厌氧发酵是对有机废弃物进行无害化和资源化处理的有效方法之一。目前已知有许多微生物菌群参与此过程,许多环境因素都直接或间接地影响着微生物的生长,这其中温度对其影响很大。实验用序批次反应器测定不同温度条件下,乙酸和丙酸分别作为底物时产生甲烷的潜力。在108mL的反应器中加入8mL嗜热性微生物菌群和0.5mL的底物以及31.5mL 的营养液,然后放置在9个不同处理温度的生化培养箱中进行适应性培养。二周后,重新加入0.5mL底物和0.5mL维生素混合液。反应器中甲烷的产量用气相色谱(Shimadzu GC-8A)分析和测定。实验结果表明,当处理温度为25℃和30℃时乙酸和丙酸作为底物它们产甲烷的能力几乎没有差异;当处理温度为37℃和50℃时产甲烷的能力丙酸作为底物要大于乙酸作为底物;在其余的试验组中乙酸产甲烷的能力都要高于丙酸。同时发现在40℃和55℃试验组乙酸产甲烷的能力为最大,而丙酸作为底物时其最大产甲烷能力发现在37℃和50℃试验组。导致这一实验结果的原因在于试验所使用的微生物菌群不是单一的品种,尽管它们在各自的试验温度中都进行了先期适应性培养。
Anaerobic digestion is an attractive option for stabilization and conversion of the organic wastes to its end products methane and carbon dioxide, A large number of microorganisms investigated so far catalyze the anaerobic digestion processes. Numerous environmental factors directly or indirectly inhibit and affect the survival and growth of microorganisms, and temperature is one of particular significance. This paper presented an investigation of the effect of temperature on the methane potential during anaerobic digestion. 8 mL fresh thermophilic inoculum were placed in a glass vial of 108 mL with 0.5 mL substrate(acetate and propionate) and 31.5 mL nutrient solution. The vials were incubated at 9 different treatment temperatures ranging from 25 to 65℃. After a two-week adaptation, 0.5 mL substrate and 0.5 mL vitamin were refilled for all treatment vials and the methane formation in the headspace of vials was analyzed by a Shimadzu GC-8A equipped with a flame ionization detector(FID). Results indicated that at low treatment temperature of 25 and 30℃ no difference in the methane formation capacity was found between acetate and propionate, whereas the methane formation of acetate was always higher than that of propionate at other treatment temperature vials, except the treatment vials of 37 and 50℃. When acetate was used as the substrate, the highest methane production capacities were found at 40 and 55℃ with values of 0.39 and 0.37 mL CH4 h-1, respectively. However, when propionate served as the substrate, the highest methane production capacities of 0.32 and 0.38 mL CH4 h-1 were found at 37 and 50℃, respectively. The difference between the optimum temperature in the two tests is highly due to the fact that the inoculum used in this study is not pure microbial culture, even thought they have already pre-adapted to the specific treatment temperature and nutrient conditions. In conclusion, changes in temperature are strongly to have a substantial influence on the methane production capacities during the anaerobic digestion process.
全 文 : 万方数据
4期 ji晓章:厌氧发酵过程中温度对甲烷产量的影响 3I1
A1argenumberofmicroo唱anismsinVestigatedso
farcatalyzetheanaerobicdigestionprocess.Theref’ore,it
isofgreatimportancetosel ctanappropl.iateinoculum
containingthe ecessa呵bacteriafor hedegmdation
p1.ocessestoproceed【制.Numerousabioticfa torSaf.fect
bacteria.Temperaturenotonlye虢ctsurVivaland
growthofmicroorganisms,butalsoit influencestheir
metabolicactivities【5J.Itwasgenerallycceptedthatthe
optimumtemperaturesforme ophilicandthe锄ophilic
digestionsweretobearound37℃and55℃IoJ.In
reality,theamountofinoculumadded,thenutrients
presentandthegrowthperiodofbacte“aarekeyto
controlandaf!I’ecthe6nalresultsofdigestion,
particularlyifbacteriagm、Ⅳthisinthe1agphase,there
mayleadtoOVerloadftheprocessandreducethe
ef!ficiency【4】.Inthiscase,anef五。nwasundertakeninthe
laboratoryusingpre-adaptedinoculumtoinVestigatethe
relatiOnshipbetweent mperaturendthepotentialof
methaneformationfromdifferentsubstratesduring
anaerobicdigestionpr cessandtoproVidequantitative
infornlationtooptimizeanaembictechnologyduringthe
la唱e·scaleapplication.
1 TVIateriaIsandmethods
1.1ExpOsureregimes
1.1.1 InoculumTheinoculumusedinthistudy
wastakenf.romacompletelystirredtankreactor(CSTR),
whichwasoperatedatathermophilictemperatureof55
℃ andfedwithcowmanure.Theconcentmtionsof
acetate,pmpionate,butyrateandvaleratein hisdigested
manureweremeasuredtobe8.85,2.25,0.1and0.1mM,
respectiVely.Tbtalsolid(TS)andVolatilesolid(VS)
weretobe53.05and38.45g·kg~,respectiVely.ThepH
ofinoculumwas7.7.
1.1.2 BatchandincubationE ghtmLfreshinoculum
werepIacedintoglassViaiswithaworkingVoIumeof
l08mL.Then,0.5mLsubstrate(20mMofthetotal
liquidvolume)and31.5mLsynthetjcbasicmedium
(containingbasicnutrienta dVitaminf’orsupponing
microbialgrowthandbuf诧rsvstems)wereadd d.The
Vialswereflushedwithinertgas(N2:C0270:30)in
01.dertodisplaceoxygen.Finally,via swereseaIedwith
rubberstoppersw appedwithmetalclampsandall
p】acedinincubatorswithconstanttemperatureof25℃,
30℃,37℃40℃,45℃50℃,55℃,60℃and65℃
Threes parateVialscontaininginoculumandsubstrate
wereconductedfor achtreatmenttemperature,and
controls(No=3)intheabsenceofsubstratewerealso
usedforeachtreatnlelltt mperaturetocheckthegeneraI
perfomanceofthisexperiment.ARera two—week
adaptation,thei oculumwasalreadyaptedtodiff色rent
treatmentt mperaturendthnewliVingenVironment.
AllVialshaVetobeoutgassedu inganeedlebeforethe
experiment.Then,0.5mLvitaminand0.5mLsubstrate
wasinjectedforn.eatmentViaJs.0.5m1waterwas
renlledforcontrolvialsinSteadofsubstrate.Acetateand
propionatewereusedassubstratesin histudy.
1.2 Chemicalan ysis
1.2.1Methane(CH4)measurementAnalysisof
methaneintheheadspaceofclosedVialswasdonebya
ShimadzuGC一8Aequippedwitha flameionization
detector(FID).A100mLVialwash01dupsidedowna d
nushedwithastandardgas(CH4:N230:70)forafew
seconds,thenitwasealedwitharubberstopper.0.2mL
standardgaswastakenfromtheVialusinga astight
needleandthenputintotheinjectionportoftheGC.The
injectorandetectortemperatureswe k ptat130℃
Theinitialandfinaltemperaturesweres tatl20℃.0.2
mLgasamplefromtheheadspaceofdif.ferenttreatment
vialswasdirectlyiniected.Thecalculationofmethanein
theheadspaceofVialswasdependentonthepeakareaof
GCresponseasfollow.
CH4(%)2(peakareaofsample/peakar ofstandard)
×30%
CH4(mL)=CH4(%)×Volumeofheadspace(r乩)
Thepresenceofmethanei theheadspacew s
measuredjustpriorapplicationndthenintervialsof
5~24hoursoVer309hours,dependingo therateof
methaneformationintheheadspace.
1.2.2、,olatileFattyAcids(VFA)measurementVFA
concentrationsinin culatedsamplesw remeasuredat
the ndofexperiments.0.5mLaqueoussolutionwas
takenf}omthetreatmentVialsu ingsyringes,and30U
Lhydrogenphosphate(H3P04)withtheconcentrationof
17%wereadded.Thesolutionwascentrifugedat10000
巾n1forl 5 min.VFAconcentrationsintheaqueous
solutionwasdetenninedbyaHewlettPackard一5890Ain
astandardmethod【71.
万方数据
312 爿i态科学 23卷
ThbIel Measuredm thaneproductioninViaIsamendedw“hacetate.VaIuesaremeansOfmethaneproductionfr mthree
堡乜坠垒!塑!!!垒堕巳!!坠
Temn
0h 18h 23h 42h 47h 69h 90h 114h 163h 188h 210h 234h 257h 28lh 30911
7=_cH4cH4cH4cH4cH4cH4cH4cH4cH4cH4cH4cH4cH4cH4cH4
、。’
mL n1L n1L n1L n1L n1L mL mL n1L mL n1L mL mL mL mL
Thble2 MeasuredmethaneproductioninVialsamendedwithpropionate.VaIuesaremeansofmethaneproductionfromthree
堡卫!i!璺!!!壁!!璺巴巳!!!:
Tem0h 18h 23h 42h 47h 69h 90h 114h 163h 188h 210h 234h 257h 28lh 309h
p CH4CH4CH4CH4CH4CH4CH4CH4CH4CH4CH4CH4CH4CH4 CH4
(℃) mL mL mL n1L mL mL mL mL mL mL n1L mL mL mL mL
ThepHinChetreatmentvialswasalsomeasuredat
thendofexperimentsusinga744pH—meter.
2 ResuItsandiscuSsiOns
2.1 Measurementofmethaneproductionatdifj盹rent
treatmenttemperatureThepotentialofthespecific
inoculumtoconVertacetatendpropionatetomethanet
dif-ferenttreatmentt mDeraturewastestedandtheresults
aregiVeni Tablel and2.Intest1(acetateassubstrate),
themethanefbnnationintheheadsDaceofvialswas
positiVelyinc .easedwitht etemperaturef-rom25℃to
45℃。whereasthemethanefo肌ationntheheadsDace
didnotfhrtherincreasewh nthetemDeratureinc ased
n-om50℃to65℃.Thelowestnetmethaneformation
intheheadspacew sfoundatthetreatmentt mperature
of25℃(2.73mLCH4),followedbyth treatment
temperatureof30℃(25.75mLCH4),thehighestwas
thetreatmentvialof45。C(37.72mLCH4).Intest2
(propionateas substrate),thelowestnetmethane
formationintheheadsDacew sobserVedatthetreatment
tempel.atureof25℃(3.62mLCH4),followedbyth
treatmentt mperatureof65℃(16.38mLCH4),the
highestwashetreatmentvialof37℃(92.92mLCH4).
2.2DetemlmatlonofmaXlmumethaneproductlOn
capacity
Duringthemwthofbacteriainbatchultures,four
well—deflnedphasesareobserVed:lag,exponential,
stationa巧andeathphase【引.Thexponentialphase
ommonlyrepresentsthestateofthereactorp pulation
andthegrowthratecanoRenbedesc“bedytheMonod
eauation[9】=
V2(‰。。×回/(烁d+D
whereV isthemethanefornlationveIocity(pertime),
Vmaxisthemaximumethaneformationvelocity,andKM
is the half-saturationconstantfthesubstrate
concentrationw11erethemethaneformationVelocityis
halfthemaximum).Ifthevelocityisfarbelowvnlax,the
methaneformationcuⅣeapproximatesa strai曲tline
thatrisessteeply.Inthisregionofcurve,thereactionis
firstorder.Ifthevelocityapproachesvnlax,themethane
f.onnationcur弋,ebecomeszeroorder.
Theproductioncapacityofmethanewastheslope
ofaplotofamountsofmethanepresentinheadspacesof
Vialsagainsttime(mLCH4h。).Itwasalsodecidedby
thehi曲erregressioncoe衔cient月2.Table3giVest11e
detailofthecalculatedmethaneproductioncapacityat
万方数据
万方数据
万方数据
厌氧发酵过程中温度对甲烷产量的影响
作者: 于晓章
作者单位: 湖南农业大学环境科学系,长沙,410128
刊名: 生态科学
英文刊名: ECOLOGIC SCIENCE
年,卷(期): 2004,23(4)
被引用次数: 5次
本文读者也读过(10条)
1. 何光设.蒋恩臣 厌氧发酵过程中PH值的影响因素探讨[会议论文]-
2. 董春娟 厌氧发酵中毒性物质的反应[期刊论文]-太原理工大学学报2002,33(2)
3. 刘通.黄兆波.王新春.李冰 面向户用型沼气转储及进料辅助系统的设计[期刊论文]-北京电力高等专科学校学报
:自然科学版2011,28(11)
4. 何光设.蒋恩臣 厌氧发酵过程数学模型研究[会议论文]-2007
5. 韦公远 沼气的投料与产气[期刊论文]-河北农业科技2002(12)
6. 钱午巧.陈彪.林代炎.卢济事.包武 利用厌氧发酵技术综合治理畜牧业污染的研究[会议论文]-2003
7. 钱午巧.包武.陈彪.林代炎.卢济事 利用厌氧发酵技术综合治理畜牧业污染的探讨[期刊论文]-福建能源开发与
节约2003(3)
8. 郭亮.马传杰.花日茂 接种量对牛粪厌氧干发酵的影响[会议论文]-2008
9. 马天德.崔亨哲.Ma Tiande.Cui Hengzhe 一种处理鸡粪的小型高效厌氧发酵装置[期刊论文]-农村能源2000(2)
10. 杜静.常志州.叶小梅.钱玉婷.DU Jing.CHANG Zhi-zhou.YE Xiao-mei.QIAN Yu-ting 底物浓度和接种率对稻秸
沼气启动的影响[期刊论文]-农业环境科学学报2011,30(7)
引证文献(5条)
1.黄江丽.张国华.丁建南.田晓娟.张志红 低温沼气发酵促进剂的研究[期刊论文]-江西科学 2012(1)
2.李金平.柏建华.李珍 不同恒温条件厌氧发酵的沼气成分研究[期刊论文]-中国沼气 2010(6)
3.王媛媛.张衍林 以猪粪为发酵底物厌氧发酵产氢工艺的优化[期刊论文]-农业工程学报 2009(9)
4.王俊耀.苏海佳.谭天伟 含有重金属离子的废弃菌丝体吸附剂的资源化处理[期刊论文]-现代化工 2007(z1)
5.钱小青 泔脚废物厌氧两相发酵工艺及其矿化垃圾协同生物产氢过程研究[学位论文]博士 2006
本文链接:http://d.g.wanfangdata.com.cn/Periodical_stkx200404006.aspx