免费文献传递   相关文献

Colonial cell growth of Dunaliella salina and Platymonas subcordiformis under different inoculation density and nitrogen concentration

杜氏盐藻和亚心形扁藻在不同接种密度和氮浓度下的细胞群体生长


在氮浓度为1.4、14、和140 mg·L-1下,对杜氏盐藻(Dunaliella salina)和亚心形扁藻(Platymonas subcordiformis)进行细胞接种比例为10:0、7:3、5:5、3:7和0:10的培养试验,研究不同海洋经济微藻种间混合培养的细胞群体生长效应。结果表明,杜氏盐藻与亚心形扁藻细胞群体的生长随着氮浓度的增加而提高;两种藻在氮浓度分别为14和140mg·L-1时混合培养的细胞群体生长明显优于单独培养。中、高氮下杜氏盐藻与亚心形扁藻以7:3的接种比例混合时,微藻的细胞群体生物量和胞内物质含量相比单独培养和其他比例均有显著提高,如叶绿素a含量比单独培养分别提高1.17倍和7.77倍;蛋白质含量比单独培养分别提高19.1%和195.3%等。而低氮浓度下,藻的生长受到氮浓度的限制。

We investigated the colonial cell growth of marine economic microalgae,Dunaliella salina and Platymonas subcordiformis under different cell inoculation densities(10:0,7:3,5:5,3:7 and 0:10) and nitrogen concentrations(low nitrogen:1.4 mg·L-1, medium nitrogen:14 mg·L-1 and high nitrogen:140 mg·L-1) by examining some parameters of algal cell density,biomass,chlorophyll a and protein content.The results indicated that colonial cell growth of these two algae increased with the increasing of nitrogen concentrations.Besides,cell growth of mixed-culture was superior to monoculture when at high and medium nitrogen concentrations; especially when they were cultured at a proportion of 7:3.For example,chlorophyll a content was increased by as high as 1.17(p<0.01) and 7.77 folds(p<0.01),and protein content was improved by 19.1%(p<0.05) and 195.3%(p<0.01),respectively.However,cell growth of mixed-culture was remarkably limited by nitrogen concentration when at low nitrogen concentration.


全 文 :第29卷第4期
2010年8月
生态科学
EcologicalS ience
29(4):318—323
Aug.2010
黄伟伟,蔡卓平,肖群,段舜山.杜氏盐藻和亚心形扁藻在不同接种密度和氮浓度下的细胞群体生长【J】.生态科学,2010,29(4):
318.323. .
HUANGWei-wei,CAIZlmo-ping,X1AOQun,DUANShun—shah.ColonialcellgrowthofDunalieUasalinandPlatymonas
subcordiformisunderdifferentinoculationdensityandn trogenconc ration[J].EcologicalScience,2010,29(4):318-323.
ColonialcellgrowthofDunaliellasa inandPlatymonassubcordiformis
underdifferentinoculationdensityandnitrogenconcentration
HUANGWd.weil’_,CAIZhuo.pin91⋯,XIAOQunl,DUANShun.shanl+
1.InstituteofHydrobiology,JinanUniversi饥Cruangzhou510632,China
2.CollegeofEnvironmentalScienceandEngineering,Ton∥iUniversity,Shanghai200092,China
3.SouthC inaSeInstituteofOceanology,ChineseAcademyofSci nces,Guangzhou510301。China
Abstract:Weinvestigatedthecolonialcelgrowthofmarineeconomicmicroalgae,DunaliellasalinaandP atymonassubcordiformis
underdifferentc llinoculationdensities(10:0,7:3,5:5,3:7and0 10)andnitrogenco centrations(10wn trogen:1.4mg‘L一,
mediumnitrogen:14mg’L。andhigIInitrogen:140mg’L“)byexaminingsomeparametersofalgalcelldensity,biomass,chlorophylla
andproteinco tent.Theresultsindicatedthatcolonialcelgrowthofthesetwoalgaeincreasedwitlltheincreasingofnitrogen
concentrations.Besides,cellgrowthofmixed—cultureWasuperiortomonoculturewhenathighandmediumnitrogenconcentrations;
especiallywhen廿leyw reculturedataproportionof7:3.Forexample,chlorophyllacontentwasincreasedbyashighas1.17pand7.77folds(P<0.01),andproteinco tentwasimprovedby19.1%(P<0.05)and195.3%pgrowthofmixed-cultureWasremarkablylimitedbynitrogenconcentrationwhenatlownitrogenconcentration.
Keywords:Dunaliellasalina;Platymonassubcordiform&;mixedculture;inoculationdensity;nitrogen
doi:10.39690.issn.1008-8873.2010.04.003中图分类号:Q178.1 文献标识码:A 文章编号:1008-8873(2010)04·318-06
杜氏盐藻和亚心形扁藻在不同接种密度和氮浓度下
的细胞群体生长
黄伟伟1,一,蔡卓平1,一,肖 群1,段舜山p
1.暨南大学水生生物研究所,广州510632
2.同济大学环境科学与工程学院,上海000000
3.中国科学院南海海洋研究所,广州510301
【摘要】在氮浓度为1.4、14、和140nag·L-1下,对杜氏盐藻(Dunaliellasali )和亚心形扁藻(Platymonassubcordiformis)进行细
胞接种比例为10:0、7:3、5:5、3:7和0:10的培养试验,研究不同海洋经济微藻种间混合培养的细胞群体生长效应。结
果表明,杜氏盐藻与亚心形扁藻细胞群体的生长随着氮浓度的增加而提高;两种藻在氮浓度分别为14和140mg·L’1时混合培养
的细胞群体生长明显优于单独培养。中、高氮下杜氏盐藻与亚心形扁藻以7:3的接种比例混合时,微藻的细胞群体生物量和胞
内物质含量相比单独培养和其他比例均有显著提高,如叶绿素a含量比单独培养分别提高1.17倍和7.77倍;蛋白质含量比单独
培养分别提高19.1%和195.3%等。而低氮浓度下,藻的生长受到氮浓度的限制。
关键词:杜氏盐藻;亚心形扁藻;混合培养;接种比例;氮浓度
收稿日期:2010-04.10收稿,2010-06.30接受
基金项目:国家自然科学基金项目(40876074,30770336);广东省科技计划重点引导项目(2005833201001):珠海市科技计划重大项目
(PC20061045)
作者简介:黄伟伟(1983—),女,博士研究生,主要从事饮用水处理。
串通讯作者,E.mail:tssduan@3nu.edu.∞
万方数据
4期 黄伟伟,等:杜氏盐藻和亚心形扁藻在不同接种密度和氮浓度下的细胞群体生长 319
1 Introduction
Marinemicroalgaeareamajornaturalsourcewith
extremelyrapidgrowth,exceedingrichnessinoil
content,stableproductivityofl pids,hydrocarbonsand
otherbioactivesubstances【IJ.Astheypossesstheability
toconvertsunlight,waterandcarbondioxidentoalgal
biomass,marineicroalgaecanb widelyusedin
bioremediationapplications,seweragetr atment,
nitrogenfixingandproductionofsustainableenergy,
whichhaveimportantsocialndeconomicvalues[21.At
present,numerouslaboratorycommercial
applicationsof microalgaeh vebeenwell
documented【jJ.Alargenumberofstudieshavebeen
carriedoutoexplorethwaytoanincreasingof
microalgaldensityt451.Concerningtheculturemodeof
microalgae,relatedrese rchesarmainlyfocusedon
theinterrelationshipofredtidemicroalgae,suchas
AsterionellayormosaandMicrocystisaeruginosa【6J.
There、verealsostudiesindicatingthatthe
interrelationshipofdifferentalgaevariesalot,withcell
densityofmicroalgalcoloniesinmixed—culturebeing
increasedord creasedscomparedwithmonoculture[71.
Nitrogenplaysanimportantrolein hegrowthofalgae,
andliRleinformationisavailableonthculturemodeof
marineeconomicmicroalgae.Therefore,thespecific
objectiveofthisstudyistoevaluatethecolonialgrowth
ofmarinemicroalgaeinmixed-culturendedifferent
cellinoculationdensitiesandnitrogenconcentrations,
withourhypothesisthatphotosyntheticorganismsmay
havethesimilarityinsharingthenaturalesourcesor
interactpositivelynaco-existinggrowthsystem.
2 Materials&Methods
2.1 Algalspeciesandculturecondition
ThemarinemicroalgaeD salinaandP
subcordiformiswe eobtainedfromtheInstituteof
Hydrobiology,JinanUniversity,Guangzhou,China,and
cultivatedunderstandardizedconditionattheconstant
irradiance(5000Ix)andtemperature(20℃)ina12h:
12h(1ight:dark)photoperiodcycleund an
irradianceofabout90pmol‘m-Ls‘1providedby
cool—whitefluorescentligh .Thegrowthmediumwas
artificialse waterenrichedwithf/2enrichmentsolu ion
formicroalgalcultures.Salinityoftheartificial
seawaterwas30%0andtheinitialpHoftheculturewas
6.5。7.O.
2.2 Experimentald sign
FivetreatmentsweresetupasshowninTable1.
Mixed.cultureofD.salinaa dPsubcordiformiswas
establishedbyusingdifferentc llinoculationdensities
(DlO:SO,D7:S3,D5:S5,D3:S7andD0:S10).
E chtreatmentwascarriedoutintriplicate.By
comparingthemaximumcapacityofenvironment,it
wasindicatedthatconsumptionofonecelIofP
subcordiformisequaledtothatof2.5cellsofnsalina.
UsingthecelldensityofPsubcordiform括ascriterion.
theinitialtotalcelldensityofmixed-culturewasetat
1.62x103cell·mL~.
TablelMixed-cultureofAsalinaand只subcordiformiin
thexperiment
Nitrogen
concentration
Proportionofmixed-culture
Note:DforD.salina;SforPsubcordiformis.
2.3 Determinationofceildensityandbiomass
Algalcelldensitywasalsomonitoredandrecorded
withthehelpofamicroscopeusingahemocytometer.
Algalbiomasswasdeterminedusinganelectronic
balanceinthe1abafterd yingthefiltersandcollected
algalpelletfor72hatconstant90℃.
2.4 Measurementsofbiochemicalcompositions
Chlorophyllaandproteinco tentswereassayedon
the15mdayatHNandMNconditionsand11mdayat
万方数据
LNconditionaccordingtothemethodsde cribedby
CongandLit8驯.
2·5 Dataanalysis
GrowthcurvefittingwascalculatedbyLogistic
equation[10】onthem ocultureofD.salinaa dP
subcordiformis.ThegrowthregressionequationofD.
sa6nawas"Nt=666.303/(1+e2.68723·062833木0
僻220.987),themaximumcarryingcapacitywas
6.7x100cell·mL。:thegrowthregressionequationofP.
subcordiformiswasNt=266.368/(1+e3.14476-0.59794书n
∥=0.995),andthemaximumcarryingcapacitywas
2.66x100cell·mL一.Soconsumptionofoneellof户
subcordiformiscouldbegotbyequalingtothatof2.5
cellsofD.salinaaRertheirmaximumcapacitiesof
environmentwerecompared.
3 Results
3.1 Growthofcelldensityandbiomassduring
microalgalculfivafion
Colonialeeldensitiesmcreasedwithincreasingof
nitrogenco centrations.11圮observedcelldensitiesin
HNappearedtohavethefastestgrowthrateAnditwas
thetreatmentofinoculationproportionD7:S3t11athad
thegreatestvariabilityofeelldensitieswheni MNand
删.Increasedeelldensitieswere19.1%and14%higher
thanmonocultureatMNp<0.05);whileinthelatter
case(I-IN),itWas69%and90.6%higherp<0.01,Fig.1).
Alongwiththeincreasingof nitrogen
concentration,algalbiomassincreasedgradually,
confirmingthathighernitrogenco centrationscould
promotethcellcoloniesgrowthandfinalyieldof
microalgae(Fig.2).Additionally,biomassatm xed-
cultureofdifferenti oculatedproportionwas
comparativelyh gherthanmonocultureatHNandMN
conditions.ForHN,increasedbiomassofthetreatment
D7:S3was13.7%p<0.05)or50.7%p<0.01)higher
incomparisontom noculture,butclosetobiomassof
thetreatmentD3:S7∞>0.05).ForMN,thisbehavior
wasalsoobserved,withtheh g estbiomassbeingatD7:
S3;then xtWasD5:S5andD3:S7,followedby
monocultured户subcordiformisandD.salina.However,
noobviousincreasewasdemonstratedatlownitrogen
conditioninwhicht ebiomasswaaveragedatabout
0.8g.L-1.
Fig.1TotalcelldensityofD.salina∞)and只subcordiformis
(S)underdifferentc llinoculationproportionsandLN(a),
MNCo)andHN(c)conditions
3.2 Biochemicalcompositionsduringmicroalgal
cultivation
It Wasevidentthathehighestcontentsof
万方数据
4期 黄伟伟,等:杜氏盐藻和贬心形扁藻在不同接种密度和氮浓度下的细胞群体生长 321
1.6
1.4
,、1.2
皂1
io.8
g0.6
∞0.4
O.2
O
2.5
2
1.5
l
O.5
O
DlO:soDO:S10‘D7:岛D5:s5D3:s7
D1O:∞DO:S10 D7:岛D5:S5D3:s7
DlO:∞DO:S1O D7:∞ D5:S5D3:s7
Proportiontreatments
Fig.2Biomassofcellcoloniesof及salina(D)and只
subcordiformis(S)underdifferentcellinoculation
proportionsandLN(a),MN(”andHN(c)conditions
chlorophylla(24.4mg‘L-1)andprotein(339.6ug’L-1)
perkedatHNtreatmentincontrasttoMNandLN,and
thesedifferencewereverysignificantp<0.01),
demonstratingthatchlorophyllaandproteinco tents
werelargelyinfluencedbythenitrogenco centration
forallthetreatmentexamined(Fig.3andFig.41.
MonoculturedD.salinaatHNconminedsignificantly
morechlorophyllaandproteinco tentsi comparison
toMNandLN.只subcordiform8varieda lotin
chlorophyllacontentandproteinco tentsamong
differentNlevelsp<0.01).Theseresultswereingood
agreementwiththecelldensitiesandbiomass
investigatedabov .
Thecontentsofchlorophyllawererelativelyhi曲
forthetreatmentofD7:S3,D5:S5,andD3:S7.In
thesethreecases,themaximumchlorophyllacontentin
thetreatmentofcellinoculationproportionofD7:S3
wasincreasedpproximately37%and89.8%p<0.01)
inMN,1.17and7.77pcomparisonwithmonoculture,andchlorophylla
contenti D7:S3treatmentWas12.58%and23.4%
higherthanD5:S5andD3:S7p<0.05)atMN,and
55.4%,68.7%higherthanD5:S5andD3:S7atHN(P
nitrogen,contentsofchlorophyllawereconsiderably
lowerinthemonoculturedPs bcordiform&.
Manifestvariationinproteinco tentWasalsofound
in mixed-cultureunderdifferentcellinoculation
proportionsandnitrogenconcentrations.Therewereno
strikingdifferencesi mixed-cultureandmonoculture
intheaccumulationofchlorophyllaandprotein.All
theseresultssuggestedhathighernitrogen
concentrationandifferentc llinoculationproportion
mightaveapotentialin ncreasingonthebiosynthesis
andmetabolismofproteinandchlorophylla.
4 Discussions
Previousstudieshaveindicatedthatnutrientssuch
asnitrogenorphosphorusaressentialforthegrowthof
phytoplankton⋯1.Caifoundthath ghernitrogen
concentrationtreatmentcouldsignificantlyenhancethe
algalgrowth[12J.Wangfoundthat尸donghaienseW s
moretolerantto utrientdeficiencya dsustainedth
populationgr wth,whilecellmultiplicationof
Skeletonemacost tumrequiredamuchhighernitrogen
concentrationt¨J.ItWasalsowelldocumentedthatwhen
hegrowthofalgaewashighlyr.cs倒ctedbynitrogen.
somephysiobiologicalresponsesuchasenergy
l
9
8
7
6
5
4
3
2
l
O
0
0
O
O
O
O
0
O
O
万方数据
!丝 生查型堂量1212星!£苎!墼堕翌!! 兰竺鲞
transformationandcarbonfixationc uldbeseriously
influenced[14J.Inthisresearch,eelld nsity,biomass,
proteinandchlorophyllacontentswereextremely
influencedbylOWnitrogen.D.salinaisaun cellular
ChlorophytaalgaofChlorophyceaeclassand
Volvocalesorder.Themainmorphological
characteristicthatdistinguishesthisalgafromtheother
1.2
l
O.8
0.6
0.4
O.2
O
3.5
3
2.5
2
1.5
l
O.5
O
DlO:∞DO:S10D7:岛D5:KSD3:s7
DlO:S0D0:S10D7:岛D5:s5D3:s7
D10:S0D0:S10D7:S3D5:KS D3:S7
Proportiontreatments
Fig.3ChlorophyllncontentofcellcoloniesofAsa//na㈣
and卫subcordiformls(S)underdifferenteeHinoculation
proportionsandLN(_),MNCo)andFIN(c)conditions
Volvocalesistheabsenceofapolysaccharidecellwall.
Forthisreason,D.salinacouldbceasilydigestedby
humansandanimals.Besides,itisal oamicroalgae
withighefficiencyofconversionoflight,energy,
nutrientsi obiomass.SOwhenD.salinaSunder
160
140
120
100
80
60
40
20
0
400
350
300
250
200
150
t00
50
O
D10:SOD0:S10D7:S3 D5:S5 D3:s7
D10:SOD0:S10D7:s3 D5:s5 D3:s7
DlO:8D DO:SlOD7:整D5:S5D3:b7
Proportiontreatments
Fig.4Proteinco tentofcellcoloniesof及salina(D)and卫
subcordiformis(s) underdifferentcellinoculation
proportionsandLN(-),MN(b)andHN(c)conmUons
O
O
O
O
0
O
O




m
.n‘1.1.M;暑口3口ou眉SoJld
{_1.一.M—口旨口3口ou再凶=h声△口.Io一8



:2
m

O
万方数据
4期 黄伟伟,等:杜氏盐藻和亚心形扁藻在不同接种密度和氮浓度下的细胞群体生长 323
appropriatecul ivationconditions,itCallaccumulate
morethan10%ofitsdryweightaswellasc盯oteneand
chlorophylla.Besides,whenthisalgawasgrownin
highernitrogen,presenceofhighNimposesastresson
theanapleroticmetabolismIl5】.Inthepresentstudy,
colonialce lgrowthofnlarinemicroalgaein
mixed-cultureunderdifferentcellinoculation
proportionswashighlighted.Theresultsindicatedthat
mixed—cultureofRsubcordiformisandD.salinaHN
andMNcouldsignificantlyi f uencegrowth
performanceofcolonialcel s,thusresultedinincreased
celldensity,cellbiomass,contentsfchlorophyllaand
protein.Ourres ltswereinconsistencewiththose
obtainedbyCai[16 .However,inthecaseoflow
nitrogen,contentsofchlorophyllawereconsiderably
lowerinthemonoculturedPsubcordiformis.Marine
microalgaecouldcontinuouslyreleasemetabolitesto
thenvironments.andtheseproductionscouldrestrict
orpromoteth growthofotheralgaefl71.Dueto
nutritioncompetition,differentalgaemayformcertain
predominancewhen也eyaremixedtogether,butthere
arealsotherfactorsinfluencingthisformation,so
mixed—culturingof microalgaewithdifferent
inoculationdensitymayprobablyshowcertainpotential
inaccumulatingbioactivesubstancesll81.
References
IllLiuZY,WangG,ZhouBC.Effectofironongrowthand
lipidaccumulationinChlorellavu garis[J].Bioresource
Technology,2008,99:4717-4722.
12lChistiY.Biodiselfromicroalgaebe tsbioethaol[J].
TrendsinBiotechnology,2008,26(3):126-131.
【3J SpolaereP,Jannis—CassanC,DuranE,IsambertA.
Commercialapplicationsofmicroalgae[j].Journalof
Biosciencea dBioengineering,2006,101(2):87-96.
1414 Silva-AciaresFRRiquelmeCE.Comparisonsofthe
growthofsixdiatomspeciesb tweentwoconfigurationsof
photobioreaetors[J].AquaculturaiEngineering,2008,38:
26.35.
15JGarridoIM.Microalgaeimmobilization:currenttechniques
anduses[J].BioresourceTechnology,2008,99:3949-3964.
f6lHolmNPandArmstrongDE.Roleofnutrientlimitation
andcompetitionincontrollingthepopulationAsterionell
afo,momandMicrocystisaeruginosaKutzin
semicontinuousculture[J]
1981,26:672-684.
171CaiHJ,TangXX,ZhangPYYangZ.Theeffectofinitial
celldensityontheinterspecificcompetitionbeBvccnthree
speciesofredtidemicroalgae[J].ActaEcologicaS nica,
2005,25(6):1331-1336.
【81 CongHB,HuangTL,ZhouZM,HeWJ,HanHD.Anew
measurementmethodforchlorophylIs[J].Water&
WastewaterEngineering,2007.6:28-32.
【9l LiHS.Principlesandtechniquesofplantphysiological
biochemicalexperiment[M].Beijing:HigherEducational
Press.2000.134-202.
110】VolterraVFluctuationintheabundanceofa species
consideredmathematically[J].Nature,1926,l18:558-560.
IlIJPrattCM.CompetitionbetweenSkeletonemacostatumnd
OlisthodiscusluteusinNarragansettBayandinculture[J].
LimnologyandOceanography,1966,ll:447.
112lCaiZP,DuanSS.Growthcharactedsticsandchemical
compositionsofPhaeodactylumtricornutumunderdifferent
nitrogenconcentrations[J].EcologyandEnvironment,2007,
16(6):1633—1636.
113lWangZL,LiRuiX,ZhuMYChenBZ,HaoYJ.Studyon
PopulationGr wthProcessesandInterspecificCompetition
ofProrocentrumdonghaienseandSk letonemacost tumin
Semi-continuousDil tionExperiments[J].Advancein
MarineScience,2006,24(4):495—503.
【14】HerzigRandFalkowskiPGNitrogenlimitationin
lsochrysisgalbana(Haptophyceae).I.Photosynthetic
energyconversionandgrowthefficiencies[J].Journalof
Phycology,1989,25:462-471.
【151GiordanoM.InteractionsbetweenCandNmetabolismin
DunaliellasalinacellsculturedatelevatedC02andhighN
concentrations[J].JournalofP/antPhysiology,2001,158:
577—581.
116lCaiZPDuanSS.Growthinpolycultureofalgae,
Dunaliellasa inaandPlatymonassubcordiformis【J】.
FisheriesScience,2008,27(7):330-333.
【17lFuggi^PollioA.EffectsfNaCI,Na2S04,H2S04and
glucosengro砒h,photosynthesis,andresp rationinthe
acidophilicalgaDunaliellaacidophila[J].Phycologia,1988,
27(33):334—339.
【18lChonJ,DuanSS,LiAF’GuoYF,2:Ij嘲yⅣ.Competition
I:把庀weenNannochloropsisoculataandPlatymonassp.
Underdifferentinoculativeproportion[J].MarineScience,
2003,27(5):73·76.
万方数据
杜氏盐藻和亚心形扁藻在不同接种密度和氮浓度下的细胞群
体生长
作者: 黄伟伟, 蔡卓平, 肖群, 段舜山, HUANG Wei-wei, CAI Zhuo-ping, XIAO Qun,
DUAN Shun-shan
作者单位: 黄伟伟,HUANG Wei-wei(暨南大学水生生物研究所,广州,510632;同济大学环境科学与工程学
院,上海,000000), 蔡卓平,CAI Zhuo-ping(暨南大学水生生物研究所,广州,510632;中国科
学院南海海洋研究所,广州,510301), 肖群,段舜山,XIAO Qun,DUAN Shun-shan(暨南大学水
生生物研究所,广州,510632)
刊名: 生态科学
英文刊名: ECOLOGICAL SCIENCE
年,卷(期): 2010,29(4)

参考文献(18条)
1.Cai H J;Tang X X;Zhang P Y;Yang Z The effect of initial cell density on the interspecific
competition between three species of red tide microalgae[期刊论文]-Acta Ecologica Sinica 2005(06)
2.Holm N P;Armstrong D E Role of nutrient limitation and competition in controlling the population
Asterionell aformosa and Microcystis aeruginosa Kutz in semicontinuous culture 1981
3.Garrido I M Microalgae immobilization:current techniques and uses 2008
4.Silva-Aciares F R;Riquelme C E Comparisons of the growth of six diatom species between two
configurations of photobioreactors[外文期刊] 2008
5.Li H S Principles and techniques of plant physiological biochemical experiment 2000
6.Cong H B;Huang T L;Zhou Z M;He W J Han H D A new measurement method for chlorophylls 2007
7.Wang Z L;Li Rui X;Zhu M Y;Chen B Z Hao Y J Study on Population Growth Processes and Interspecific
Competition of Prorocentrum donghaiense and Skeletonema costatum in Semi-continuous Dilution
Experiments[期刊论文]-Advances in Marine Science 2006(04)
8.Cai Z P;Duan S S Growth characteristics and chemical compositions of Phaeodactylum tricornutum
under different nitrogen concentrations[期刊论文]-Ecology and Environment 2007(06)
9.Pratt C M Competition between Skeletonema costatum and Olisthodiscus luteus in Narragansett Bay
and in culture 1966
10.Volterra V Fluctuation in the abundance of a species considered mathematically[j] 1926
11.Liu Z Y;Wang G;Zhou B C Effect of iron on growth and lipid accumulation in Chlorella vulgaris[外
文期刊] 2008(11)
12.Spolaore P;Jannis-Cassan C;Duran E;Isambert A Commercial applications of microalgae[外文期刊]
2006(02)
13.Chisti Y Biodisel from microalgae beats bioethaol[外文期刊] 2008(03)
14.Chen J;Duan S S;Li A F;Guo Y F,Zhang YN Competition between Nannochloropsis oculata and
Platymonas sp.Under different inoculative proportion[期刊论文]-Marine Science 2003(05)
15.Fuggi A;Pollio A Effects of NaCl,Na2SO4,H2SO4 and glucose on growth,photosynthesis,and
respiration in the acidophilic alga Dunaliella acidophila 1988(33)
16.Cai Z P;Duan S S Growth in polyculture of algae,Dunaliella salina and Platymonas subcordiformis
[期刊论文]-Fisheries Sciences 2008(07)
17.Giordano M Interactions between C and N metabolism in Dunaliella salina cells cultured at
elevated CO2 and high N concentrations 2001
18.Herzig R;Falkowski P G Nitrogen limitation in Isochrysis galbana (Haptophyceae).I.Photosynthetic
energy conversion and growth efficiencies 1989

本文读者也读过(8条)
1. 蔡卓平.段舜山 杜氏盐藻和亚心型扁藻混合培养生长的初步研究[期刊论文]-水产科学2008,27(7)
2. 乔永民.赵建刚.杨扬.顾继光.黄长江.QIAO Yong-min.ZHAO Jian-gang.YANG Yang.GU Ji-guang.HUANG Chang-
jiang 汕头湾表层沉积物重金属污染与潜在生态风险评价[期刊论文]-生态科学2010,29(4)
3. 黄伟伟.蔡卓平.段舜山.HUANG Wei-wei.CAI Zhuo-ping.DUAN Shun-shan 海洋经济微藻混合培养与单独培养下
的生长比较[期刊论文]-生态科学2009,28(1)
4. 于贞.王长海.YU Zhen.WANG Chang-hai 扁藻培养条件初探[期刊论文]-工业微生物2005,35(3)
5. 徐贵义 盐藻素与人类健康[期刊论文]-中国保健营养2010(5)
6. 刘远.陈兆安.陆洪斌.刘长发.金美芳.郭祯.张卫.LIU Yuan.CHEN Zhao-an.LU Hong-bin.LIU Chang-fa.JIN
Mei-fang.GUO Zhen.ZHANG Wei 亚心形扁藻培养基的优化及光合特性[期刊论文]-过程工程学报2007,7(6)
7. 付保荣.刘冬.乔永民.陈实.徐成斌.马溪平.惠秀娟.FU Bao-rong.LIU Dong.QIAO Yong-min.CHEN Shi.XU
Cheng-bin.MA Xi-ping.HUI Xiu-juan 高效微生物絮凝剂D6对屠宰废水的应用研究[期刊论文]-生态科学
2010,29(4)
8. 王淑英.岳永德.汤锋.魏琦.喻谨.王进.姚曦.WANG Shu-ying.YUE Yong-de.TANG Feng.WEI Qi.YU Jin.WANG Jin
.YAO Xi 竹叶对萝卜幼苗生长的影响[期刊论文]-生态科学2010,29(3)


本文链接:http://d.g.wanfangdata.com.cn/Periodical_stkx201004003.aspx