全 文 :收稿日期:2011-05-23 接受日期:2011-09-30
基金项目:教育部高等学校博士学科点专项(20104425110014)
* 通讯作者 Tel:86-20-36585143;E-mail:yjhu01@ 126. com
天然产物研究与开发 Nat Prod Res Dev 2012,24:1671-1679
文章编号:1001-6880(2012)11-1671-09
百两金皂苷类似物的化学与药理学研究进展
蔡佳仲,胡英杰*
广州中医药大学热带医学研究所,广州 510405
摘 要:对百两金皂苷类似物的化学和药理活性进行文献综述。迄今报道的百两金皂苷类似物大约有 60 个,其
齐墩果烷三萜母核上具有多种与生物活性有关的特征取代基,包括 13β,28-环醚、30-氧化甲基和 3-O-糖链等。
该类物质多具抗肿瘤、抗炎和抗真菌等药理活性,值得深入研究。
关键词:百两金皂苷;三萜;13β,28-环醚;肿瘤;细胞毒
中图分类号:Q946. 8 文献标识码:A
Progress in the Structure and Bioactivity of Ardisiacrispin Analogues
CAI Jia-zhong,HU Ying-jie*
Tropical Medicine Institute,Guangzhou University of Chinese Medicine,Guangzhou 510405,China
Abstract:The triterpenoidal analogues of ardisiacrispin reported in the literatures were summarized. There are about 60
triterpenoidal analogues possessing characteristic substituent groups such as 13β,28-epoxy bridge,30-oxidized methyl,
and 3-O-glycan chain which were proved necessary to the pharmacological activity. The analogues of ardisiacrispin pres-
ented anti-cancer,anti-inflammatory and anti-fungal activities,and they are worth doing further pharmaceutical resear-
ches.
Key words:ardisiacrispin;triterpenoid;13β,28-epoxy bridge;cancer;cytotoxicity
百两金皂苷属于齐墩果烷型五环三萜类,代表
化合物是百两金皂苷 A和 B(ardisiacrispin A /B) ,苷
元均为西克拉明皂苷元 A(cyclamiretin A)。百两金
皂苷结构类似物主要来自紫金牛科(Myrsinaceae)紫
金牛属(Ardisia)、铁仔属(Myrsine) ,报春花科(Prim-
ulaceae)报春花属(Primula)、珍珠菜属(Lysima-
chia)、仙客来属(Cyclamen)和点地梅属(Androsace)
植物[1-4]。已有报道,百两金皂苷 A 和 B(ardisiac-
rispin A /B)对白血病细胞 HL-60、肝癌细胞 Bel-
7402、口腔上皮癌细胞 KB、宫颈癌细胞 HeLa、卵巢
癌细胞 SKOV-3、胃癌细胞 BGC-823、乳腺癌细胞
MCF-7 等均具有较强的细胞毒作用,机理与诱导细
胞凋亡、抑制增殖有关[5,6]。不仅如此,结构类似西
克拉明皂苷元 A 的一些化合物也表现出一定的细
胞毒活性,如 Ardipusilloside III 在体外能浓度依赖
性地抑制非小细胞肺癌 NCI-H460 和胶质瘤细胞
U251MG的生长而诱导其凋亡[7,8];而 Saxifragifolin
A、C和 D体外对卵巢癌细胞 SKOV-3、肺腺癌细胞
A549、黑色素瘤细胞 SK-MEL-2、平滑肌瘤细胞MES-
SA、结直肠腺癌细胞 HCT-15 均显示了较强的细胞
毒,其 IC50在 0. 19 ~ 2. 37 μM 之间
[9]。显示这类化
合物具有潜在的抗肿瘤药物研究开发价值。迄今发
现的百两金皂苷类似物约有 56 个,对该类化合物的
研究似乎成为植物药研究的一个热点,因此我们将
百两金皂苷类似物的化学和药理学研究情况作一综
述。
1 化学结构
百两金皂苷三萜母核结构的重要特征有: (1)
共有取代基 13β,28-环氧醚,(2)共有取代基 30-氧
化甲基,(3)共有取代基 3β-OH 或 3β-O-糖链(由 β-
D-吡喃葡萄糖(β-D-glucopyranose) ,α-L-吡喃鼠李糖
(α-L-rhamnopyranose) ,β-D-吡喃木糖(β-D-xylopyr-
anose) ,α-L-吡喃阿拉伯糖(α-L-arabinopyranose)和
β-D-吡喃葡萄糖醛酸(β-D-glucopyranuronic acid)等
构成)[1-11],以及(4)16α-羟基等。根据 30-氧化甲基
氧化程度的不同,结构涉及醛 /缩醛、醇、羧酸等。
1. 1 30-醛 /缩醛
这类化合物 30 位是一个醛基,具有西克拉明皂
DOI:10.16333/j.1001-6880.2012.11.004
苷元 A的基本结构(图 1)。根据苷元 16 位或 30 位
取代基氧化情况可再划分成: (I)16α-羟基-30-醛;
(II)16-羰基-30-醛;(III)30-缩醛等(表 1)。
这些化合物中除了 cyclamiretin A、andro-
sacenol、androsacenol-3β-O-β-D-glucopyranosyl -(1→
4)-[β-D-glucopyranosyl-(1→2) ]-α-L-arabinopyrano-
side和 cyclamigenin B等苷元和次生苷外,都是来源
于紫金牛科和报春花科植物的天然产物。上述苷元
图 1 具有 30-醛 /缩醛结构的西克拉明皂苷元 A类似物
Fig. 1 Structures of cyclamiretin A analogues with 30-aldehyde
表 1 具有 30-醛 /缩醛结构的西克拉明皂苷元 A类似物
Table 1 Derivatives of cyclamiretin A with 30-aldehyde structure
编号
No.
化合物
Compound
取代基 Substituent
R1 R2 R3 R4 R5 R6
植物来源
Origin
参考文献
Reference
1 Cyclamiretin A H H OH CH3 H CHO — [12]
2 Ardisiacrispin A(SaxifragifolinB,Deglucocyclamin I) H H OH
CH3
β-D-xylopyranosyl-(1→2)-β-
D-glucopyranosyl-(1→4)-[β-
D-glucopyranosyl-(1→ 2) ]-α-
L-arabinopyranosyl-
CHO 1-4,8-25 [5,6,9-11,13-29]
3 Ardisiacrispin B H H OH CH3
α-L-rhamnopyranosyl-(1→2)-
β-D-glucopyranosyl- (1 → 4)-
[β-D-glucopyranosyl- (1 →
2) ]-α-L-arabinopyranosyl-
CHO 1-2,4-9 [5,6,11,14,16,17,30-32]
4 Primulanin H H OH CH3
β-D-xylopyranosyl-(1→2)-β-
D-glucopyranosyl-(1→4)-α-L-
arabinopyranosyl-
CHO 2,4,9,10,12 [11,13,17,29,32]
5 Cyclaminorin (Primulanin A) H H OH CH3
β-D-glucopyranosyl-(1 → 2)-
[β-D-glucopyranosyl-(1→4) ]-
α-L-arabinopyranosyl-
CHO 2,5,18,19 [11,23,24,31]
6
Cyclamiretin A-3β-O-β-D -glu-
copyranosyl-(1→4)-α-L-arabi-
nopyranoside
H H OH CH3
β-D-glucopyranosyl-(1→4)-α-
L-arabinopyranosyl- CHO 2 [10,33]
7
CyclamiretinA-3β-O-α-L-rham-
nopyranosyl-(1→2)- β-D-glu-
copyranosyl-(1→4)-α-L-arabi-
nopyranoside
H H OH CH3
α-L-rhamnopyranosyl-(1→2)-
β-D-glucopyranosyl-(1→4)-α-
L-arabinopyranosyl-
CHO 2,5,6,9 [10,11,17,24]
8 Davuricoside C H H OH CH3
β-D-glucopyranosyl-(1→2)-α-
L-arabinopyranosyl- CHO 2,14,23 [10,29,34]
9 Ardipusilloside I H H OH CH3
α-L-rhamnopyranosyl-(1→2)-
β-D-glucopyranosyl- (1 → 3)-
[β-D-glucopyranosyl- (1 →
2) ]-α-L-arabinopyranosyl-
CHO 4 [35]
10 Ardipusilloside II H H OH CH3
β-D-glucopyranosyl-(1→2)-β-
D-glucopyranosyl-(1→2)-[β-
D-xylopyranosyl-(1 → 2)-β-D-
glucopyranosyl-(1→4) ]-α-L-
arabinopyranosyl-
CHO 4 [35]
2761 天然产物研究与开发 Vol. 24
11 Lysichriside A H H OH CH3
β-D-xylopyranosyl-(1→2)-β-
D-glucopyranosyl-(1→4)-[β-
D-6-acetyl-glucopyranosyl- (1
→2) ]-α-L-arabinopyranosyl-
CHO 12 [13]
12 Paridiformoside H H OH CH3
α-L-rhamnopyranosyl-(1→ 2)-
β-D-glucopyranosyl-(1 → 2)-
[β-D-glucopyranosyl-(1→3) ]-
β-D-glucopyranosyl-
CHO 15 [36]
13 Ardicrenin H H OH CH3
α-L-rhamnopyranosyl-(1→ 4)-
β-D-glucopyranosyl-(1 → 4)-
[β-D-glucopyranosyl-(1→2) ]-
α-L-arabinopyranosyl-
CHO 2,13 [21,33]
14 Cyclacoumin H H OH CH2OH
β-D- xylopyranosyl-(1→2)-β-
D-glucopyranosyl-(1→ 4)-[β-
D-glucopyranosyl-(1→ 2) ]-α-
L-arabinopyranosyl-
CHO 18,19 [23,24]
15 Cyclamin H H OH CH3
β-D-glucopyranosyl-(1 → 3)-
[β-D-xylopyranosyl-(1→2) ]-
β-D-glucopyranosyl-(1 → 4)-
[β-D-glucopyranosyl-(1→2) ]-
α-L-arabinopyranosyl-
CHO 6,19,20 [24,25,32,37]
16 Isocyclamin H H OH CH3
β-D-glucopyranosyl -(1 → 6)-
[β-D-xylopyranosyl-(1→2) ]-
β-D-glucopyranosyl-(1 → 4)-
[β-D-glucopyranosyl-(1→2) ]-
α-L-arabinopyranosyl-
CHO 19 [24,37]
17 Saxifragifolin D H H OH CH3
β-D-xylopyranosyl -(1→2)-β-
D-glucopyranosyl-(1→ 4)-[β-
D-glucopyranosyl -(1→4)-β-
D-glucopyranosyl-(1→ 2) ]-α-
L-arabinopyranosyl-
CHO 22,23 [26,29]
18
Cyclamiretin A-3β-O-α-L- rh-
amnopyranosyl-(1 → 4)-β -D-
glucopyranosyl-(1→2)
H H OH CH3
α-L-rhamnopyranosyl-(1→4)-
β-D-glucopyranosyl- (1 → 2)-
[β-D-glucopyranosyl-
CHO 6 [38,39]
-[ β-D-glucopyranosyl-(1 →
4) ]-α-L-arabinopyranoside
(1→4) ]-α-L-arabinopyranosyl-
19
Cyclamiretin A-3β-O-β-D- xy-
lopyranosyl-(1→ 2)-β-D- glu-
copyranosyl-(1→2)-[β-D-glu-
copyranosyl-(1→4) ]-α-L-ara-
binopyranoside
H H OH CH3
β-D-xylopyranosyl -(1→2)-β-
D-glucopyranosyl-(1→ 2)-[β-
D-glucopyranosyl -(1→4) ]-α-
L-arabinopyranosyl-
CHO 16 [40]
20
Cyclamiretin A-3β-O-β-D- glu-
copyranosyl uronic acid-(1 →
2)-β-D-xylopyranoside
H H OH CH3
β -D-glucopyranosyl uronic acid
-(1→2)-β-D-xylopyranosyl-
CHO 14 [34]
21
Cyclamiretin A-3β-O-β-D-glu-
copyranosyl-(1→2)-{β-D-xy-
lopyranosyl-(1→2)-[β-D-glu-
copyranosyl-(1→3)-β-D-glu-
copyranosyl-(1→3) ]-β-D-glu-
copyranosyl-(1→4) }-α-L-ara-
binopyranoside
H H OH CH3
β-D-glucopyranosyl- (1 → 2)-
{β-D-xylopyranosyl- (1→ 2)-
[β-D-glucopyranosyl-(1→3)-
β-D-glucopyranosyl-(1→3) ]-
β-D-glucopyranosyl-(1→4) }-
α-L-arabinopyranosyl-
CHO 4 [16]
22
Cyclamiretin A-3β-O-α-L- rh-
amnopyranosyl-(1→3) [β-D-
xylopyranosyl-(1→ 2) ]-β-D-
glucopyranosyl-(1→4)-[β-D-
glucopyranosyl-(1 → 2) ]-α-L-
arabinopyranoside
H H OH CH3
α-L-rhamnopyranosyl-(1 → 3)
[β-D-xylopyranosyl-(1→2) ]-
β-D-glucopyranosyl-(1 → 4)-
[β-D-glucopyranosyl-(1→2) ]-
α-L-arabinopyranosyl-
CHO 3 [15]
3761Vol. 24 蔡佳仲等:百两金皂苷类似物的化学与药理学研究进展
23
Cyclamiretin A-3β-O-α-L- rh-
amnopyranosyl-(1→3) [β-D-
glucopyranosyl-(1→3)-β-D-xy-
lopyranosyl-(1→2) ]-β-D-glu-
copyranosyl-(1→4)-[β-D-glu-
copyranosyl-(1→2) ]-α-L-ara-
binopyranoside
H H OH CH3
α-L-rhamnopyranosyl-(1 → 3)
[β-D-glucopyranosyl-(1→ 3)-
β-D-xylopyranosyl-(1→2) ]-β-
D-glucopyranosyl-(1→4)-[β-
D-glucopyranosyl-(1→ 2) ]-α-
L-arabinopyranosyl-
CHO 3 [15]
24
Cyclamiretin A-3β-O-α-L- rh-
amnopyranosyl-(1→3)-[β-D-
xylopyranosyl-(1→ 2) ]-β-D-
glucopyranosyl-(1→4)-[β-D-
6-O-acetyl- glucopyranosyl-(1
→2) ]-α-L-arabinopyranoside
H H OH CH3
α-L-rhamnopyranosyl-(1→3)-
[β-D-xylopyranosyl-(1→2) ]-
β-D-glucopyranosyl-(1 → 4) -
[β-D-6-O-acetyl- glucopyrano-
syl-(1 → 2) ]-α-L-arabinopyr-
anosyl-
CHO 3 [15]
25
Cyclamiretin A-3β-O-β-D- xy-
lopyranosyl-(1→4)-[α-L- rh-
amnopyranosyl-(1→2) ]-β-D-
glucopyranosyl-(1→4)-[β-D-
glucopyranosyl-(1 → 2) ]-α-L-
arabinopyranoside
H H OH CH3
β-D-xylopyranosyl-(1→4)-[α-
L-rhamnopyranosyl-(1→2) ]-
β-D-glucopyranosyl-(1 → 4)-
[β-D-glucopyranosyl-(1→2) ]-
α-L-arabinopyranosyl-
CHO 6 [32]
26
Cyclamiretin A-3β-O-4-O-[3-
hydroxyl-3- methylglutaryl]-β-
D-xylopyranosyl-(1 → 2)-β-D-
glucopyranosyl-(1→ 4)-[β-D-
glucopyranosyl-(1 → 2) ]-α-L-
arabinopyranoside
H H OH CH3
4-O-[ 3-hydroxyl-3-methylglu-
taryl]-β-D-xylopyranosyl -(1→
2)-β-D-glucopyranosyl -(1 →
4)-[β-D-glucopyranosyl -(1→
2) ]-α-L-arabinopyranosyl-
CHO 20 [25]
27 Deglucocyclamin II H H OH CH3
β-D-glucopyranosyl -(1 → 3)-
[β-D-xylopyranosyl -(1→2) ]-
β-D-glucopyranosyl -(1→4)-α-
L-arabinopyranosyl-
CHO 21 [2]
28 Denticin H H OH CH3
β-D-glucopyranosyl- (1 → 4)-
[β-D-xylopyranosyl-(1→2) ]-
β-D-glucopyranosyl- (1 → 4)-
[β-D-glucopyranosyl- (1 →
2) ]-β-D-arabinopyranosyl-
CHO 10 [19]
29 Denticulation H H OH CH3
β-D-glucopyranosyl-(1→2)-β-
D-glucopyranosyl-(1→4)-[β-
D-xylopyranosyl- (1→ 2) ]-β-
D-glucopyranosyl-(1→4)-[β-
D-glucopyranosyl-(1→2) ]-α-
L-arabinopyranosyl-
CHO 10 [19]
30 Saxifragifolin A H OAc OH CH3
β-D-xylopyranosyl-(1→2)-β-
D-glucopyranosyl-(1→4)-[β-
D-glucopyranosyl-(1→2) ]-α-
L-arabinopyranosyl-
CHO 22 [27]
31 Androsacenol H OAc OH CH3 H CHO — [27]
32
Androsacenol-3β-O-β-D- gluco-
pyranosyl-(1→4)-[β-D-gluco-
pyranosyl-(1→2) ]-α-L-arabi-
nopyranoside
H OAc OH CH3
β-D-glucopyranosyl- (1 → 4)-
[β-D-glucopyranosyl- (1 →
2) ]-α-L-arabinopyranosyl-
CHO — [27]
33 Saxifragifolin C H OAc OH CH3
β-D-xylopyranosyl-(1→2)-β-
D-glucopyranosyl-(1→4)-[β-
D-glucopyranosyl-(1→4)β-D-
glucopyranosyl-(1→2) ]-α-L-
arabinopyranosyl-
CHO 23 [29]
4761 天然产物研究与开发 Vol. 24
34 Ardipusilloside III OH H OH CH3
β-D-xylopyranosyl-(1→2)-β-
D-glucopyranosyl-(1→4)-[β-
D-glucopyranosyl-(1→2) ]-α-
L-arabinopyranosyl-
CHO 4 [8]
35 Ardisimamilloside A OH H OH CH3
α-L-rhamnopyranosyl-(1→2)-
β-D-glucopyranosyl- (1 → 4)-
[β-D-glucopyranosyl- (1 →
2) ]-α-L-arabinopyranosyl-
CHO 5 [31]
36 Cyclamigenin B H H = O CH3 H CHO — [12]
37 Ardisimamilloside B H H = O CH3
α-L-rhamnopyranosyl-(1→2)-
β-D-glucopyranosyl- (1 → 4)-
[β-D-glucopyranosyl- (1 →
2) ]-α-L-arabinopyranosyl-
CHO 5 [31]
38 Ardisimamilloside H H H = O CH3
α-L-rhamnopyranosyl-(1→2)-
β-D-glucopyranosyl-(1→4)-α-
L-arabinopyranosyl-
CHO 5,6 [32,41]
39
13β,28-epoxy-16-oxo- oleanan-
30-al-3β-O-β-D-xylopyranosyl-
(1→2)-β-D-glucopyranosyl-(1
→ 4)-[β-D-glucopyranosyl-(1
→2) ]-α-L-arabinopyranoside
H H = O CH3
β-D-xylopyranosyl(1→2)-β-D-
glucopyranosyl (1→4)-[β-D-
glucopyranosyl(1 → 2) ]-α-L-
arabinopyranosyl-
CHO 23 [29]
40
13β,28-epoxy-16-oxo-oleanan-
30-al-3β-O-β-D-xylopyranosyl-
(1→2)-β-D-glucopyranosyl-(1
→4)-α-L-arabinopyranoside
H H = O CH3
β-D-xylopyranosyl-(1→2)-β-D-
glucopyranosyl-(1 → 4)-α-L-
arabinopyranosyl-
CHO 23 [29]
41 Ardisicrenoside I H H OH CH3
β-D-xylopyranosyl-(1→2)-β-D-
glucopyranosyl-(1→ 4)-[β-D-
glucopyranosyl-(1 → 2) ]-α-L-
arabinopyranosyl-
CH(OMe)2 2 [10]
42 Ardisicrenoside J H H OH CH3
α-L-rhamnopyranosyl-(1→2)-
β-D-glucopyranosyl- (1 → 4)-
[β-D-glucopyranosyl- (1 →
2) ]-α-L-arabinopyranosyl-
CH(OMe)2 2,6 [10,32,38]
43
16α-Hydroxy-13β, 28-epoxy-
30,30-dimethoxy-oleane-3β-O-
α-L-rhamnopyranosyl-(1→ 4)-
β-D-glucopyranosyl-(1 → 2)-
[β-D-glucopyranosyl-(1→4) ]-
α-L-arabinopyranoside
H H OH CH3
α-L-rhamnopyranosyl-(1→4)-
β-D-glucopyranosyl- (1 → 2)-
[β-D-glucopyranosyl- (1 →
4) ]-α-L-arabinopyranosyl-
CH(OMe)2 6 [38]
注:植物来源(Origin) :1. Ardisia crispa 2. Ardisia crenata 3. Ardisia gigantifolia 4. Ardisia pusilla 5. Ardisia mamillata 6. Ardisia japonica 7. Ardisia
punctate 8. Myrsine australis 9. Myrsine pellucida 10. Primula denticulate 11. Lysimachia thysiflora 12. Lysimachia christinae 13. Lysimachia patungensis
14. Lysimachia davurica 15. Lysimachia paridiformis 16. Lysimachia microcarpa 17. Cyclamen repandum 18. Cyclamen coum 19. Cyclamen mirabile 20.
Cyclamen trocopteranthum 21. Cyclamen europaeum 22. Androsace saxifragaefolia 23. Androsace umbellate 24. Remusatia vivipara 25. Eupatorium chinense.
和次生苷可以通过酸水解或高碘酸钠水解或酶解法
获得[12,27,42]。其中,cyclamiretin A是 ardisiacrispin A
的原生苷元,而 cyclamiretin A继续酸水解缩合则生
成次生苷元 cyclamiretin D。Androsacenol 和 andro-
sacenol-3β-O-β-D-glucopyranosyl-(1→4)-[β-D-gluco-
pyranosyl-(1→2) ]-α-L-arabinopyranoside 是 saxifra-
gifolin A的原生苷元和次生皂苷。而 cyclamigenin B
则是第二亚类化合物的原生苷元。
1. 2 30 /29-醇,以及 30 /29-羧酸
这两类化合物,29 或 30 位碳为羟甲基(30 /29-
醇) ,或为羧基(30 /29-羧酸) (图 2) (表 2)。
5761Vol. 24 蔡佳仲等:百两金皂苷类似物的化学与药理学研究进展
图 2 具有 30 /29-醇或羧酸结构的西克拉明皂苷元 A类似物结构
Fig. 2 Structures of cyclamiretin A analogues with 30 /29-alcohol,or with 30 /29-carboxylic acid
表 2 具有 13β,28-环醚-30 /29-醇结构的西克拉明皂苷元 A类似物
Table 2 Derivatives of cyclamiretin A with 13β,28-epoxy-30 /29-alcohol structure
编号
No.
化合物
Compound
取代基 Substituent
R1 R2 R3 R4
植物来源
Origin
参考文献
Reference
44 Ardisicrenoside A CH3 CH2OH OH
α-L-rhamnopyranosyl- (1 → 2)-β-D-
glucopyranosyl-(1→4)-[β-D-glucopy-
ranosyl-(1→2) ]-α-L-arabinopyrano-
syl-
1,2,3 [10,32,43,44]
45 Ardisicrenoside B CH3 CH2OH OH
β-D-xylopyranosyl-(1→2)-β-D-gluco-
pyranosyl-(1→4)-[β-D-glucopyrano-
syl-(1→2) ]-α-L-arabinopyranosyl-
1,4 [10,13,43]
46 Ardisianoside E CH3 CH2OH OH
β-D-glucopyranosyl-(1→2)-[β-D-glu-
copyranosyl-(1→4) ]-α-L-arabinopyr-
anosyl-
2 [32]
47 Ardisianoside F CH3 CH2OH OH
β-D-glucopyranosyl-(1→3)-[β-D-xy-
lopyranosyl- (1 → 2) ]-β-D-glucopyr-
anosyl-(1→4)-[β-D-glucopyranosyl-
(1→2) ]-α-L-arabinopyranosyl-
2 [32]
48 Ardisimamilloside E CH2OH CH3 OH
α-L-rhamnopyranosyl- (1 → 2)-β-D-
glucopyranosyl-(1→4)-[β-D- gluco-
pyranosyl- (1 → 2) ]-α-L-arabinopyr-
anosyl-
3 [44]
49 Davuricoside D CH2OH CH3 OH
β-D-glucopyranosyl -(1 → 2)-β-D-6-
methyl ester-glucopyranosyl- 5 [45]
50 Davuricoside E CH2OH CH3 OH
β-D-glucopyranosyl-(1→2)-β-D-glu-
curonopyranosyl- 5 [46]
51
16α- hydroxy-13β,28-epoxy- 30-ace-
toxy-oleanane- 3β-O-α-L-rhamnopyr-
anosyl-(1→3)-[ β-D-xylopyranosyl-
(1 → 2) ]-β-D-glucopyranosyl- (1 →
4)-[β-D-glucopyranosyl-(1→2) ]-α-
L-arabinopyranoside
CH3 CH2OAc OH
α-L-rhamnopyranosyl-(1→3)-[ β-D-
xylopyranosyl-(1→2) ]-β-D-glucopyr-
anosyl-(1→4)-[ β-D-glucopyranosyl-
(1→2) ]-α-L-arabinopyranosyl-
6 [47]
52 Ardisimamilloside G CH3 CH2OH = O
α-L-rhamnopyranosyl- (1 → 2)-β-D-
glucopyranosyl-(1→4)-[β-D-glucopy-
ranosyl-(1→2) ]-α-L-arabinopyrano-
syl-
3 [41]
53
16α- hydroxy-13β,28- epoxy-oleanan-
29-oic acid-3β-O-α-L-rhamnopyranosyl
-(1→4)-β-D-glucopyranosyl-(1→2)-
[ β-D-glucopyranosyl-(1→4) ]-α-L-
arabinopyranoside
COOH CH3 OH
α-L-rhamnopyranosyl- (1 → 4)-β-D-
glucopyranosyl-(1→2)-[ β-D-gluco-
pyranosyl- (1 → 4) ]-α-L-arabinopyr-
anosyl-
2 [38]
54
16α-hydroxy-13β,28- epoxy-oleanan-
29-oic acid- 3β-O-α-L-rhamnopyrano-
syl-(1→ 2)-β-D-glucopyranosyl-(1→
4)-[ β-D-glucopyranosyl-(1→2) ]-α-
L-arabinopyranoside
COOH CH3 OH
α-L-rhamnopyranosyl-(1 → 2)-β -D-
glucopyranosyl-(1→4)-[ β-D- gluco-
pyranosyl-(1→2) ]-α-L-arabinopyrano-
syl-
2 [32]
6761 天然产物研究与开发 Vol. 24
55 Ardisimamilloside F CH3 COOH OH
α-L-rhamnopyranosyl- (1 → 2)-β-D-
glucopyranosyl-(1→4)-[ β-D-gluco-
pyranosyl- (1 → 2) ]-α-L-arabinopyr-
anosyl-
2 [32]
注:植物来源(Origin) :1. Ardisia crenata 2. Ardisia japonica 3. Ardisia mamillata 4. Lysimachia christinae 5. Lysimachia davurica 6. Ardisia gigantifolia.
刘岱琳等[10,48]还从朱砂根(Ardisia crenata)中
分得一个 30 位甲基缺失的罕见三萜类似物朱砂根
皂苷 L。
百两金皂苷类似物中的 13β,28-环氧醚结构和
30 位含氧基团的核磁共振波谱数据是鉴定其苷元
母核结构的重要特征。由于 13β,28-环醚的存在,
百两金皂苷类似物的核磁共振波谱具有相应特
征[10,49]:往往出现化学位移值为 86. 6 的 13 位连氧
季碳信号和化学位移值为 77. 5 的 28 位连氧亚甲基
碳信号;如果 28 位碳再有一个羟基取代的话,28 位
不再出现亚甲基信号,而是在低场形成一个连氧次
甲基碳信号,其化学位移值为 99. 0;苷元结构中 30
位如果是醛基,其碳-13 谱化学位移值为 207 左右。
2 药理活性
2. 1 细胞毒作用
研究报道较多的是百两金皂苷 A 和 B、九节龙
皂苷Ⅰ、П和Ш等少数几个化合物。
其中,朱砂根皂苷 A、B、I和 J、百两金皂苷 A和
B对人乳腺癌细胞 MCF-7、人非小细胞肺癌 NCI-
H460 和人神经胶质瘤细胞 SF-268 均有一定的细胞
毒作用,半数抑制浓度 IC50在 2. 0 ~ 13. 0 μM 之间,
其中以百两金皂苷 A和 B 的作用较强,而且百两金
皂苷 A体外对人肾胚正常细胞 293 的毒性较弱[10]。
有研究显示,百两金皂苷 A 对肝癌细胞 HepG 2 的
细胞毒作用,是通过阻滞细胞于亚 G1 期,从而激活
caspase-8 和 caspase-9,使线粒体膜电位下降,释放
细胞色素 C,并使磷脂丝氨酸外化和 PARP 降解机
理诱导细胞凋亡[28]。有学者报道了百两金皂苷 A
体外抗人黑色素瘤细胞 HTB-140 和对人人正常皮
肤成纤维细胞 HSFs 的毒性实验研究。结果显示百
两金皂苷 A 能明显影响 HTB-140 细胞的活力、增
殖、形态和细胞骨架,具有时间浓度依赖性地抑制肿
瘤细胞的活力,通过使肌动蛋白细胞空泡化并解聚
而影响肿瘤细胞的转移和增殖。但同时也能降低人
正常皮肤成纤维细胞 HSFs的活力和生长[50]。由此
可见,百两金皂苷 A在体外对多种肿瘤细胞具有较
强的细胞毒活性,但对一些正常人体细胞也具有一
定程度的毒性。虽然百两金皂苷 A、B 的体外抗肿
瘤研究有较多报道,但体内抗肿瘤实验结果仍未见
报道。
对九节龙皂苷Ⅰ、П和Ш的体内外药理研究也
有一些报道。Zhang 等研究报道了九节龙皂苷 I 体
外对人非小细胞肺癌 NCI-H460 具有明显的抑制作
用,药物作用细胞后,使细胞阻滞于亚 G1 期,并使
核固缩,染色质浓集而形成凋亡小体,结果表明能时
间、浓度依赖性地抑制肿瘤细胞的生长,从而诱导其
凋亡[7]。林洪等也发现了九节龙皂苷 Ш 能通过阻
滞人胶质瘤细胞 U251MG 于 G2 /M 期,引起时间浓
度依赖性地使 BAD 去磷酸化,并激活 caspase-8 和
caspase-3,从而抑制细胞增殖[8]。对于体内抗肿瘤
研究,李伟芳等报道了九节龙皂苷Ⅰ和 П 经腹腔注
射,对小鼠肉瘤和艾氏腹水瘤的生长有一定的抑制
作用,使瘤体生长缓慢,抑瘤率为 16% ~ 39%,而九
节龙皂苷Ⅰ对小鼠黑色素瘤抑瘤率为 27. 3%,九节
龙皂苷 П对小鼠肝癌的抑制率为 23. 3%[51]。
也有学者研究了 davuricoside C(苷元结构中有
16α-OH)体外对人卵巢癌细胞 A2780 的增殖抑制作
用,并提出 16 位碳上有 α-羟基比没有 α-羟基的显
示出更强的细胞毒作用[34];刘岱琳等也通过对比百
两金皂苷 A和 B、朱砂根皂苷 I 和 J 这四种皂苷体
外对多种肿瘤细胞和人肾胚正常细胞 293 的细胞毒
作用,探讨了结构与细胞毒活性之间的关系,得出一
些见解:① 16 位 α-羟基和 13β,28-环氧醚结构对活
性起着决定性作用;② 碳 3-O-连接的糖链越长,其
活性也越强;③ 苷元中碳 30 的取代基对活性影响
也很大,其对活性影响顺序为:-CHO > -CH
(OCH3)2 > -CH2OH > -COOH
[10]。
2. 2 抗炎
有实验显示,用 100 μM 百两金皂苷 A 作用于
人巨噬细胞 THP-1 能明显抑制脂多糖诱导的 IL-8
和 TNF-α的释放,并降低 mRNA 转录水平,从而发
挥其抗炎作用[22]。
2. 3 收缩子宫
Chaweewan等(1987)研究报道了百两金皂苷 A
和 B具有收缩子宫的作用,在 8 μg /mL的皂苷溶液
7761Vol. 24 蔡佳仲等:百两金皂苷类似物的化学与药理学研究进展
中小鼠子宫的收缩程度相当于 0. 2 μg /mL 乙酰胆
碱所起的作用[14]。在此基础上,Calis 等也对百两
金皂苷 A、primulanin A、cyclamin 和 cyclacoumin 进
行了体外小鼠子宫收缩反应试验,结果显示,化合物
的浓度分别为 7. 5 × 10-6、8. 6 × 10-6、7. 4 × 10-6和
6. 5 × 10-6 μM时,作用效果分别相当于 10-5. 2、10-4. 9、
10-5. 2和 10-4. 9 M的乙酰胆碱的作用[24]。作用机理目
前尚不明确。
2. 4 抗真菌
据研究[24],百两金皂苷 A、primulanin A、cycla-
min、cyclacoumin 和 isocyclamin 均具有一定的抗真
菌作用,前三个化合物的最小抑菌浓度 MIC 在 80-
160 μg /mL之间,作用要强于后两者。
2. 5 其他药理作用
百两金皂苷类似物在其他方面的药理活性,还
包括抗 cAMP磷酸二酯酶作用等[52]。
3 结语
百两金皂苷类似物的结构和数目具有一定的多
样性,其药理作用特别是抗肿瘤活性研究也已发现
一些有意义的苗头。因此,进一步从中筛选具有抗
肿瘤活性且对人体毒性较小的活性类似物并作为结
构优化的基础,对发现抗肿瘤药物先导化合物具有
重要意义。
参考文献
1 Sparg SG,et al. Biological activities and distribution of plant
saponins. J Ethnopharmacol,2004,94:219-243.
2 Foubert K,et al. Chemistry,distribution and biological activi-
ties of 13,28-epoxy-oleanane saponins from the plant families
Myrsinaceae and Primulaceae. Curr Org Chem,2008,12:629-
642.
3 Chang HT(常海涛) ,et al. Chemical and pharmacological
advances of study on Lysimachia . Chin J Chin Mater Med
(中国中药杂志) ,2004,29:295-298.
4 Huang XA(黄新安) ,Yang RZ(杨仁洲). Progress in the
triterpenoids from the Genus Lysimachia L. J Trop Subtrop
Bot(热带亚热带植物学报) ,2007,15:175-182.
5 Wei SY(魏少荫) ,et al. Study on inhibitory efects and
mechanism of ardisiacrispin(A + B)on human promyeloleu-
kemic HL-60 cells. Chin Pharm Bull(中国药理学通报) ,
2007,23:586-590.
6 Li M,et al. Pro-apoptotic and microtubule-disassembly
effects of ardisiacrispin (A + B) ,triterpenoid saponins from
Ardisia crenata on human hepatoma Bel-7402 cells. J Asian
Nat Prod Res,2008,10:729-736.
7 Zhang Y,et al. Ardipusilloside I purified from Ardisia pusilla
competitively binds VEGFR and induces apoptosis in NCI-
H460 cells. Phytomedicine,2010,17:519-526.
8 Lin H,et al. Apoptosis induced by ardipusilloside III through
BAD dephosphorylation and cleavage in human glioblastoma
U251MG cells. Apoptosis,2008,13:247-257.
9 Park JH,et al. Cytotoxic effects of triterpenoid saponins from
Androsace umbellata against multidrug resistance (MDR)
and non-MDR cells. Arch Pharm Res,2010,33:1175-1180.
10 Liu DL(刘岱琳). Studies on the bioactive constituents of
Ardisia crenat Sims and Bulbophyllum ororatissimum Lindl.
Shenyang:Shenyang Pharmaceutical University(沈阳药科大
学) ,PhD. 2004.
11 Zheng ZF,et al. Cytotoxic triterpenoid saponins from the roots
of Ardisia crenata. J Asian Nat Prod Res,2008,10:833-839.
12 Dorchaí Ró,Thomson JB. Triterpenoids-III:The structure of
cyclamigenin B. Tetrahedron,1968,24:1377-1384.
13 Tian LJ,et al. Triterpene saponins from Lysimachia christi-
nae. J Asian Nat Prod Res,2008,10:265-269.
14 Chaweewan J,et al. Ardsiacrispin A and B,two utero -con-
tracting saponins from Ardisia crispa . Planta Med,1987,53:
405-409.
15 Wen P,et al. Four new triterpenoid saponins from Ardisia
gigantifolia Stapf. and their cytotoxic activity. J Asian Nat
Prod Res,2008,10:873-880.
16 Tian Y,et al. Triterpenoid saponins from Ardisia pusilla and
their cytotoxic activity. Planta Med,2009,75:70-75.
17 Lavaud C,et al. Triterpene saponins from Myrsine pellucida.
Phytochemistry,1994,37:1671-1677.
18 Bloor SJ,Qi L. Cytotoxic saponins from New Zealand Myrsine
species. J Nat Prod,1994,57:1354-1360.
19 Ahmad VU,et al. Triterpenoid saponins from Primula dentic-
ulate. Planta Med,1990,56:94-97.
20 Podolak I,et al. A triterpene saponin from Lysimachia thyrsi-
flora L. Acta Pol Pharm,2007,64:39-43.
21 Huang XA(黄新安) ,et al. Triterpenoid saponins from Lysi-
machia patungensis and their anti-tumor activities in vitro. J
Trop Subtrop Bot(热带亚热带植物学报) ,2007,15:363-
365.
22 Dall'Acqua S,et al. Triterpene glycosides with in vitro anti -
inflammatory activity from Cyclamen repandum tubers. Carbo-
hydr Res,2010,345:709-714.
23 Calis I,et al. Triterpene saponins from Cyclamen coum var.
coum. Planta Med,1997,63:166-170.
24 Calis I,et al. Triterpene saponins from Cyclamen mirabile and
8761 天然产物研究与开发 Vol. 24
their biological activities. J Nat Prod,1997,60:315-318.
25 Mihci-Gaidi G,et al. Triterpene saponins from Cyclamen tro-
copteranthum. Planta Med,2010,76:818-821.
26 Pal BC,Mahato SB. New triterpenoid pentasaccharides from
Androsace saxifragifolia . J Chem Soc,Perkin Trans 1,1987:
1963-1967.
27 Waltho JP,et al. Structure elucidation of two triterpenoid tet-
rasaccharides from Androsace saxifragifolia. J Chem Soc,Per-
kin Trans 1,1986:1527-1531.
28 Zhang DM,et al. Saxifragifolin B from Androsace umbellata
induced apoptosis on human hepatoma cells. Biochem Biophys
Res Commun,2007,362:759-765.
29 Wang Y,et al. Triterpenoid saponins from Androsace umbel-
lata and their anti-proliferative activities in human hepatoma
cells. Planta Med,2008,74:1280-1284.
30 Tang HF,et al. Two new triterpenoid saponins cytotoxic to
human glioblastoma U251MG cells from Ardisia pusilla.
Chem Biodivers,2009,6:1443-1452.
31 Huang J,et al. Triterpenoid saponins from Ardisia mamillata.
Phytochemistry,2000,54:817-822.
32 Chang XL,et al. Biologically active triterpenoid saponins
from Ardisia japonica. J Nat Prod,2007,70:179-187.
33 Wang MT,et al. A new triterpenoid saponin from Aridsia cre-
nata. Planta Med,1992,58:205-207.
34 Liang B,et al. Triterpenoid saponins from Lysimachia davuri-
ca. Chem Pharm Bull,2006,54:1380-1383.
35 Zhang QH(张清华) ,Wang XJ(王晓娟). Studies on the
saponin constituents of Jiu jielong(Ardisia Pusilia). Acta
Pharm Sin(药学学报) ,1993,28:673-678.
36 Han DX(韩定献) ,et al. Studies on the paridiformoside. Acta
Pharm Sin(药学学报) ,1987,22:746-749.
37 Reznicek G,et al. Saponins in Cyclamen species:Configura-
tion of cyclamiretin C and structure of isocyclamin. Phyto-
chemistry,1989,28:825-828.
38 De TN,et al. Characterization of three new triterpenoid sapo-
nins from Ardisia japonica. J Nat Prod,1993,56:1669-1675.
39 Li YF,et al. PTP1B inhibitors from Ardisia japonica. J Asian
Nat Prod Res,2005,7:13-18.
40 Ding ZH(丁智慧) ,et al. The chemical constituents of Lysi-
machia microcarpa. Acta Bot Yunnan(云南植物研究) ,
1993,15:201-204.
41 Huang J,et al. Ardisimamillosides G and H,two new triterpe-
noid saponins from Ardisia mamillata. Chem Pharm Bull,
2003,51:875-877.
42 Dorchaí Ró,et al. Triterpenoids-IV:The cyclamigenins A1,
A2,C,and D. Tetrahedron,1968,24:5649-5654.
43 Jia Z,et al. Triterpenoid saponins from Ardisia crenata. Phy-
tochemistry,1994,37:1389-1396.
44 Huang J,et al. Ardisimamillosides C-F,four new triterpenoid
saponins from Ardisia mamillata. Chem Pharm Bull,2000,
48:1413-1417.
45 Tian JK(田景奎) ,et al. Two new triterpenoid saponins from
Lysimachia davurica. Acta Pharm Sin(药学学报) ,2004,
39:194-197.
46 Tian JK,et al. Two New Saponins from Lysimachia davurica.
Chin Chem Lett,2005,16:212-214.
47 Mu LH,et al. Triterpenoid saponins from Ardisia gigantifo-
lia. Chem Pharm Bull,2010,58:1248-1251.
48 Liu DL,et al. Two new triterpenoid saponins from Ardisia cre-
nata. J Asian Nat Prod Res,2007,9:119-127.
49 Liu DL(刘岱琳) ,et al. NMR spectroscopy features of triter-
penoid saponins from Ardisia. J Shenyang Pharm Univ(沈阳
药科大学学报) ,2004,21:394-400.
50 Galanty A,et al. The influence of LTS-4,a saponoside from
Lysimachia thyrsiflora L.,on human skin fibroblasts and hu-
man melanoma cells. Cell Mol Boil Lett,2008,13:585-598.
51 Li WF(李伟芳) ,et al. The antitumor activity of ardipusillo-
side in vivo. Chin J Trad Chin Med Pharm(中国医药学
报) ,2003,18:60-61.
52 Jia Z,et al. Triterpenoid saponins from Ardisia crenata and
their inhibitory activity on cAMP phosphodiesterase. Chem
Pharm Bull,1994,42:
櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵
2309-2314.
(上接第 1695 页)
62 Zhang M,et al. A novel ultra high molecular weight polyethy-
lene¨ Chyaluronan microcomposite for use in total joint re-
placements. I. Synthesis and physical /chemical characteriza-
tion. J Biomed Mater Res,Part A,2006,78:86-96.
63 Zhang M,et al. A novel ultra high molecular weight polyethy-
lene¨ Chyaluronan microcomposite for use in total joint re-
placements. II. Mechanical and tribological property evalua-
tion. J Biomed Mater Res,Part A,2007,82:18-26.
64 Luan T,et al. A study on the nature of intermolecular links in
the cryotropic weak gels of hyaluronan. Carbohydrate Poly-
mers,2012,87:2076-2085.
9761Vol. 24 蔡佳仲等:百两金皂苷类似物的化学与药理学研究进展