (7) ,hederagenin3-O-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranoside (8) ,β-萘乙酸(9) ,3-
O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3) ]-α-L-arabinopyranosy1 oleanolic acid 28-O-α-L-rham-
nopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl ester (10) ,3-O-α-L-rhamnopyranosyl-(1→2)-O-
β-D-glucopyranosyl-(1→2)-α-L-arabinopyranosyl oleanolic acid (11) ,3-O-(β-D-glucopyranosiduronic acid)-oleanolic
acid 28-O-β-D-glucopyranosyl ester (12).体外细胞毒活性筛选结果表明化合物 7 和 8 具有较强的细胞毒活性.
关键词:五风藤;三萜;三萜皂苷;细胞毒活性
中图分类号:R284. 2 文献标识码:A
Phytochemical Study on Holboellia latifolia
GU Jian,LI Guo-you,YANG Tao,FANG Dong-mei,HUANG Tian-fang* ,
ZHANG Guo-lin,CHEN Xiao-zhen*
Chengdu Institute of Biology,Chinese Academy of Sciences,Chengdu 610041,China
Abstract:Twelve compounds were isolated from the 95% ethanol extract of the aerial part of medicinal herb Holboellia
latifolia for the first time. On the basis of spectral data or comparison with authentic samples,they were characterized to
be lup-20(29)-en-3-one (1) ,lupeol (2) ,β-sitosterol (3) ,oleanolic acid(4) ,ursolic acid (5) ,β-daucosterol (6) ,
Eleutheroside K (7) ,hederagenin3-O-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranoside (8)2-(naphthalen-1-yl)
acetic acid (9) ,3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3) ]-α-L-arabinopyranosy1 oleanolic acid
28-O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl ester (10) ,3-O-α-L-rhamnopyr-
anosyl-(1→2)-O-β-D-glucopyranosyl-(1→2)-α-L-arabinopyranosyl oleanolic acid (11) ,3-O-(β-D-glucopyranosidu-
ronic acid)-oleanolic acid 28-O-β-D-glucopyranosyl ester (12). Compounds 7 and 8 showed Cytotoxic activity in vitro.
Key words:Holboellia latifolia;Triterpenes;Triterpenoid saponins;Cytotoxicity
Holboellia latifolia,a medicinal herb,is mainly distrib-
uted in China,Nepal,Bhutan and India [1]. This ge-
nus,substituted for traditional Chinese medicine,
bayuegua,has the effiency of clearing away heat-evil
and diuretic,soothing the liver,regulating qi and pro-
moting blood flow to smooth menstruation. It's reported
that the hederagenin with a glucose moiety has been i-
solated from the stems of H. Latifolia [2]. In biologic
screening,n-BuOH-resolvable fraction from the EtOH
(95%)extract exhibited cytotoxic activity in vitro. In
this study on the chemical constituents of H. Latifolia,
twelve compounds were isolated from the aqueous etha-
nolic extract of the plant. They were elucidated to be
lup-20(29)-en-3-one (1) ,lupeol (2) ,β-sitosterol
(3) ,oleanolic acid(4) ,ursolic acid (5) ,β-daucoste-
rol (6) ,Eleutheroside K (7) ,hederagenin3-O-α-L-rh-
amnopyranosyl-(1→2)-α-L-arabinopyranoside (8)2-
(naphthalen-1-yl) acetic acid (9) ,3-O-α-L-rham-
nopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3) ]-
α-L-arabinopyranosy1 oleanolic acid 28-O-α-L-rham-
nopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-β-D-
glucopyranosyl ester (10) ,3-O-α-L-rhamnopyranosyl-
(1→2)-O-β-D-glucopyranosyl-(1→2)-α-L-arabinopy-
ranosyl oleanolic acid (11) ,3-O-(β-D-glucopyranosi-
duronic acid)-oleanolic acid 28-O-β-D-glucopyranosyl
ester (12) ,on the basis of spectral evidence or com-
parison with authentic samples.
Experimental
Plant material
The aerial part of H. latifolia was collected in Yanbian
of Sichuan Province in May 2004 and identified by
Prof. Fadin Fu in Chengdu Institute of Biology,the Chi-
nese Academy of Sciences (CAS). A voucher speci-
men (A-176) was deposited at the Herbarium of
Chengdu Institute of Biology,CAS.
General
Melting points were determined on an X-6 precise melt-
ing point apparatus (Beijing Fukai Science and Tech-
nology Development,Beijing,China)and were uncor-
rected. UV and IR spectra were obtained on a Perkin-
Elmer Lambda 35 US /vis spectrometer and a Perkin-
Elmer FT-IR spectrometer (KBr disk) ,respectively.
Optical rotations were measured on a Perkin-Elmer 341
automatic polarimeter. Mass spectra were obtained on a
Finnigan-LCQDECA mass spectrometer (Thermoquest
LC /MS Division,San Jose,CA,USA;ESI-MS). NMR
spectra were recorded on a Bruker Advance 600 MHz
spectrometer with TMS as internal standard. Silica gel
(160-200 and 200-300 mesh,Qingdao Haiyang Chemi-
cal Co.,Ltd.)and RP-C18(40-63 μm,Merck KGaA,
Darmstadt,Germany)were used for column chromatog-
raphy (CC). MCI gel (CHP 20P,75-150 μm;Mitsub-
ishi Chemical Industries,Tokyo,Japan) and macro-
porous resin (D101,pore size 13-14 nm,26-60mesh)
was obtained from Tianjin Haiguang Chemical Co.,
Ltd.,respectively. All solvents were distilled prior to
use. Precoated plates (silica gel GF254,10-40 μm,
Qingdao Haiyang Chemical Co.,Ltd.) ,activated at
110 °C for 2 h,were used for TLC. All solvents were
distilled prior to use.
Extraction and Isolation
The air-dried and powdered plant (5. 2 Kg) was
soaked with 95% EtOH (20 L × 3,each 10 days)at
room temperature. The combined extract was evaporated
under reduced pressure to give 344 g residue,which
was suspended in H2O (1. 5 L)and portioned succes-
sively with petroleum ether (1. 5 L × 2) ,EtOAc (1. 5
L × 5)and n-BuOH (1. 5 L × 6)to give corresponding
fractions A (2. 3 g) ,B (42. 5 g)and C (164. 7 g).
Fraction B(42. 5 g)was subjected to CC over silica gel
on silica gel (1. 5 kg,ф 8 × 45 cm)eluted with petro-
leum ether-acetone (20∶ 1,5 ∶ 1,1 ∶ 1,each 5. 0 L)to
afford nine subfractions B1-B9. B2 (1. 4 g)was sepa-
rated by CC over silica gel (60 g;petroleum ether-ace-
tone,15∶ 1,2. 5 L,ф 2. 5 × 18 cm)to give 1 (40 mg).
B5 (7. 5 g)was separated by CC over silica gel (330
g;petroleum ether-acetone,15 ∶ 1,500 mL;5:1,280
mL,ф 3 × 15 cm)to give 2 (115 mg)and 3 (68
mg). 4 (36 mg)and 5 (4 mg)were obtained from B8
(5. 1 g)separated by CC on silica gel (180 g,ф3. 5
cm × L27 cm )eluted with petroleum ether-acetone
(13:1,850 mL). 6 was precipitated from B9 (3. 4 g) ,
Fraction C was subjected to a macroporous resin col-
umn (D101,ф 10 × L 60 cm)to remove sugar by H2O
and eluted with EtOH-H2O (30%,5 L;60%,4. 6 L,
95%,3L)to afford three subfractions C1 (51. 2 g) ,
C2 (9. 4 g)and C3 (30. 1 g).
Fraction C1 was subjected to CC on silica gel (1. 0 kg,
ф7. 0 × 50 cm)eluted with CHCl3-CH3OH (10:1,
5:1,each 5. 0 L)to give four fractions C1A-C1D. C1B
(5. 6 g)was separated by CC over silica gel (400 g,
CHCl3-CH3OH,10∶ 1,2 L;ф5 × 20 cm)to give 7 (2.
1 g). C1C (11. 6g)was separated by CC over silica
gel (500 g,CHCl3-CH3OH,8∶ 1,2 L;ф6 × 22 cm)to
give 8 (28 mg).
Fraction C2 was subjected to CC on silica gel (500 g,
ф 5 × 20 cm)eluted with CHCl3-CH3OH (5∶ 1,3. 5
L)to give 9 (22 mg).
Fraction C3 was resolved in methanol (350 mL)and
acetone (500 mL)was added to yield precipitation
(8. 4 g). The precipitation was separated by CC over
silica gel (360 g,CHCl3-CH3OH,6∶ 1,1. 4 L;ф5 × 25
cm)to afford two subfractions C3A (4. 2 g)and C3B
(2. 6 g). 10 (225 mg)was obtained from C3A separa-
ted by CC on RP-C18(180 g,ф3. 5cm × L25cm )elu-
ted with CH3OH-H2O (4∶ 6,1. 2 L). C3B was subjec-
ted to CC on RP-C18(80 g,ф3 × 20 cm)eluted with
3631Vol. 25 GU Jian,et al:Phytochemical Study on Holboellia latifolia
CH3OH-H2O (3∶ 7,600 mL)to give 11 (5 mg)and
12 (12mg).
Bioassay
Cancer cell lines Bre-04 (MDA-MB-231) ,Lu-04
(NCIH460) ,and N-04 (SF-268)were obtained from
the American Type Culture Collection (ATCC)and
cultured according to the supplier s instruction. The
cells were seeded into 96-well plates,incubated for 16
h at 37 °C,and treated with compounds 1,3,and 4 at
different concentrations for 48 h. Taxol was used as a
positive control. The cytotoxic activities were examined
by means of a colorimetric chemosentivity assay with
SRB (sulforodhamine B). The GI50 value (the drug
concentration required to inhibit the cell growth by
50%)was used as a parameter for cytotoxicity [3,4].
Structure identification
Lup-20(29)-en-3-one (1) Colourless plate (ace-
tone) ,mp. 171. 2-172. 1 ℃; [α]25D = + 60. 3° (c
0. 73,CHCl3) ;ESIMS (positive-ion mode)m/z:467
[M + Na]+;1H NMR (CDCl3)δ:4. 69 (1H,d,J =
2. 2 Hz) ,4. 57 (1H,d,J = 1. 2 Hz) ,1. 68(3H,s,H-
30) ,1. 07 (6H,s,each H-23,H-26) ,1. 03 (3H,s,H-
24) ,0. 93 (3H,s,H-25) ,0. 95 (3H,s,H-27) ,0. 80
(3H,s,H-28). 1H NMR data were consistent with
those reported [5].
Oleanolic acid (4) Colourless needles (CH3Cl) ,
m. p. > 280 ℃,ESIMS (negative mode)m/z:455. 2
[M-H]-,1H NMR (600 MHz,CDCl3)δ:5. 20(1H,
m,H-12) ,3. 10(1H,m,H-3) ,1. 04(3H,s,H-27) ,0.
88(3H,s,H-23) ,0. 83(3H,s,H-24) ,0. 80(6H,s,H-
29,30) ,0. 68(3H,s,H-26) ,0. 67(3H,s,H-25)。1H
NMR data were consistent with those reported [12].
Ursolic acid (5) White powder (CH3Cl) ,mp. >
280 ℃;ESIMS (positive mode)m/z:495[M + K]+;
IRνmaxcm
-1:3432,2927,2871,1692,1457,1388,1377,
1285,1187,1029;1H NMR (600 MHz,C5D5N)δ:5.
51(1H,m,H-12) ,3. 48(1H,dd,J = 10. 2,5. 6 Hz,H-
3) ,2. 65(1H,d,J = 11. 4 Hz,H-18) ,2. 34(1H,td,J
= 13. 5,4. 5 Hz,H-2a) ,2. 14(1H,td,J = 13. 5,4. 5
Hz,H-2b) ,1. 26(3H,s,H-27) ,1. 24(3H,s,H-23) ,
1. 07(3H,s,H-25) ,1. 04(3H,s,H-24) ,1. 02(3H,d,
J = 6. 4 Hz,H-29) ,0. 97(3H,d,J = 6. 2 Hz,H-30) ,
0. 90(3H,s,H-26)。1H NMR data were consistent with
those reported [13].
Eleutheroside K (7) White powder (MeOH) ,mp.
221. 3-222. 9 ℃;[α]25D = + 10. 4° (c 0. 50,MeOH) ;
ESIMS (positive-ion mode)m/z:757[M + Na]+,773
[M + K]+;1H NMR (C5D5N)δ:6. 13 (1H,s,rha-
C1-H) ,5. 48 (1H,brs,H-12) ,4. 91 (1H,d,J = 5. 3
Hz,ara-C1-H) ,1. 64 (3H,d,J = 6. 1 Hz,rha-Me) ,
1. 31 (3H,s,H-27) ,1. 18 (3H,s,H-23) ,1. 07 (3H,
s,H-24) ,1. 02 (3H,s,H-30) ,1. 00 (3H,s,H-29) ,
0. 97 (3H,s,H-26) ,0. 86 (3H,s,H-25). 13 C NMR
(C5D5N)data were shown in Table 2 and Table 3. The
optical rotation and NMR data were in agreement with
those reported of Eleutheroside K [8].
Hederagenin3-O-α-L-rhamnopyranosyl-(1→ 2)-α-
L-arabinopyranoside (8) White powder (MeOH) ,
m. p. 250. 4-252. 1 ℃; [α]25D = + 17. 3° (c 0. 60,
MeOH) ;ESIMS (positive-ion mode)m/z:773 [M +
Na]+,789 [M + K]+;1 H NMR (C5D5N)δ:6. 33
(1H,s,rha-C1-H) ,5. 48 (1H,brs,H-12) ,5. 14 (1H,
d,J = 6. 4Hz,ara-C1-H) ,3. 33 (1H,dd,J13 = 12. 3
Hz,J12 = 3 . 6 Hz H-3) ,1. 66 (3H,d,J = 6. 2 Hz,rha-
Me) ,1. 23 (3H,s,H-27) ,1. 10 (3H,s,H-24) ,1. 03
(3H,s,H-30) ,1. 00 (3H,s,H-29) ,0. 94 (6H,s,H-
25,H-26) ;13C NMR (C5D5N)data were shown in Ta-
ble 2 and Table 3. The optical rotation and NMR data
were in accordance with those reported [9].
3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyr-
anosyl-(1 → 3) ]-α-L-arabinopyranosy1-oleanolic
acid 28-O-α-L-rhamnopyranosyl-(1→4)-β-D-glu-
copyranosyl-(1→6)-β-D-glucopyranosyl ester (10)
Colourless needles (MeOH) ,mp. 233. 7-235. 6 ℃;
[α]25D = -23. 9
o(c 0. 55,CH3OH) ;ESIMS (negative-
ion mode)m/z:1365[M-H]-;1H NMR (C5D5N)δ:
6. 25 (1H,d,J = 8. 2 Hz,glc-H-1) ,6. 17 (1H,s,
rha-h-1) ,5. 88 (1H,s,rha-h-1) ,5. 38 (1H,brs,H-
12) ,5. 12 (1H,d,J = 7. 9 Hz,glc-H-1) ,4. 99 (1H,
s,ara-H-1) ,4. 98 (1H,d,J = 7. 9 Hz,glc-h-1) ,1. 70
(3H,d,J = 6. 2 Hz,rha-Me) ,1. 63 (3H,d,J = 6. 1
Hz,rha-Me) ,1. 22 (3H,s,H-27) ,1. 18 (3H,s,H-
23) ,1. 12 (3H,s,H-24) ,1. 07 (3H,s,H-30) ,0. 87
(3H,s,H-29) ,0. 86 (3H,s,H-26) ,0. 85 (3H,s,H-
25);13C NMR (C5D5N)data were given in Table 2 and
4631 Nat Prod Res Dev Vol. 25
Table 3. The optical rotation and NMR data were in ac-
cordance with those reported [10].
3-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-glucopy-
ranosyl-(1 → 2)-α-L-arabinopyranosyl oleanolic
acid (11) White powder(MeOH)mp. 239. 2-242. 6
℃,[α]25D = -3. 9
o(c 0. 60,CH3OH) ;ESIMS (positive
mode)m/z:919[M + Na]+,925[M + K]+;1H NMR
(C5D5N)δ:6. 25 (1H,s,rha-h-1) ,5. 48 (1H,s,H-
12) ,5. 15 (1H,d,J = 7. 7 Hz,glc-H-1) ,4. 88 (1H,
d,J = 5. 0 Hz,ara-H-1) ,1. 29 (3H,s,H-27) ,1. 24
(3H,s,H-23) ,1. 23 (3H,s,H-24) ,1. 14 (3H,s,H-
30) ,0. 99 (3H,s,H-29) ,0. 94 (3H,s,H-26) ,0. 82
(3H,s,H-25) ;13C NMR (C5D5N)data were given in
Table 2 and Table 3. The optical rotation and NMR da-
ta were in accordance with those reported [10].
3-O-(β-D-glucopyranosiduronic acid )-oleanolic
acid 28-O-β-D-glucopyranosyl ester (12) White
powder (MeOH) ,m. p. 218. 7-220. 4 ℃; [α]25D = +
15. 9°(c 0. 10,MeOH) ;ESIMS (positive mode)m/z:
817[M + Na]+;833 [M + Na]+;IRνmax cm
-1:
3435,2945,1742,1620,1388,1161,1077,1030;1H
NMR (C5D6N)δ:6. 28 (1H,d,J = 7. 2 Hz,glc-H-
1) ,5. 40 (1H,s,H-12) ,5. 11 (1H,J = 7. 2 Hz,glu-
H-1) ,3. 27 (1H,d,J = 9. 6 Hz,H-18) ,3. 16 (1H,
d,J = 10. 8 Hz,H-3) ,1. 25 (3H,s,H-27) ,1. 24
(3H,s,H-23) ,1. 05 (3H,s,H-24) ,0. 93 (3H,s,H-
30) ,0. 91 (3H,s,H-29) ,0. 87 (3H,s,H-26) ,0. 80
(3H,s,H-25). 13C NMR (C5D5N)data were given in
Table 2 and Table 3. The optical rotation and NMR da-
ta were in accordance with those reported [11,12].
Compounds 2,3,6 and 9 were identified as lupeol,β-
sitosterol,oleanolic acid,2-(naphthalen-1-yl) acetic
acid by TLC,m. p. and comparing them with authentic
samples.
Table 1 13C NMR Chemical shifts of aglycone moieties
(C5D5N)
Caron NO. 7 8 10 11 12
1 39. 7 39. 8 39. 9 38. 7 38. 6
2 27. 4 27. 1 27. 5 26. 4 26. 3
3 89. 7 81. 9 89. 1 88. 0 89. 2
4 40. 4 44. 4 40. 5 39. 5 39. 4
5 56. 8 48. 6 56. 9 55. 8 55. 8
6 19. 4 19. 0 20. 1 18. 4 18. 5
7 34. 1 33. 7 34. 0 33. 0 32. 5
8 40. 6 40. 6 40. 5 39. 5 39. 9
9 48. 9 49. 1 49. 0 47. 8 48. 0
10 37. 9 37. 8 38. 0 36. 8 36. 9
11 24. 6 24. 7 24. 7 23. 5 23. 7
12 123. 4 123. 5 123. 8 123. 6 122. 9
13 145. 7 145. 7 145. 0 144. 6 144. 1
14 43. 1 42. 8 43. 0 41. 9 42. 1
15 29. 2 29. 2 29. 0 28. 1 28. 3
16 24. 6 24. 6 24. 6 23. 7 23. 6
17 47. 6 47. 5 47. 9 46. 7 47. 0
18 42. 9 43. 0 42. 6 41. 5 41. 7
19 47. 4 47. 3 47. 1 46. 2 46. 2
20 31. 9 31. 8 31. 7 30. 7 30. 8
21 35. 1 35. 1 34. 9 34. 0 34. 0
22 34. 1 34. 1 33. 4 33. 0 33. 2
23 29. 0 64. 8 29. 2 27. 8 28. 3
24 17. 9 14. 9 17. 9 16. 8 17. 0
25 16. 4 17. 0 16. 6 15. 3 15. 6
26 18. 3 18. 3 18. 4 17. 1 17. 5
27 27. 1 27. 0 27. 0 25. 9 26. 1
28 181. 1 181. 1 177. 4 180. 1 176. 5
29 34. 2 34. 1 33. 1 32. 9 33. 2
30 24. 7 24. 7 24. 3 23. 4 23. 8
Table 2 13C NMR Chemical shifts of sugar moieties
(C5D5N)
Caron NO. 7 8 10 11 12
Ara-1 105. 7 105. 3 105. 6 104. 7
2 76. 8 76. 7 74. 9 74. 6
3 74. 7 75. 7 83. 0 82. 1
4 69. 5 70. 6 69. 1 68. 1
5 65. 6 66. 7 65. 7 64. 8
Rha-1 102. 6 102. 6 102. 9 101. 6
2 73. 3 73. 3 73. 5 72. 2
3 73. 5 73. 5 73. 7 72. 3
4 75. 0 75. 0 74. 9 73. 6
5 70. 8 70. 3 70. 1 69. 7
6 19. 5 19. 5 19. 5 18. 2
Glc-1 or Glu-1 105. 6 104. 5 106. 5
2 75. 6 74. 8 75. 2
5631Vol. 25 GU Jian,et al:Phytochemical Study on Holboellia latifolia
3 79. 0 78. 0 78. 2
4 74. 9 71. 2 73. 6
5 79. 7 78. 4 76. 4
6 63. 4 62. 3 171. 0
28-O sugur
Inner Glc-1 96. 6 95. 7
2 74. 7 74. 0
3 79. 1 79. 3
4 70. 1 71. 1
5 76. 3 78. 8
6 71. 0 62. 2
Outer Glc-1 105. 8
2 75. 6
3 77. 4
4 79. 2
5 78. 0
6 62. 1
Rha-1 103. 7
2 73. 4
3 73. 7
4 70. 9
5 71. 2
6 19. 4
Results and Discussion
Main constituents of the plant are triterpenes and triter-
penoid saponins that possess many vital bioactivities. In
biologic screening,7 showed moderate cytotoxicity a-
gainst Lu06,N04 and Bre04. 8 showed moderate cyto-
toxicity against N04. In view of their structures,7 with
23-CH3 was different from 8 bearing CH2OH at 23.
Table 3 Cytotoxic activity of 7 and 8(GI50,μg /mL)
Cell line Lu06 N04 Bre04
7 0. 77 1. 26 1. 55
8 81. 36 2. 44 > 100
Taxol 0. 03 0. 04 0. 04
Lu04:NCIH460;N04:SF-268;Bre04:MDA-MB-231;Taxol:positive con-
trol
References
1 Institute of Botany,Chinese Academy of Sciences. Flora Reipu-
blicae Popularis Sinicae,Vol 29. Beijing:Science Press,1984.
20.
2 Mitra AK,Karrer P. Holboellia latifolia,a new source of hed-
eragenin,Helv Chim Acta,1953,36:1401.
3 Skehan P,Storing R,Scudiero D,et al. J Natl Cancer Inst,
1990,82:1107-1112.
4 Rubinstein LV,Shoemaker R. H,Paul KD,et al. J Natl
Cancer Inst,1990,82:1113-1118.
5 Shiojima K,Masuda K,Suzuki H,et al. Composite constitu-
ents:forty-two triterpenoids including eight novel compounds
isolated from Pocris hicracioides subsp,japonica. Chem pharm
bull,1995,43:1634-1639.
6 Maillard M,Adewunmi C O,Hostettman K. A triterpene gly-
coside from the fruits of Tetrapleura tetraptera. Phytochem,
1992,31:1321-1323.
7 Zhao H,Wang BZ,Ma BR,et al. The chemical constituents
of the stem of Actinidia arguta(Sieb. et Zucc.)Planck,ex
Miquel. Chin Pharm J,1994,29:523-524.
8 Lu JC,Xu BB,Zhang XY,et al. Study on chemical constitu-
ents of rhizome of Anemone raddeana. Yaoxue Xuebao,2002,
37:709-712.
9 Cioffi G,Braca A,Autore G,et al. Cytotoxic saponins from
Schefflera fagueti. Planta Med,2003,69:750-756 .
10 Shao CJ,Kasa R,Xu JD,et al. Saponins from Roots of Kalo-
panax septemlobus (Thunb.) Koidz.,Ciqiu:Stuctures of
Kalopanaxsaponins C,D,E and F. Chem Pharm Bull,1989,
37:311-314.
11 Wang XJ,Zhu LJ. Studies on the saponin constituents of Niu
Qi (Achyrathes bidentata). J Fourth Milit Med Univ,1996,
17:427-430.
12 Woldemichael GM,Wink M. Identification and biological ac-
tivities of triterpenoid saponins of Chenopodium quinoa. J Ag-
ric Food Chem,2001,49:2327-2332.
6631 Nat Prod Res Dev Vol. 25