免费文献传递   相关文献

Interactive effects of arbuscular mycorrhizal fungi under different soil water and fertilizer conditions on the plant growth and nutrients of Scutellaria baicalensis Georgi

不同水肥因子与AM真菌对黄芩生长和营养成分的交互效应



全 文 :第 36 卷第 10 期
2016年 5月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol.36,No.10
May,2016
http: / / www.ecologica.cn
基金项目:河北省自然科学基金资助项目(C2010000273);国家自然科学基金资助项目(31470533)
收稿日期:2014⁃10⁃23;     网络出版日期:2015⁃10⁃10
∗通讯作者 Corresponding author.E⁃mail: xuelh1256@ aliyun.com
DOI: 10.5846 / stxb201410232077
贺超,陈伟燕,贺学礼,姜桥,赵丽莉.不同水肥因子与 AM真菌对黄芩生长和营养成分的交互效应.生态学报,2016,36(10):2798⁃2806.
He C, Chen W Y, He X L, Jiang Q, Zhao L L.Interactive effects of arbuscular mycorrhizal fungi under different soil water and fertilizer conditions on the
plant growth and nutrients of Scutellaria baicalensis Georgi.Acta Ecologica Sinica,2016,36(10):2798⁃2806.
不同水肥因子与 AM真菌对黄芩生长和营养成分的交
互效应
贺  超,陈伟燕,贺学礼∗,姜  桥,赵丽莉
河北大学生命科学学院,保定  071002
摘要:利用盆栽接种试验,探讨不同水肥条件下 AM真菌双网无梗囊霉 Acaulospora bireticulata对黄芩生长、养分含量和次生代谢
产物的影响,为黄芩水肥合理施用提供理论依据。 结果表明,不同水肥条件下,AM 真菌能与黄芩根系形成良好共生关系,接种
AM真菌能显著提高黄芩根系菌根侵染率和生物量,水分和施肥处理对菌根侵染率和黄芩生长具有显著交互作用。 不同水肥
条件下,接种 AM真菌提高了植株保护酶活性和叶片渗透调节物质含量,降低了脯氨酸和丙二醛含量;显著增加了黄芩苷和 N、
P、K、Ca、Mg、Fe和 Zn含量,降低了 Mn 和 Cu 含量。 N 和 P 含量随施肥量增加而提高,其余矿质元素在施肥量 N 0.383 g、
P 0.564 g、K 0.251 g 时含量最高,说明 AM真菌能够促进宿主植物根系对水分和矿质元素的吸收和利用,提高水分和肥料利用
率,具有明显的节水节肥作用,其中 50%相对含水量,施肥量 N 0.383 g、P 0.564 g、K 0.251 g 时,接种 AM真菌的促生效应最佳。
关键词:AM真菌; 水肥条件; 生长量;养分;次生代谢产物;黄芩
Interactive effects of arbuscular mycorrhizal fungi under different soil water and
fertilizer conditions on the plant growth and nutrients of Scutellaria baicalensis
Georgi
HE Chao, CHEN Weiyan, HE Xueli∗, JIANG Qiao, ZHAO Lili
College of Life Sciences, Hebei University, Baoding 071002, China
Abstract: Scutellaria baicalensis Georgi is a medicinal plant and perennial herb that could be used for treatment of
hepatitis, cirrhosis of the liver, cancer, jaundice, anxiety, and nerve disorders. In recent years, to meet the high demand
for medicine, the area of Scutellaria cultivation has increased in Hebei province, but the quality has reduced because of
non⁃standard planting practices and improper use of fertilizer and water. Therefore, increased research attention has been
paid to improving the yield and quality of S. baicalensis in China and abroad. Arbuscular mycorrhizal ( AM) fungi are
beneficial soil microbes that can form good symbiotic relationships with over 80% of all vascular plants. Some studies have
shown that AM symbiosis is significantly influenced by variations in water and fertilizer conditions. This study focused on the
effects of an AM fungus species (Acaulospora bireticulata) on the growth, nutrients, and secondary metabolites contents of
S. baicalensis under different water and fertilizer conditions using a pot experiment in a greenhouse. The experimental design
included 18 treatments representing a combination of 2 mycorrhizal states, 3 water regimes, and 3 fertilizer application
levels. The results showed that AM fungal inoculation significantly promoted growth of the host plant and the infection rate,
but these inoculation effects were influenced by the soil water and fertilizer levels. Under different water and fertilizer
conditions, AM fungal inoculation improved the protective enzyme activity and content of osmotic adjustment substances,
and decreased proline and MDA contents. AM fungal inoculation significantly increased the contents of baicalin and N, P,
http: / / www.ecologica.cn
K, Ca, Mg, Fe, and Zn, and decreased the contents of Mn and Cu. The contents of N and P increased with improved
fertilizer levels, and other mineral elements were the highest when the fertilizer level was 0.383 g N, 0.564 g P, and 0.251
g P. Therefore, AM fungi could form a good symbiotic relationship with S. baicalensis. Inoculation of AM fungi on S.
baicalensis showed that the best effect under conditions of a relative water content of 50% and a fertilizer level of 0.383 g N,
0.564 g P, and 0.251 g K.
Key Words: Arbuscular mycorrhizal fungi; water⁃fertilizer condition; growth quality; nutrient; secondary metabolites;
Scutellaria baicalensis Georgi
黄芩(Scutellaria baicalensis Georgi)为唇形科多年生草本植物,是我国一味常用中药材,性寒味苦,以根入
药,多用于治疗癌症、肝炎、肝硬化、黄疸、焦虑和神经紊乱等疾病[1⁃2]。 近年来,随着野生黄芩资源逐渐减少,
黄芩人工栽培走向规模化,然而黄芩人工栽培过程中经常出现药材质量下降问题,栽培过程中施肥浇水多凭
借经验盲目施用,造成水分和肥料浪费现象普遍。
AM(arbuscular mycorrhiza)真菌是能与 80%以上陆生高等植物形成丛枝菌根共生体的最为古老的一类土
壤真菌。 AM真菌侵染植物后,通过形成根内和根外菌丝增加植株根系吸收面积,促进宿主植物对土壤水分
和营养物质的吸收,调节植株体内代谢活动,促进植物生长发育,增强植物抗逆性[3⁃4]。 研究表明,AM真菌能
与许多药用植物(如丹参、胀果甘草、白术、青蒿、曼陀罗、荆芥、苍术、人参、三七等)形成共生关系,改善植物
有效活性成分生产和积累,提高中药材质量[5]。 近年来,不同水肥条件或干旱胁迫下 AM真菌对丹参、白芷和
甘草等药用植物促生效应已有研究,并取得了显著成效[6⁃8],但对黄芩的研究相对较少。
本课题组前期已完成了不同水分或不同施肥条件下 AM 真菌与黄芩生长关系的研究[9⁃11],在此基础上,
本试验在土培条件下,设置不同水分和施肥组合,研究 AM真菌对黄芩生长和营养状况的影响,以便为充分利
用 AM真菌资源,合理施肥和灌溉,提高黄芩产量和品质提供依据。
1  材料和方法
1.1  材料
供试植物为黄芩 Scutellaria baicalensis。 AM 真菌为从黄芩根围土壤分离的优势菌种—双网无梗囊霉
Acaulospora bireticulata,接种剂是经苜蓿扩大繁殖后获得的含有孢子、菌丝和侵染根段的根际土,孢子密度 54
个 / 10 g土。 供试土壤取自河北保定农田土,土壤有机质 10.38 g / kg,碱解 N 65.43 mg / kg,速效 P 24.83 mg /
kg,速效 K 97.33 mg / kg,pH(H2O) 8.21。 装盆前过 2 mm 筛,按土 ∶沙(2∶ 1)混匀,晾干备用,试验容器为
23 cm×21 cm×22 cm的塑料盆,每盆装土 4 kg。 供试肥料为尿素、KH2PO4·2H2O 和 K2SO4。 田间最大持水
量 23.5%。
1.2  试验设计
参考贺学礼等[10⁃12]对黄芩水分和施肥量研究结果,本试验设 3个土壤相对含水量,即 20%、35% 和 50%,
同一水分下设低肥(L)、中肥(M)和高肥(H)3 个施肥量,即低肥 N 0.192 g、P 0.282 g、K 0.125 g,中肥 N
0.383 g、P 0.564 g、K 0.251 g,高肥 N 0.765 g、P 1.128 g、K 0.517 g。 同一水肥下设接菌(AM)和不接菌(CK)2
个处理,接菌处理每盆均匀层施菌剂 40 g,对照处理加同等质量灭菌菌剂和接种物过滤液。 每个处理 4 个重
复,共 72盆,试验盆随机排列。 2012年 10月 10日播种,出苗后每盆定苗 4株,植株生长期间,温室常规管理。
12月 1日开始用称重法进行水分处理,2013年 8月 15日收获植株,进行指标测定。
1.3  测定方法
黄芩收获时,将地上和地下部分分别收获,用自来水冲洗干净,备用。 土壤有机质用烧失法测定,碱解 N
用碱解扩散法,有效 P 用碳酸氢钠浸提⁃钼锑抗比色法,有效 K 用 1 mol / L 醋酸铵浸提⁃火焰光度法,pH 用电
位法[12]。 叶片可溶性糖用硫酸蒽酮法,可溶性蛋白用考马斯亮蓝 G⁃ 250 染色法,脯氨酸用茚三酮比色法,
9972  10期       贺超  等:不同水肥因子与 AM真菌对黄芩生长和营养成分的交互效应  
http: / / www.ecologica.cn
SOD酶活性用 NBT光化学还原法(以抑制 NBT降解 10%作为 1个酶活单位),POD酶活性用愈创木酚法(以
每分钟光密度值上升 0.01的酶量作为 1个酶活单位),CAT活性用紫外分光光度法(以每分钟内引起光密度
值减少 0.1的酶量单位作为 1个酶活单位),MDA含量用硫代巴比妥酸比色法测定[13]。 植株干重用称重法;
矿质元素 K、Ca、Mg、Mn、Fe、Cu、Zn用火焰原子吸收法[14];植物组织全 N 用凯氏定氮法,全 P 用钒钼黄比色
法[13]。 菌根侵染率按照 Biermann & Linderman建立的根段侵染率加权法测定[15]。
黄芩苷含量用 HPLC法[2]测定,色谱条件:Apollo C18色谱柱(4.6 mm×150 mm×5 μm),流动相为甲醇∶水∶
磷酸(47∶53∶0.2),检测波长 280 nm,进样量 20 μL,柱温 30℃。
对照品溶液制备:取在 60℃减压干燥 4 h的黄芩苷对照品适量,加甲醇制成 1 mL含 60 μg溶液,即得。
供试品溶液制备:精密称取黄芩根粉干样 0.3 g,置于 100 mL量瓶中,加 70%乙醇 40 mL,加热回流 3 h,放
冷过滤,滤液置于 100 mL量瓶中,加 70%乙醇至刻度,并摇匀。 精密量取 1 mL,置于 10 mL量瓶中,加甲醇至
刻度,摇匀,即得。
1.4  数据分析
试验数据用 Excel 和 SPSS19.0 软件 One⁃Way ANOVA 程序进行统计分析,T⁃test 比较同一水肥条件下接
菌与不接菌的差异性,Duncan 多重比较法检验各处理平均值间差异显著性,一般线性模型(GLM) 过程比较
接菌、水分和施肥 3个因素之间的交互作用。
2  结果与分析
2.1  黄芩生长量和菌根侵染率
由表 1可知,同一水肥条件,接种 AM真菌显著提高了黄芩干重、株高和菌根侵染率;施肥量为 M和 H时
根冠比为不接菌株大于接菌株(除施肥量 H和 35% 含水量组合),施肥量为 L时接菌株显著大于不接菌株。
表 1  不同水肥条件下 AM真菌对黄芩生长和菌根侵染率的影响
Table 1  Effect of AM fungi on the growth of S. baicalensis and mycorrhizal infection under different soil water and fertilizer conditions
水肥处理
Treatment
接菌
Inoculation
干重 Dry weight / g
茎叶 Shoot 根 Root
株高
Plant height / cm
根冠比
Root shoot ration
侵染率
Infection rate / %
H20 CK 0.938±0.002e 0.625±0.004c 22.550±0.297g 0.667±0.005b 6.833±0.733g
AM 1.097±0.001∗C 0.716±0.005∗D 24.587±0.261∗F 0.653±0.003∗B 66.207±1.44∗H
H35 CK 1.045±0.003c 0.707±0.008b 33.950±0.64b 0.676±0.007b 15.933±0.506c
AM 1.247±0.003∗B 0.918±0.002∗B 35.227±0.352∗B 0.736±0.001∗A 85.910±0.805∗B
H50 CK 1.138±0.004a 0.849±0.005a 36.213±0.105a 0.746±0.002a 12.307±0.399e
AM 1.287±0.031∗A 0.956±0.003∗A 38.883±0.591∗A 0.743±0.018A 76.703±0.55∗E
M20 CK 0.708±0.001g 0.439±0.007e 25.937±0.822e 0.621±0.009c 9.110±0.425f
AM 0.893±0.004∗D 0.537±0.004∗F 26.687±0.168∗E 0.602±0.006C 72.567±1.19∗G
M35 CK 0.954±0.003d 0.584±0.002d 33.190±0.517bc 0.613±0.004c 18.767±0.521b
AM 1.115±0.002∗C 0.681±0.009∗E 34.457±0.529∗C 0.611±0.007C 90.180±0.759∗A
M50 CK 1.095±0.002b 0.737±0.054b 37.007±0.69a 0.673±0.05b 14.620±0.617d
AM 1.235±0.03∗B 0.811±0.003C 38.477±0.523∗A 0.657±0.016B 81.423±1.198∗D
L20 CK 0.482±0.004i 0.250±0.007h 23.860±0.415f 0.519±0.018d 13.150±0.747e
AM 0.531±0.002∗F 0.301±0.003∗ I 25.703±0.401∗F 0.567±0.006∗D 74.233±0.499∗F
L35 CK 0.643±0.004h 0.295±0.004g 29.677±0.59d 0.459±0.005e 20.187±0.266a
AM 0.725±0.004∗E 0.383±0.004∗H 31.780±0.389∗D 0.529±0.008∗E 91.520±0.616∗A
L50 CK 0.779±0.002f 0.331±0.007f 32.813±0.536c 0.425±0.007f 16.737±0.406c
AM 0.885±0.003∗D 0.416±0.004∗G 34.577±0.385∗BC 0.469±0.006∗F 84.150±0.244∗C
P(AM×WS) 0.030 0.000 0.340 0.001 0.000
P(AM×FT) 0.000 0.000 0.029 0.000 0.000
P(FT×WS) 0.000 0.000 0.000 0.000 0.012
P(AM×WS×FT) 0.000 0.000 0.224 0.126 0.075
    AM:接种双网无梗囊霉,CK:对照;20、35、50:不同含水量;L、M、H:不同施肥量; WS:水分胁迫 water stress;FT:施肥处理 fertilizer treatment;
同一列∗表示同一水肥下接菌与对照在 5%水平差异显著,同一列不同字母表示不同处理在 5%水平上差异显著;P 表示不同处理间在 5%水平
上的交互效应
0082   生  态  学  报      36卷 
http: / / www.ecologica.cn
同一含水量,随施肥量增加,黄芩干重、根冠比和株高(20%含水量,施肥量 M 时最大,H 时最小)显著提
高,菌根侵染率随之依次降低。
同一施肥量,随土壤水分降低,黄芩干重、株高依次减小,侵染率先升后降(35% 含水量最高,20% 含水量
最低)。 施肥量为 H时,随土壤水分降低,根冠比依次减小;施肥量为 L 时,根冠比逐渐提高;施肥量为 M 时,
接菌株根冠比逐渐减小,不接菌株先降后升(35% 含水量最小,50% 含水量最大)。
多因素方差分析发现,接菌和水分组合仅对黄芩干重、根冠比和菌根侵染率有显著交互作用;接菌和施肥
组合、施肥和水分组合对黄芩干重、株高、根冠比和菌根侵染率有显著交互作用;接菌、水分和施肥组合仅对黄
芩干重有显著交互作用。
2.2  黄芩叶片保护酶活性
由表 2可见,同一水肥条件,接种 AM真菌显著提高了叶片 POD、CAT和 SOD活性。
同一含水量,随施肥量增加,POD活性先降后升,接菌株在施肥量 L 时最高,不接菌株在施肥量 H 时最
高;CAT、SOD活性先降后升,施肥量为 M时最低,L时最大。
同一施肥量,随含水量降低,POD、CAT和 SOD活性依次增强。
多因素方差分析发现,接菌和水分组合仅对 POD和 SOD有显著交互作用;接菌和施肥组合、施肥和水分
组合对 POD、CAT和 SOD有显著交互作用;接菌、水分和施肥组合仅对 CAT和 SOD有显著交互作用。
表 2  不同水肥条件下 AM真菌对黄芩叶片保护酶活性的影响
Table 2  Effect of AM fungi on protective enzyme activities of S. baicalensis under different soil water and fertilizer conditions
水肥处理
Treatment
接菌
Inoculation POD / (U g
-1鲜重 min-1) CAT / (U g-1鲜重 min-1) SOD / (U g-1鲜重 h-1)
H20 CK 2660.370±53.198a 299.333±8.082a 255.317±4.822b
AM 2848.148±50.004∗B 330.005±7.211∗A 288.953±9.909∗B
H35 CK 2144.445±42.222d 226.667±5.131c 185.832±2.828d
AM 2249.630±72.914D 285.333±4.163∗B 194.366±1.336∗F
H50 CK 1612.593±93.412f 165.333±14.047e 163.027±4.031e
AM 1662.222±93.685F 206.667±4.163∗D 169.094±4.596G
M20 CK 2346.667±24.745c 224.010±5.291c 234.504±4.653c
AM 2761.482±36.806∗B 272.333±2.516∗C 263.117±4.614∗C
M35 CK 2042.963±51.511e 188.667±9.018d 169.317±1.195e
AM 2186.667±61.944∗D 217.023±7.211∗D 187.217±3.679∗F
M50 CK 1501.852±7.563g 138.005±2.005f 136.943±3.044f
AM 1649.630±44.946∗F 166.010±6.011∗E 160.771±3.032∗G
L20 CK 2513.333±26.666b 304.333±8.386a 282.493±7.248a
AM 2973.333±25.239∗A 320.667±2.309∗A 299.713±7.322∗A
L35 CK 2280.741±35.647c 282.012±16.370b 230.917±7.110c
AM 2527.778±26.550∗C 288.023±8.021B 253.193±3.183∗D
L50 CK 1580.002±31.348fg 195.667±7.571d 190.653±6.832d
AM 1804.444±59.670∗E 208.333±3.511D 214.867±6.094∗E
P(AM×WS) 0.000 0.654 0.013
P(AM×FT) 0.000 0.000 0.111
P(FT×WS) 0.000 0.000 0.000
P(AM×WS×FT) 0.263 0.005 0.003
2.3  黄芩叶片渗透调节物质和丙二醛含量
由表 3可见,同一水肥条件,接种 AM真菌显著提高了叶片可溶性蛋白和可溶性糖含量,显著降低了脯氨
酸和丙二醛含量。
1082  10期       贺超  等:不同水肥因子与 AM真菌对黄芩生长和营养成分的交互效应  
http: / / www.ecologica.cn
同一含水量,随施肥量增加,可溶性蛋白、可溶性糖、脯氨酸和丙二醛含量先降后升,施肥量 H 时含量最
高(50%含水量,叶片可溶性糖在施肥量 L时最高)。
同一施肥量,随含水量降低,可溶性蛋白、可溶性糖、脯氨酸和丙二醛含量逐渐增加。
表 3  不同水肥条件下 AM真菌对黄芩叶片渗透调节物质和丙二醛的影响
Table 3  Effect of AM fungi on osmotic adjustment substance and MDA of S. baicalensis under different soil water and fertilizer conditions
水肥处理
Treatment
接菌
Inoculation
可溶性蛋白
Soluble protein(mg / g)
可溶性糖
Soluble suger(mg / g)
脯氨酸
Proline(μg / g)
丙二醛
MDA(mmol / g鲜重)
H20 CK 14.082±0.137a 14.141±0.357a 48.499±0.151a 9.559±0.163a
AM 15.723±0.147∗A 16.223±0.155∗A 45.561±1.19∗A 7.374±0.068∗A
H35 CK 10.288±0.332c 10.998±0.318b 37.179±0.313d 8.316±0.281b
AM 12.011±0.688∗C 12.443±0.288∗C 34.551±0.479∗D 6.345±0.157∗BC
H50 CK 8.019±0.425e 9.531±0.431d 28.884±0.355g 5.529±0.233f
AM 8.747±0.476F 10.418±0.252∗E 25.554±0.159∗F 4.526±0.282∗E
M20 CK 10.686±0.128c 10.539±0.361bc 41.818±0.144c 7.233±0.199d
AM 12.302±0.175∗C 11.841±0.273∗D 37.361±0.467∗C 6.079±0.262∗C
M35 CK 8.317±0.215e 8.357±0.412e 30.073±0.164f 5.623±0.226f
AM 10.105±0.266∗E 9.730±0.219∗F 26.381±0.208∗F 4.107±0.108∗F
M50 CK 6.513±0.168g 5.359±0.155f 25.201±0.8790i 3.857±0.147h
AM 7.536±0.391∗G 7.601±0.189∗G 20.553±0.478∗H 3.095±0.068∗G
L20 CK 12.547±0.474b 13.657±0.119a 44.178±0.422b 7.978±0.211c
AM 14.226±0.707∗B 15.623±0.155∗B 40.827±0.356∗B 6.465±0.122∗B
L35 CK 9.601±0.319d 10.351±0.225c 35.547±0.194e 6.284±0.121e
AM 11.1963±0.329∗D 12.361±0.337∗C 32.301±0.398∗E 5.385±0.242∗D
L50 CK 7.334±0.341f 9.541±0.238d 26.702±0.142h 4.488±0.101g
AM 8.412±0.152∗F 10.739±0.107∗E 23.042±0.272∗G 3.853±0.125∗F
P(AM×WS) 0.006 0.204 0.092 0.000
P(AM×FT) 0.890 0.395 0.001 0.000
P(FT×WS) 0.000 0.000 0.000 0.000
P(AM×WS×FT) 0.937 0.000 0.919 0.008
多因素方差分析发现,接菌和水分组合仅对可溶性蛋白和丙二醛有显著交互效应;接菌和施肥组合仅对
脯氨酸和丙二醛有显著交互作用;施肥和水分组合对可溶性蛋白、可溶性糖、脯氨酸和丙二醛都有显著交互效
应;接菌、水分和施肥组合仅对可溶性糖和丙二醛有显著交互效应。
2.4  黄芩苷含量
由表 4可知,黄芩苷含量主要集中在根部,茎叶部含量较低。 同一水肥处理,接种 AM真菌提高了黄芩苷
含量。
同一含水量,随施肥量增加,接菌和不接菌株根部和茎叶部黄芩苷含量逐渐增加。
同一施肥量,随含水量降低:接菌和不接菌株根部和茎叶部黄芩苷含量逐渐减少。
多因素方差分析发现,接菌和水分组合、接菌和施肥组合分别对根部和茎叶部黄芩苷都有显著交互作用;
施肥和水分组合仅对根部黄芩苷有显著交互效应;接菌、水分和施肥组合对根部和茎叶部黄芩苷无明显交互
作用。
2.5  矿质元素含量
2.5.1  大量元素
由表 5可知,N、P、K、Ca和 Mg含量为茎叶>根,接种 AM真菌显著提高了黄芩根部和茎叶部 N、P、K、Ca、
Mg含量(除施肥量 L,20%和 35%含水组合)。
2082   生  态  学  报      36卷 
http: / / www.ecologica.cn
表 4  不同水肥条件下 AM真菌对黄芩苷含量的影响
  Table 4   Effect of AM fungi on baicalin of S. baicalensis under
different soil water and fertilizer conditions
水肥处理
Treatment
接菌
Inoculation
黄芩苷 Baicalin / (mg / g)
茎叶 Shoot 根 Root
H20 CK 3.182±0.048de 95.772±0.8448de
AM 4.939±0.165∗CD 141.409±1.407∗DE
H35 CK 3.627±0.098bc 102.672±0.513b
AM 5.948±0.131∗B 156.165±2.571∗B
H50 CK 4.072±0.222a 107.692±0.957a
AM 6.407±0.129∗A 166.402±2.528∗A
M20 CK 2.925±0.089e 92.812±0.886f
AM 4.695±0.522∗DE 137.104±3.462∗EF
M35 CK 3.342±0.131cd 98.450±1.841c
AM 5.756±0.275∗B 150.44±1.724∗C
M50 CK 3.659±0.094b 103.244±1.107b
AM 6.029±0.212∗AB 162.314±1.746∗A
L20 CK 2.265±1.080f 91.944±0.255f
AM 3.508±1.155∗F 125.704±1.057∗G
L35 CK 2.987±0.113e 95.063±0.724e
AM 4.483±1.151∗E 133.164±3.143∗F
L50 CK 3.463±0.374bcd 97.072±0.695cd
AM 5.174±0.152∗C 143.367±1.108∗D
P(AM×WS) 0.001 0.000
P(AM×FT) 0.000 0.000
P(FT×WS) 0.217 0.001
P(AM×WS×FT) 0.813 0.317
    同一含水量,随施肥量增加,植株 N、P 含量逐渐提
高,Mg、K和根部 Ca 含量先升后降(不接菌株茎叶部
Mg含量逐渐增加),含量规律为施肥量M>H>L,茎叶部
Ca含量依次增加。
同一施肥量,随含水量降低,植株 N、P 和 K含量逐
渐减少,Ca、Mg 含量依次增加(施肥量 M 时,接菌株茎
叶部 Mg 含量先降后升,不接菌株茎叶部 Mg 含量依次
降低)。
多因素方差分析发现,接菌和水分组合仅对植株
P、Ca和茎叶 K 有显著交互作用;接菌和施肥组合仅对
植株 P、Mg 和根部 N、茎叶部 K 有显著交互作用;施肥
和水分组合仅对植株 P、Mg、K、Ca 和根部 N 有显著交
互作用;接菌、水分和施肥组合仅对植株 P、Mg、K、根部
N和 Ca有显著交互作用。
2.5.2  微量元素
由表 6可知,Mn、Fe、Cu 和 Zn 含量为茎叶>根,接
种 AM真菌显著提高了植株 Fe、Zn含量,降低了 Mn、Cu
含量。
同一含水量,随施肥量增加,Mn 含量逐渐上升(不
接菌,含水量 20%时根部 Mn含量先升后降,施肥量 M>
H>L);Fe 、Cu和 Zn含量先升后降,施肥量 M>H>L。
同一施肥量,随含水量降低,Mn、Zn 含量逐渐升
高,Fe含量先升后降,含水量的影响依次为 35%>20%>
50%;Cu 含量先升后降,含水量的影响依次为 35% >
50%>20%。
多因素方差分析发现,接菌和水分组合仅对根部
Mn、Zn和茎叶部 Fe有显著交互作用;接菌和施肥组合仅对植株 Mn、Zn和茎叶部 Fe有显著交互作用;施肥和
水分组合仅对根部 Mn、Zn和茎叶部 Fe、Cu有显著交互作用;接菌、水分和施肥组合对植株 Mn、Fe 、Cu 和 Zn
均无显著交互作用。
3  讨论
AM真菌与宿主植物形成良好的共生关系,在土壤形成庞大菌丝网络,扩大根系吸收范围,提高植物对水
分和矿质营养吸收,促进植物生长[4]。 本试验结果表明,不同水肥条件下,土著 AM真菌对黄芩根系有不同程
度侵染,接种 AM真菌后显著提高了菌根侵染率和植株生长量。 氮肥利于黄芩对叶绿素合成和累积,能促进
对养分吸收和干物质积累,磷肥在光合产物生产转运过程中能够促进有机物积累,钾肥对黄芩生长量影响较
小,但三者对黄芩生长呈交互作用,随施肥量增加,黄芩生长迅速,但随后增幅变小,与肥料效应报酬递减律相
符。 配施氮磷钾肥可以促进黄芩生长———增加株高和干重,而施肥缺乏或水分胁迫会抑制植株生长,且两者
叠加会加重这种抑制效应,接种 AM菌能缓解胁迫,在低水低肥条件下较明显,高肥时靠根系直接吸收营养,
满足植株生长需要,此时菌根效应不明显。
植株遭受水分胁迫时,细胞内活性氧自由基产生和清除代谢平衡受到破坏,导致自由基含量累积引发细
胞膜脂过氧化,进而伤害植物。 此时,植株能够启动保护酶系统有效防御和清除自由基,保护细胞免受膜脂过
3082  10期       贺超  等:不同水肥因子与 AM真菌对黄芩生长和营养成分的交互效应  
http: / / www.ecologica.cn

5 























Ta
bl

5 
Ef
fe
ct
of


fu
ng
io


ac
ro
el
em
en
ts
of
S.
ba
ic
al
en
sis
un
de

di
ffe
re
nt
so
il

at
er
an

fe
rt
ili
ze

co
nd
iti
on





Tre
atm
en



Ino
cu
lat
ion
P/
(μ
g/
g)
N/
(μ
g/
g)
Mg
/(
μg
/g)
K/
(μ
g/
g)
Ca
/(
μg
/g)


Sh
oot

Ro
ot


Sh
oot

Ro
ot


Sh
oot

Ro
ot


Sh
oot

Ro
ot


Sh
oot

Ro
ot
H2

CK
25
87
.13
3±
91
.24
9d
23
15
.30
3±
51
.54
1d
25
85
6.3
83
±4
26
.46
7g
17
26
6.2
30
±3
46
.35
8e
13
2.2
05
±0
.39
7b
12
4.8
37
±0
.62
7b
94
3.4
71
±1
8.0
47
fg
82
3.8
85
±1
0.6
14

58
32
.15
1±
17
4.2
59

34
63
.22
9±
50
.20
3b
AM
30
22
.21
±9
0.5
04


29
09
.67
2±
48
.95
2∗

27
59
3.3
31
±5
57
.51
6∗

19
42
3.9
84
±6
12
.92
0∗

13
3.3
68
±0
.42
2B

12
5.8
37
±1
.31
0B
10
19
.80
9±
4.6
57
F∗
93
5.7
35
±1
2.0
09
E∗
68
36
.71
2±
15
0.7
26
A∗
54
81
.62
4±
12
7.6
07
B∗
H3

CK
32
71
.97
5±
63
.21
4b
28
69
.64
7±
40
.79
6b
34
41
6.3
98
±5
19
.85
1d
20
34
2.8
7±
56
9.1
16

12
1.3
56
±0
.60
1f
11
6.9
79
±0
.41
5e
11
00
.84
2±
33
.24
4d
10
11
.08
4±
29
.95
1c
52
70
.80
7±
36
.18
3c
28
09
.44
8±
11
3.0
81

AM
37
02
.31
3±
75
.43
4∗

35
14
.67
3±
25
.32
5∗

35
88
5.6
73
±7
67
.65
9∗

21
69
3.3
43
±5
47
.91
1∗

12
2.1
29
±0
.72
4E
11
8.9
17
±0
.36
7C

11
93
.17
7±
33
.24
4D

10
90
.69
6±
23
.28
8C

58
17
.59
5±
12
4.5
87
C∗
37
87
.36
6±
13
7.4
33
E∗
H5

CK
37
95
.62
7±
56
.04
8a
35
38
.33
1±
34
.64
6a
41
07
8.2
33
±7
47
.55
4a
25
87
8.3
67
±5
14
.95
7a
11
5.6
26
±0
.61
3g
10
9.7
87
±1
.34
5f
12
01
.89
9±
49
.87
3b
11
23
.81
7±
6.4
81

43
69
.25
4±
68
.80
2e
22
78
.40
7±
95
.55
2f
AM
44
06
.67
6±
16
.92
1∗

42
10
.02
4±
69
.90
7∗

41
80
4.6
33
±9
19
.69
3∗

27
77
3.5
71
±5
05
.13
1∗

11
8.7
72
±0
.96
5F

11
3.7
07
±0
.94
5D

13
01
.42
7±
9.0
96
B∗
11
98
.05
4±
16
.48
4B

47
45
.21
5±
11
5.1
73
G∗
30
45
.56
2±
79
.65
0G

M2

CK
1.9
80
±5
6.2
97

19
54
.03
2±
48
.86
7f
23
32
9.2
67
±4
86
.46
1h
14
89
4.3
62
±4
63
.65
3f
13
1.8
37
±1
.32
7a
13
1.8
37
±1
.32
7a
10
50
.37
6±
5.2
69

99
9.5
14
±1
2.8
23

54
62
.28
7±
35
.42
6b
42
36
.73
2±
85
.70
3a
AM
29
25
.32
1±
44
.30
6∗

24
92
.35
8±
36
.09
7∗

25
00
4.4
67
±3
25
.43


17
10
0.6
27
±3
21
.51
2∗

13
9.3
41
±0
.61
8A

13
9.3
41
±0
.61
8A

11
40
.59
1±
7.6
82
E∗
11
04
.22
9±
17
.57
7C

63
38
.32
3±
22
3.7
1B

60
84
.38
0±
84
.61
5A

M3

CK
24
12
.78
3±
10
0.5
33

22
98
.07
1±
61
.73
3d
32
27
9.2
67
±2
61
.65
3e
17
67
2.2
67
±1
06
.30
8e
12
2.1
23
±0
.78
8c
12
2.1
21
±0
.78
8c
11
46
.49
7±
1.9
61

10
99
.37
9±
21
.44
8b
48
22
.53
1±
59
.05
7d
33
96
.87
9±
60
.90
5b
AM
34
25
.20
1±
24
.55
6∗

33
08
.63
7±
48
9.9
32


33
05
7.3
30
±3
76
.54
2∗

19
58
0.3
51
±6
94
.32
8∗

12
6.4
07
±2
.29
2B

12
6.4
04
±1
.29
0B

12
67
.73
4±
12
.02
4C

12
18
.96
2±
48
.53
3B

52
23
.34
5±
20
7.2
77
F∗
42
99
.17
1±
98
.52
3D

M5

CK
28
00
.06
1±
34
.04
4c
26
75
.00
8±
38
.18
1c
39
17
0.3
31
±2
58
.38
8b
24
08
0.3
86
±6
04
.49
3b
12
6.1
03
±0
.41
0d
11
6.7
53
±1
.41
9e
13
29
.51
5±
5.9
22

12
68
.73
2±
6.6
94

38
65
.95
4±
36
.49
5g
26
48
.31
8±
98
.67
1e
AM
41
14
.02
±3
9.1
22


39
14
.08
2±
48
.87
7∗

40
06
6.4
50
±1
19
.51
6∗

26
91
4.4
53
±1
79
.67
3∗

13
0.7
37
±0
.45
3C

12
0.8
43
±0
.85
2C

14
93
.39
7±
15
.21
3A

13
05
.76
7±
8.0
66
A∗
41
52
.23
7±
13
2.8
84
G∗
34
81
.59
1±
15
1.5
86
F∗
L2

CK
12
18
.48
±2
7.8
39

11
42
.06
1±
29
.59
7h
20
87
7.3
45
±6
07
.43
5i
11
09
1.6
84
±2
76
.13
2g
11
8.8
27
±0
.42
5e
11
8.8
27
±0
.42
5d
90
9.2
43
±6
.40
9g

75
9.1
46
±3
3.1
01

49
57
.50
7±
69
.43
8d
31
64
.57
9±
51
.37
4c
AM
22
24
.63
7±
17
.09
5∗

20
97
.62
7±
92
.24
1∗

22
70
0.3
67
±4
61
.26
3∗

13
99
5.4
76
±3
91
.47
1∗

12
6.9
17
±0
.80
1D

12
6.9
17
±0
.80
1B

89
0.1
07
±6
.54
1H
80
7.1
31
±1
7.6
26

55
28
.06
3±
45
.73
4D

45
95
.19
3±
34
.88
2C

L3

CK
15
28
.33
3±
54
.26
2h
13
55
.47
9±
10
5.5
13

30
99
4.3
43
±1
20
0.4
20

14
23
1.4
33
±7
77
.13
7f
10
6.8
97
±0
.41
7h
10
6.8
97
±0
.41
7g
96
6.3
31
±2
0.6
13
f∗
82
0.8
75
±6
.59
4e
40
66
.52
9±
11
5.9
78

22
03
.77
1±
84
.86
7f
AM
30
56
.36
3±
56
.76
6∗

29
19
.48
2±
66
.97
1∗

32
44
7.3
20
±2
72
5.4
03


17
81
6.3
67
±3
32
.15
0∗

11
2.9
33
±0
.64
2G

11
2.9
33
±0
.64
2D

94
3.3
13
±3
0.0
17

87
4.4
65
±9
.48
6F

45
41
.57
4±
11
1.7
28
G∗
32
73
.88
9±
11
0.8
37
FG

L5

CK
21
84
.13
3±
49
.05
4f
21
24
.62
1±
10
.81
7e
35
89
8.4
32
±2
09
.98
1c
22
03
7.4
67
±6
01
.04
3c
10
2.3
63
±0
.81
3i
10
2.3
03
±0
.81
3h
10
19
.61
1±
33
.65
3e
96
8.2
66
±7
.72
7d
30
77
.08
8±
60
.99
1h
18
22
.25
1±
67
.22
4g
AM
35
88
.22
±6
5.9
39


33
85
.32
1±
62
.26
6∗

36
61
6.4
38
±1
59
.25
2∗

23
92
0.4
33
±3
87
.76
3∗

10
4.9
63
±1
.09
7H

10
4.9
63
±1
.09
7E

11
62
.77
3±
32
.94
5D
E∗
10
44
.21
8±
40
.17
8D

31
73
.43
7±
13
0.1
26

25
61
.22
1±
10
7.5
15
H∗
P(
AM
× W
S)
0.0
00
0.0
00
0.0
23
0.7
95
0.0
70
0.1
67
0.0
00
0.1
78
0.0
00
0.0
00
P(
AM
× F
T)
0.0
00
0.0
00
0.8
38
0.0
16
0.0
00
0.0
06
0.0
00
0.0
90
0.0
90
0.0
68
P(
FT
× W
S)
0.0
00
0.0
00
0.0
53
0.0
00
0.0
00
0.0
01
0.0
00
0.0
00
0.0
23
0.0
02
P(
AM
× W
S×
FT

0.0
00
0.0
00
0.8
62
0.0
18
0.0
00
0.0
29
0.0
01
0.0
27
0.3
07
0.0
04
4082   生  态  学  报      36卷 
http: / / www.ecologica.cn
氧化伤害[16⁃17]。 本试验中,接种 AM真菌显著提高了叶片 POD、CAT和 SOD活性,改善了植株酶促反应系统,
降低 MDA含量,减少了因水分胁迫引起的活性氧积累,从而减轻因水分胁迫造成的膜伤害,提高了黄芩抗旱
能力,与 Porcel等人[18⁃19]研究结果一致。 接菌株耐旱性增强是通过干旱避免机制,如 AM真菌菌丝加强对水
分摄取,菌根化根的形态及菌根化土壤结构利于植物水分吸收[20]。
表 6  不同水肥条件下 AM真菌对黄芩微量元素含量的影响
Table 6  Effect of AM fungi on trace elements of S. baicalensis under different soil water and fertilizer conditions
水肥处理
Treatment
接菌
Inoculation
Mn / (μg / g) Fe / (μg / g) Cu / (μg / g) Zn / (μg / g)
茎叶 Shoot 根 Root 茎叶 Shoot 根 Root 茎叶 Shoot 根 Root 茎叶 Shoot 根 Root
H20 CK 42.641±0.502a 12.509±1.031a 219.871±5.723e 183.169±4.959c 6.131±0.509f 4.955±0.636f 35.706±0.579c 32.938±0.409b
AM 35.767±0.945A∗ 8.941±1.172A∗ 237.692±4.339E∗ 207.477±6.486D∗ 4.657±0.626G∗ 3.943±0.162E 41.076±0.712B∗ 33.541±0.264C∗
H35 CK 34.697±0.165cd 8.960±0.801bc 248.926±2.349c 224.817±8.394b 11.668±0.565c 9.767±0.588c 31.528±0.331d 27.077±0.602d
AM 28.737±0.662C∗ 7.121±1.093BC 262.162±3.331D∗ 241.502±7.081B 9.916±0.557C∗ 7.605±0.242C∗ 36.914±0.794C∗ 29.697±0.549E∗
H50 CK 22.004±0.404f 8.192±0.513cd 187.187±4.649f 138.008±4.999e 8.661±0.573e 6.716±0.376e 26.779±0.544e 22.821±0.485f
AM 17.919±0.512E∗ 4.528±0.364D∗ 219.521±3.817F∗ 150.524±2.271F ∗ 6.729±0.521F∗ 5.288±0.591D∗ 32.765±0.76D∗ 25.878±0.526G∗
M20 CK 40.726±1.007b 12.793±.0854a 306.044±5.634b 217.097±5.112b 10.331±0.097d 7.959±0.677d 42.08±0.68a 37.062±0.409b
AM 34.794±1.142AB∗ 8.599±0.502A∗ 338.775±5.649B∗ 236.502±5.416B ∗ 8.989±0.527D∗ 6.754±0.129C∗ 45.112±1.104A∗ 39.794±0.555A∗
M35 CK 33.879±0.646d 8.561±0.511c 355.192±6.262a 255.364±7.960a 15.309±0.629a 13.173±0.381a 38.666±0.492b 33.809±0.751a
AM 28.572±0.992C∗ 6.996±0.452BC∗ 384.568±7.754A∗ 276.536±11.161A 13.229±0.296A∗ 11.281±0.582A∗ 40.918±0.673B∗ 37.198±0.261B∗
M50 CK 21.251±0.342f 5.827±0.487e 238.211±4.537d 162.456±6.497d 13.498±0.539b 10.87±0.456b 34.939±0.356c 29.774±0.995c
AM 16.281±0.627F∗ 3.835±0.714D∗ 272.732±4.761C∗ 177.416±5.571E ∗ 11.462±0.175B∗ 8.867±0.875B∗ 37.607±1.024C∗ 32.674±0.066D∗
L20 CK 35.595±1.061c 10.059±0.509b 189.92±1.726f 160.178±5.022d 5.908±0.290f 3.973±0.361g 31.721±0.450d 25.005±0.543e
AM 33.829±1.464B 7.294±0.617B∗ 220.762±7.405F∗ 182.217±5.265E ∗ 3.648±0.204H∗ 2.589±0.246F∗ 36.526±0.527C∗ 28.5676±0.216F∗
L35 CK 28.229±0.608e 7.109±0.691d 218.861±7.809e 191.117±6.448c 10.803±0.401d 8.977±0.364c 27.163±0.724e 21.651±0.589g
AM 26.536±0.594D∗ 5.911±0.201C∗ 241.469±2.742E∗ 219.247±9.311C ∗ 8.165±0.602E∗ 6.962±0.883C∗ 32.037±0.615D∗ 25.243±0.457G∗
L50 CK 17.192±0.521g 4.039±0.799f 158.683±2.058g 109.581±9.154f 8.069±0.582e 6.213±0.077e 24.692±0.591f 19.495±0.292h
AM 13.936±0.676G∗ 2.601±0.564E 189.913±3.764G∗ 131.498±2.729G ∗ 5.99±0.339F∗ 4.711±0.291DE∗ 27.942±0.546E∗ 21.593±0.461H∗
P(AM×WS) 0.341 0.001 0.009 0.374 0.336 0.058 0.626 0.040
P(AM×FT) 0.000 0.042 0.008 0.325 0.137 0.879 0.000 0.010
P(FT×WS) 0.596 0.042 0.000 0.342 0.026 0.227 0.101 0.000
P(AM×WS×FT) 0.025 0.323 0.335 0.753 0.773 0.807 0.185 0.001
本试验中,接种 AM真菌降低了脯氨酸含量,且施肥量过高较施肥量略低时脯氨酸含量高,可能是土壤肥
量高,土壤渗透压增大,一定程度上限制了植物对土壤水分的吸收。 水分缺乏时,可溶性糖和可溶性蛋白累积
以降低植株渗透势,进而从土壤吸收水分。 Kubikova等人研究罗勒和台湾青枣后发现,接种 AM 真菌植株能
够体现出更大程度的渗透调节作用,提高植株耐旱能力[21⁃22]。
研究表明,AM真菌能够影响植物次生代谢,通过改进植物重要活性成分生产和积累,从而优化药用植物
不同活性成分的组合物,提高药材质量[23]。 本试验中,适宜水肥条件下,接种株黄芩苷含量显著高于对照株,
可能是由于 AM真菌作为一种生物诱导子通过提高糖中间代谢产物来提高黄芩苷含量。 张榕等人[24]研究表
明,水分胁迫下,黄芩可溶性糖含量增加与其黄酮类成分含量降低呈正相关,与本试验结果两者含量变化相
同。 土壤肥力较低时,黄芩苷随施肥量增加而上升,超过一定浓度后黄芩苷含量变化不大,这与曹鲜艳[25]对
氮、磷和钾肥对黄芩苷含量累积效应的试验结果一致。
研究表明,丛枝菌根能够通过提高亲和力、降低吸收临界浓度、产生菌丝分泌物、增加吸收面积、缩短扩散
面积和降低离子扩散系数等机制来促进植株矿质元素吸收[26]。 氮磷钾增加会逐步提高矿质元素含量,除 N、
P 元素,其它矿质元素含量在高施肥量时增幅略有下降,可能与植株对不同矿质元素累积量的作用有关。 不
同矿质元素在黄芩各器官分布具有差异性,茎叶>根,这可能与植株在生长期间有机物累积有着密切关系。
5082  10期       贺超  等:不同水肥因子与 AM真菌对黄芩生长和营养成分的交互效应  
http: / / www.ecologica.cn
AM真菌对黄芩茎叶和根元素吸收的不同效应,可能是由于菌根改善矿质元素吸收和促进植物细胞物质循环
的结果[27]。
综上结果表明,AM真菌与黄芩根系能形成良好共生关系,AM真菌、水分、肥料梯度组合对黄芩生长和品
质总体上表现出显著交互作用。 水分胁迫、低肥或高肥都会影响黄芩植株正常生长,接种 AM 真菌能有效提
高植株矿质元素和水分的吸收和运输,促进植株生长发育,改善黄芩品质,并有明显的节水节肥作用,其中
50%相对含水量,施肥量 N 0.383 g、P 0.564 g、K 0.251 g 时,接种 AM真菌的促进效应最佳。
参考文献(References):
[ 1 ]  中国植物志编委会. 中国植物志. 北京: 科学出版社, 1977.
[ 2 ]   国家药典委员会. 中华人民共和国药典. 北京: 科学出版社, 2005.
[ 3 ]   Lee E H, Eo J K, Ka K H, Eom A H. Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology, 2013, 41(3):
121⁃125.
[ 4 ]   Smith S E, Read D J. Mycorrhizal Symbiosis. 3rd ed. London: Academic Press, 2008.
[ 5 ]   Zeng Y, Guo L P, Chen B D, Hao Z P, Wang J Y, Huang L Q, Yang G, Cui X M, Yang L, Wu Z X, Chen M L, Zhang Y. Arbuscular
mycorrhizal symbiosis and active ingredients of medicinal plants: Current research status and prospectives. Mycorrhiza, 2013, 23(4): 253⁃265.
[ 6 ]   贺学礼, 马丽, 孟静静, 王平. 不同水肥条件下 AM真菌对丹参幼苗生长和营养成分的影响. 生态学报, 2012, 32(18): 5721⁃5728.
[ 7 ]   赵金莉, 贺学礼. AM真菌对白芷抗旱性和药用成分含量的影响. 西北农业学报, 2011, 20(3): 184⁃189.
[ 8 ]   刘盛林, 贺学礼. 水分胁迫下 AM 真菌对甘草生长的影响. 核农学报, 2009, 23(4): 692⁃696.
[ 9 ]   贺学礼, 马丽, 王平, 赵丽莉. AM真菌和施 P 量对黄芩生长、养分吸收和微量元素的影响. 中国中药杂志, 2011, 36(16): 2170⁃2175.
[10]   王平, 贺学礼, 赵丽莉, 马丽, 郭辉娟. AM真菌和施氮量对黄芩幼苗生长和微量元素的影响. 华北农学报, 2012, 27(增刊): 259⁃263.
[11]   陈伟燕, 贺学礼, 程春泉, 姜桥. 不同水分和双网无梗囊霉对黄芩生长和养分含量的影响. 西北农业学报, 2014, 23(4): 173⁃177.
[12]   鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
[13]   王学奎. 植物生理生化实验原理和技术 (第二版) . 北京: 高等教育出版社, 2006.
[14]   陈宇鸿, 沈仁富, 陈海红. 黄芩中微量元素的测定与分析. 中国卫生检验杂志, 2009, 19(12): 3008⁃3009.
[15]   Biermann B, Linderman R G. Quantifying vesicular⁃arbuscular mycorrhizae: a proposed method towards standarization. New Phytologist, 1981, 87
(1): 63⁃67.
[16]   张中峰, 张金池, 黄玉清, 杨慧, 罗亚进, 罗艾滢. 丛枝菌根真菌对植物耐旱性的影响研究进展. 生态学杂志, 2013, 32(6): 1607⁃1612.
[17]   DaCosta M, Huang B R. Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in response to drought stress. Journal
of the American Society for Horticultural Science, 2007, 132(3): 319⁃326.
[18]   Porcel R, Barea J M, Ruiz⁃Lozano J M. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to
the process of nodule senescence. New Phytologist, 2003, 157(1): 135⁃143.
[19]   李州, 彭燕, 苏星源. 不同叶型白三叶抗氧化保护及渗透调节生理对干旱胁迫的响应. 草业学报, 2013, 22(2): 257⁃263.
[20]   Marulanda A, Azcon R, Ruiz⁃Lozano J M. Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under
drought stress. Physiologia Plantarum, 2003, 119(4): 526⁃533.
[21]   Kubikova E, Jennifer L M, Bonnie H O. Mycorrhizal impact on osmotic adjustment in Ocimum basilicum during a lethal drying episode. Journal of
Plant Physiology, 2001, 158(9): 1227⁃1230.
[22]   Mathur N, Vyas A. Influence of arbuscular mycorrhizae on biomass production, nutrient uptake and physiological changes in Ziziphus mauritiana
Lam. under water stress. Journal of Arid Environments, 2000, 45(3): 191⁃195.
[23]   Zubek S, Błaszkowski J. Medicinal plants as hosts of arbuscular mycorrhizal fungi and dark septate endophytes. Phytochemistry Reviews, 2009, 8
(3): 571⁃580.
[24]   张榕, 李焱, 周铜水. 晒干过程中黄芩药材黄酮类成分的动态变化. 复旦学报: 自然科学版, 2010, 49(5): 575⁃581.
[25]   曹鲜艳, 徐福利, 王渭玲, 王静, 黄淑华, 张晓虎. 黄芩产量和黄芩苷含量对氮磷钾肥料的响应. 应用生态学报, 2012, 23( 8):
2171⁃2177.
[26]   Strack D, Fester T, Hause B. Arbuscular mycorrhiza: biological, chemical, and molecular aspects. Journal of Chemical Ecology, 2003, 29(9):
1955⁃1979.
[27]   Atkinson D, Black K E, Forbes P J, Hooker J E, Baddeley J A, Watson C A. The influence of arbuscular mycorrhizal colonization and environment
on root development in soil. European Journal of Soil Science, 2003, 54(4): 751⁃757.
6082   生  态  学  报      36卷