全 文 :第 34 卷第 15 期
2014年 8月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol.34,No.15
Aug.,2014
http: / / www.ecologica.cn
基金项目:国家自然科学基金(41230750,31272488); 中国科学院青藏专项 B(XDB03030403)
收稿日期:2012鄄12鄄17; 摇 摇 网络出版日期:2014鄄03鄄03
*通讯作者 Corresponding author.E鄄mail: wangsp@ itpcas.ac.cn
DOI: 10.5846 / stxb201212171811
王常顺,孟凡栋,李新娥,姜丽丽,汪诗平.草地植物生产力主要影响因素研究综述.生态学报,2014,34(15):4125鄄4132.
Wang C S,Meng F D,Li X E,Jiang L L,Wang S P.Factors affecting plant primary productivity of grasslands: a review.Acta Ecologica Sinica,2014,34
(15):4125鄄4132.
草地植物生产力主要影响因素研究综述
王常顺1,2,孟凡栋1,2,李新娥1,姜丽丽1,汪诗平1,*
(1. 中国科学院青藏高原研究所,北京摇 100101; 2. 中国科学院大学,北京摇 100094)
摘要:草地是全球分布面积最大的陆地生态系统,植物初级生产力是反映草地功能的重要指标。 从植物种多样性、资源有效性、
放牧、退化草地恢复和气候变化等方面较系统综述了影响草地植物生产力的关键要素和驱动力。 大量研究表明,植物多样性与
生产力的关系尚未有一致的结论,依据试验地点、起始状态甚至度量指标不同而不同;特别是资源有效性调节着生产力水平并
对植物多样性和生产力关系产生显著影响;放牧改变了植物群落特征和养分有效性进而影响生产力的形成过程,也改变了资源
有效性鄄植物多样性鄄生产力之间的关系;对于退化生态系统,在退化草地恢复过程中植物与土壤资源有效性的互作效应对植物
生产力的变化起着关键作用;而在未来气候变化特别是增温对植物生产力的影响因地点和生态系统的不同而异,但多数研究结
果显示增温提高了草地植物生产力。 与国外其它草地分布区相比,国内的相关研究不仅在数量上明显不足,更重要是欠缺机理
上的深入研究。 在放牧和未来气候变化背景下如何维持和提高草地生产力,如何加速退化草地生态系统的恢复,进而实现生态
安全建设和经济社会协调发展,是我国当前急需解决的理论和实践问题。
关键词:物种多样性;资源有效性;放牧;退化草地恢复;气候变化;草地生产力
Factors affecting plant primary productivity of grasslands: a review
WANG Changshun1,2,MENG Fandong1,2,LI Xin忆e1,JIANG Lili1,WANG Shiping1,*
1 Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences,Beijing 100101,China
2 University of Chinese Academy of Sciences,Beijing 100094,China
Abstract: Grassland is the largest distribution area of terrestrial ecosystems on the earth. The plant net primary production
(NPP) is an important indicator to reflect the function of the grassland ecosystems. Some research results are reviewed
about the effects of plant species diversity, resource availability, grazing, restoration of degraded grassland and climate
change on NPP of grassland ecosystems in the paper. These researches show that (1) there are inconsistent conclusions
about the relationship between plant diversity and NPP which depends on experimental site, starting status and indicators
measured; most of the studies find their “ single peak冶 relationship due to compensation effect of different plant resource
utilization niche. However, some studies report that they arepositive and negative relationships when NPP is relatively low
and high, respectively. there are many mechanisms to explain their negative correlations including the hypotheses of
disturbance, competition and resources availability. (2) Resource availability determines NPP and modifies the relationship
between it and plant diversity. Some researches show that there is an interactive effect on NPP between different resources.
Improving the level of a limiting resource may reduce its use efficiency, but it may improve the use efficiency of other
resources.Nutrient additions improve the productivity of the grassland, while it reduces plant diversity. (3) Grazing affects
NPP through changing plant composition and resource availability. Heavy grazing reduces soil nitrogen (N) mineralization
rate and NPP, while moderate grazing increases them. In particular, moderate grazing enhances plant diversity due to
http: / / www.ecologica.cn
increase of grassland heterogeneity. (4) Availability of nutrient resources and feedback of plants to it play key roles on NPP
in the restoration of degraded grasslands. With the increasing of root biomass, root C / N ratio and the amount of microbial
C and soil carbon pool, the net N mineralization rates and N bioavailability rapidly decline during the processes of the
restoration. Plant鄄soil interaction manifestes as negative feedback, which in turn limites the further improvement of plant
productivity. NPP may increase with restoration of the degraded grasslands,, whereas maximum NPP occurs in the middle
or late stages of the restoration. NPP will decline at the late stage of the restoration if there is no disturbance or grazing.(5)
Most of experimental warming studies show that there are inconsistent effects of warming on NPP and plant diversity which
varies with the different locations and grassland ecosystems due to differences of resource availability and grazing / clipping.
In general, the impacts of warming on underground NPP is larger than on aboveground NPP. These results above suggest
that they may be easy for the maintenance of the low NPP level through plant diversity conservation and for improving NPP
through increasing the availability of nutrient resources, However, how to maintain a high NPP level for long鄄term without
compromising other ecological functions, such as plant diversity loss, is more challenges for us. Compared to international
researches in the field, limited data can be available in China now. In particular, there are lacks in the processes and
mechanisms of affecting plant primary productivity for grassland ecosystems in China. Therefore, understanding how grazing
with future climate change affects plant primary productivity and recovery of degraded grassland ecosystems is a key
knowledge to realize the ecological security and sustainable development of economy and society.
Key Words: species diversity; resource availability; grazing; degraded grassland restoration; climate change; plant
primary productivity
摇 摇 草地是全球分布面积最大的陆地生态系统,约
占陆地面积的三分之一[1]。 草地具有重要的生态和
社会功能[2],为人类提供了许多产品[3]和生态服
务[4],其中,植物初级生产力是反映草地功能的重要
指标[5鄄6]。 许多研究表明,影响植物生产力的因素很
多,在较大的地理尺度上气候等环境因子(如气温、
降水和土壤类型等)是决定植物生产力的关键因
子[7鄄11],而在较小的地理单元上,生物和资源有效性
等可能是植物生产力大小的主导因子[12]。 随着环
境条件的改善,生产力逐渐增加[8]。 但是不同的生
态系统在不同的时期,其生产力对于环境变化的响
应程度有很大的差异[9]。 这些可以归结于生物与环
境相互作用模式的差异[10]。 这可能是目前众多研
究结论不一致甚至相左的原因[11]。 特别是影响草
地植物生产力的众多因素相互交织在一起,共同影
响着生产力水平,而目前的大多数研究主要集中在
某一个单一的因子上,因此对于这些众多因子是否
存在互作效应或者是否存在可加性缺乏深入的研
究。 本文通过对影响草地植物生产力的主要因素或
过程的有关研究进展进行扼要综述,在此基础上提
出存在的可能问题和建议,希望对我国相关研究提
供一些有益的借鉴和参考。
1摇 植物多样性对生产力的影响
自 20 世纪 70 年代以来,国内外已经开展了大
量有关植物多样性与植物生产力之间关系的研究,
到目前为止仍然没有得出一致性的结论[13鄄14]。 尽管
一些研究支持了高植物多样性导致了高生产力的假
设[6,14鄄19],但更多研究似乎发现两者呈“单峰型冶关
系[20],也有研究认为没有显著关系[20鄄22]或者认为
“单峰型冶不是主要关系[13]。 许多研究认为多样性
提高生产力的基本假设是因为不同植物对资源利用
的生态位补偿效应引起的,特别认为植物根系深度
多样性对生产力的影响更大[18]。 这些综述性文章
对产生这些不同结果的原因进行了分析,主要包括:
(1)用于研究草地植物多样性鄄生产力关系的许多试
验都是破坏性的(如起始状态为人为翻耕后的裸地)
或人为地控制试验(如人种播种控制物种数或均匀
度等),而不是在自然状态下进行的。 事实上,这些
实验所用物种数有限、且隐含了一种演替过程,由此
得出的植物多样性鄄生产力间的关系会随时间而变
化[23];(2)研究的空间尺度不同造成的[24鄄25],在小尺
度上(如某一个地点或单个试验)的结果往往与大尺
度的结果不尽相同,这也是许多发现两者间有正相
6214 摇 生摇 态摇 学摇 报摇 摇 摇 34卷摇
http: / / www.ecologica.cn
关、负相关或没有关系的原因,其实决定生产力的因
素很多,不完是多样性决定的[22,26];(3)在过去的许
多综述性文章中,忽略了一些具体的观测方法或指
标(如用盖度、NDVI 等生产力的代用指标),包含了
一些无效的数据,所以得出来的结果有很大偏
差[27]。 普遍认为在生产力相对较低时,多样性与生
产力正相关;而在生产力相对较高时,多样性与生产
力负相关[13]。 对于负相关阶段的机理目前还没有
明确的定论,引起的争议较多,包括干扰、竞争和资
源等假说[13]。 因此,目前有关对植物多样性鄄生产力
关系的机理更多地停留在一些假设上(如资源比率
变化以及生态位补偿假设等),而缺乏一些直接的试
验证据;特别是缺乏在自然状态下对不同草地生态
系统和演替阶段过程中两者关系变化的机理研究,
如根系的空间分布及其多样性如何影响生产力水平
还知之甚少,严重制约了人们对通过植物多样性保
护进而维持和提高植物生产力水平的理解和应用。
2摇 资源有效性对植物生产力的影响
一些经验证据表明,资源有效性控制着植物多
样性和生产力水平[22],因此,可以通过调控资源有
效性达到提高多样性与生产力的目的[10,28鄄31]。 由于
植物在不同资源的利用能力方面存在“折衷冶,因此
提高一种限制性资源的供应水平可能会降低植物对
该资源的利用效率,但会改善植物对另一资源的利
用效率及植物生产力[32]。 在干旱半干旱草地,水分
是植物生长的主要限制因子,只有在湿润年份施肥
(N)才能有效提高植物生产力[10,33鄄34],而且 N 的利
用效率随着灌溉增加而增加、但随着 N 施肥量增加
而降低[34]。 水分利用效率与初级生产力和生物量
分配紧密相关[35]。 研究表明,水分利用效率随降雨
量增加而降低,但随土壤 N 有效性增加而增
加[10,34,36],在养分等胁迫消除以后植物水分利用效
率将达到最大值[35]。 因此,对于干旱半干旱草地而
言,水分和土壤 N 的有效性对初级生产力形成存在
交互作用[34,36鄄37]。 资源供应状况改变对生产力和多
样性的影响不同,养分添加提高了草地的生产力,但
降低了植物多样性[10,31,34]。 与添加某一种限制性的
资源相比(如 N) [10],添加多种限制性资源(如 N 和
P)使得植物多样性的丧失更多[31,38],有人认为 N 的
作用通常比 P 的作用更大[31,39]或一样大[40]。 总之,
最大限制性资源水平的提高会促进生产上力的发
展,其它限制性资源水平的提高是否对生产力有促
进作用取决于与最大限制性资源的交互作用。 因
此,对于天然草地而言,能否通过限制性资源的添加
特别是平衡施肥达到同时维持较高的植物多样性和
生产力水平,亟待深入研究。
3摇 放牧对生产力的影响
放牧通过选择性的采食、践踏和粪尿归还等过
程而对草地产生了综合性的影响,包括改变了植物
生产力及影响生产力形成过程中的诸多因子,如植
物种类组成与多样性、土壤 C / N 库大小及土壤养分
(如 N)的有效性等,特别是过度放牧对上述各个方
面几乎都产生了显著的负面效应[33,41鄄45]。 不同放牧
强度对土壤 N有效性的影响随生长季节而变化。 总
体上,在生长早期中度以上的放牧提高了土壤 N 的
矿化速率,但生长盛期和非生长季都降低了土壤 N
的矿化速率,因此不利于植物生产[46]。 然而,适度
放牧提高了土壤 N可利用性[47],则有利于维持草地
植物多样性和生产力水平[41鄄42,48鄄51],甚至产生补偿
性生产[42,45]。 有研究表明放牧提高了草地的异质
性,从而增加植物多样性[52鄄53],特别是不同放牧家畜
的混牧有利于草地植物多样性的维持[49,54]。 最近的
许多研究表明,就生产力、牧草品质、凋落物量、抗旱
性以及可恢复性等方面而言,当放牧强度超过中度
以上都会造成内蒙古典型草原这些生产鄄生态指标
的下降[45,55鄄58]。 因此,与禁牧相比,适度放牧既可以
获得畜产品生产,又可以维持甚至提高草地的生态
功能,包括提高生产力。 因此,如何确定不同草地生
态系统适宜的放牧率水平仍将是放牧生态学的关键
科学问题,这里,生产力应该是主要指标但不应该是
唯一指标,必须考虑生态系统的其他功能,特别是生
物多样性的维持和土壤质量的提高等方面。
4摇 退化草地恢复对植物生产力的影响
在生态系统恢复过程中,自然状态下净初级生
产是提高土壤有机质累积的主要来源[59鄄60],而土壤
有机质增加又会改变其植物生产性能,即植物生产鄄
土壤性质之间存在反馈作用[61鄄62],在退化草地恢复
过程中这种植物与土壤资源有效性的互作效应对植
物生产力的变化起着关键作用[59,62鄄63]。 一旦从退化
7214摇 15期 摇 摇 摇 王常顺摇 等:草地植物生产力主要影响因素研究综述 摇
http: / / www.ecologica.cn
状态开始恢复,土壤的 C、N 储量便从低水平的状态
向高水平的状态演替并最终达到当地生态系统顶级
状态的稳定水平[59,64鄄65]。 在此过程中,随着根系生
物量、根系中的 C / N 比、微生物 C 量以及土壤碳库
的增加,土壤净 N矿化速率和 N 的生物有效性快速
下降[66],植物鄄土壤的互作表现为负反馈,从而反过
来限制了植物生产力的进一步提高[59]。 Baer 等[63]
的研究证实,在退化草地的 8a 恢复过程中,施 N 肥
显著提高了生产力,同时该研究也看到生态系统的
其它功能都没有受到施 N肥的影响。 在内蒙古退化
草场恢复过程中,由于物种组成的变化,施 N肥仅在
湿润年份提高了地上初级生产力,但对地下生产力
没有显著影响,因而即使施用 N 肥,土壤 C、N 库也
没有能够快速恢复到先前的水平[33]。 草地在恢复
初期生产力逐渐提高,在恢复的中后期达到最大。
如果没有干扰和放牧,恢复后期生产力会下降。 因
此,如何利用恢复过程中植物鄄土壤的反馈关系,通
过针对性的干扰措施来设计和加速恢复进程,是未
来恢复生态学的重点研究内容之一。
5摇 气候变化对植物生产力的影响
尽管许多研究表明,增温直接促进了冻原植物
生长和物种组成的变化、延长了植物生长季[58,67鄄69]、
以及间接增加了土壤 N 有效性[29,70],但到目前为
止,增温对土壤 N 的有效性和植物生产力的影响仍
然没有一致的结论,因地点和生态系统的不同而
异[67鄄68,71鄄75]。 总体而言,增温对地下生产力的影响
大于对地上生产力的影响,显著提高了地上和地下
总生产力[75]。 有研究表明,只有在土壤 N 有效性和
水分不是制约因子时,增温才提高了植物生产
力[74鄄75]。 放牧作为天然草地的主要利用方式之一,
在放牧条件下,放牧与增温的互作效应对草地植物
生产力、物种组成和土壤养分有效性产生了显著影
响,放牧甚至改变了群落组成对增温的反应模
式[76鄄78]。 由于土壤 N 的有效性对生产力的影响随
物种组成变化而不同[31,33,63],因此,在放牧条件下,
未来增温对不同草地植物多样性和生产力等生态过
程的影响仍然存在很大的不确定性,目前这方面的
研究很少。 Klein 等[76,79]利用 OTC 试验研究表明,
增温而不是刈割降低了植物多样性和生产力,特别
是降低了禾草的比例、增加了阔叶草的比例,因此,
刈割可以缓解增温对高寒草甸的负面影响。 然而,
通过 6a红外增温和放牧试验研究表明,增温和放牧
都提高了凋落物和粪便的分解速率[47,66],增加了土
壤水溶液中 DOC的含量[66]。 与 Klein[76,79]等的研究
结果不同,发现增温对植物多样性影响不大,但提高
了高寒草甸植物地上生产力达 40%左右,但放牧降
低了地上生产力对增温的反应程度[78]。 特别是发
现了是过度放牧而不是增温导致了高寒草甸的退
化,因为增温提高了禾草和豆科牧草的比例[78]。 因
此,放牧与增温对不同草地生态系统的各自影响及
其可能的互作效应的程度及其过程,将是未来气候
变化生态学的关键研究内容之一,也是认识气候变
化对草地生态系统的影响、发展适应性的管理措施
的核心内容之一。
6摇 存在的科学和实践问题
综上所述,尽管国内外对影响草地植物生产力
的主要影响因素进行了深入研究,但与国外其它草
地分布区相比,国内这方面的研究不仅在研究数量
上明显不足,更重要是欠缺机理上的深入研究。 因
此,在放牧和未来气候变化背景下如何维持和提高
草地生产力,如何加速退化草地生态系统的恢复,进
而实现生态安全建设和经济社会协调发展,是当前
急需解决的理论和实践问题。 为此,提出草地植物
生产力研究存在以下一些科学问题及其基本假设
(图 1)。
1)资源有效性鄄植物多样性鄄生产力三者间的
关系
假设在低资源有效性下植物多样性对生产力的
维持有正效应;然而,由于不同植物对资源有效性改
变的反应不同,根据现有多数研究发现,自然状态下
(不放牧)资源有效性的提高将降低植物多样性,但
提高了生产力,由此可推论在资源有效性高的状况
下,植物多样性与生产力呈负相关;由于植物多样性
降低,高资源有效性不能长期维持高生产力,从而对
其它生态功能产生负面影响。
2)适度放牧鄄植物多样性鄄生产力三者间的关系
根据已有多数研究发现,在自然状态下(即资源
有效性低的情况下),适度放牧提高了植物多样性和
生产力;然而,当资源有效性提高时,由于适度放牧
部分抑制了对资源获取能力强的植物生长(容易被
8214 摇 生摇 态摇 学摇 报摇 摇 摇 34卷摇
http: / / www.ecologica.cn
图 1摇 草地生态系统植物多样性与生产力之间的关系对适度放
牧和资源有效性变化的响应示意图
Fig. 1 摇 The relationship between plant diversity and
productivity response to changes in moderate grazing and
resources availability in grassland ecosystem
黑颜色箭头表示适度放牧效应;灰颜色箭头表示资源有效性
效应
采食),从而能继续维持或提高植物多样性和生产
力。 因此,在提高资源有效性的同时进行适度放牧,
仍然可以同时维持较高的植物多样性和生产力
水平。
因此,低水平生产力的维持(如靠现有的植物多
样性水平就可以维持)和提高(如提高资源有效性
等)可能相对比较容易,而怎样长期维持高水平的生
产力、同时又不损害其它生态功能,则比较困难。
References:
[ 1 ]摇 White R P, Murray S, Rohweder M, Prince S D. Pilot Analysis of
Global Ecosystems ( PAGE): Grassland Ecosystems. Washington
DC: World Resources Institute, 2000: 1鄄12.
[ 2 ] 摇 Wrage N, Strodthoff J, Cuchillo H M, Isselstein J, Kayser M.
Phytodiversity of temperate permanent grasslands: ecosystem
services for agriculture and livestock management for diversity
conservation. Biodiversity and Conservation, 2011, 20 ( 14 ):
3317鄄3339.
[ 3 ] 摇 O忆Mara F P. The role of grasslands in food security and climate
change. Annals of Botany, 2012, 110(6): 1263鄄1270.
[ 4 ] 摇 Huyghe C. Multi鄄function grasslands in France: I. Production
functions. Cahiers Agricultures, 2008, 17(5): 427鄄435.
[ 5 ] 摇 Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime J P,
Hector A, Hooper D U, Huston M A, Raffaelli D, Schmid B,
Tilman D, Wardle D A. Biodiversity and ecosystem functioning:
Current knowledge and future challenges. Science, 2001, 294
(5543): 804鄄808.
[ 6 ] 摇 Hooper D U, Chapin F S III, Ewel J J, Hector A, Inchausti P,
Lavorel S, Lawton J H, Lodge D M, Loreau M, Naeem S,
Schmid B, Set覿l覿 H, Symstad A J, Vandermeer J, Wardle D A.
Effects of biodiversity on ecosystem functioning: A consensus of
current knowledge. Ecological Monographs, 2005, 75(1): 3鄄35.
[ 7 ] 摇 Knapp A K, Smith M D. Variation among biomes in temporal
dynamics of aboveground primary production. Science, 2001, 291
(5503): 481鄄484.
[ 8 ] 摇 Fang J Y, Yu S Y, Wu P C, Huang Y B, Tsai Y H. In vitro skin
permeation of estradiol from various proniosome formulations.
International Journal of Pharmaceutics, 2001, 215(1 / 2): 91鄄99.
[ 9 ] 摇 Swemmer A M, Knapp A K. Defoliation synchronizes aboveground
growth of co鄄occurring C4 grass species. Ecology, 2008, 89(10):
2860鄄2867.
[10] 摇 Bai Y F, Wu J G, Qi X, Pan Q M, Huang J H, Yang D L, Han
X G. Primary production and rain use efficiency across a
precipitation gradient on the Mongolia plateau. Ecology, 2008, 89
(8): 2140鄄2153.
[11] 摇 Yang Y H, Fang J Y, Ma W H, Wang W. Relationship between
variability in aboveground net primary production and precipitation
in global grasslands. Geophysical Research Letters, 2008, 35
(23): 23710鄄23720.
[12] 摇 Yahdjian L, Sala O E. Vegetation structure constrains primary
production response to water availability in the Patagonian steppe.
Ecology, 2006, 87(4): 952鄄962.
[13] 摇 Adler P B, Seabloom E W, Borer E T, Hillebrand H, Hautier Y,
Hector A, Harpole W S, O忆Halloran L R, Grace J B, Anderson T
M, Bakker J D, Biederman L A, Brown C S, Buckley Y M,
Calabrese L B, Chu C J, Cleland E E, Collins S L, Cottingham K
L, Crawley M J, Damschen E I, Davies K F, DeCrappeo N M,
Fay P A, Firn J, Frater P, Gasarch E I, Gruner D S, Hagenah
N, Hille Ris Lambers J, Humphries H, Jin V L, Kay A D,
Kirkman K P, Klein J A, Knops J M H, La Pierre K J,
Lambrinos J G, Li W, MacDougall A S, McCulley R L,
Melbourne B A, Mitchell C E, Moore J L, Morgan J W,
Mortensen B, Orrock J L, Prober S M, Pyke D A, Risch A C,
Schuetz M, Smith M D, Stevens C J, Sullivan L L, Wang G,
Wragg P D, Wright J P, Yang L H. Productivity is a poor
predictor of plant species richness. Science, 2011, 333(6050):
1750鄄1753.
[14] 摇 Maestre F T, Quero J L, Gotelli N J, Escudero A, Ochoa V,
Delgado鄄Baquerizo M, Garcia鄄Gomez M, Bowker M A, Soliveres
S, Escolar C, Garcia鄄Palacios P, Berdugo M, Valencia E,
Gozalo B, Gallardo A, Aguilera L, Arredondo T, Blones J,
Boeken B, Bran D, Conceicao A A, Cabrera O, Chaieb M,
Derak M, Eldridge D J, Espinosa C I, Florentino A, Gaitan J,
Gatica M G, Ghiloufi W, Gomez鄄Gonzalez S, Gutierrez J R,
9214摇 15期 摇 摇 摇 王常顺摇 等:草地植物生产力主要影响因素研究综述 摇
http: / / www.ecologica.cn
Hernandez R M, Huang X, Huber鄄Sannwald E, Jankju M, Miriti
M, Monerris J, Mau R L, Morici E, Naseri K, Ospina A, Polo
V, Prina A, Pucheta E, Ramirez鄄Collantes D A, Romao R,
Tighe M, Torres鄄Diaz C, Val J, Veiga J P, Wang D, Zaady E.
Plant species richness and ecosystem multifunctionality in global
drylands. Science, 2012, 335(6065): 214鄄218.
[15] 摇 Foster B L, Dickson T L. Grassland diversity and productivity:
The interplay of resource availability and propagule pools.
Ecology, 2004, 85(6): 1541鄄1547.
[16] 摇 Tilman D, Reich P B, Knops J M H. Biodiversity and ecosystem
stability in a decade鄄long grassland experiment. Nature, 2006,
441(7093): 629鄄632.
[17] 摇 Gillman L N, Wright S D. The influence of productivity on the
species richness of plants: A critical assessment. Ecology, 2006,
87(5): 1234鄄1243.
[18] 摇 Weigelt A, Schumacher J, Roscher C, Schmid B. Does
biodiversity increase spatial stability in plant community biomass?.
Ecology Letters, 2008, 11(4): 338鄄347.
[19] 摇 Hector A, Hautier Y, Saner P, Wacker L, Bagchi R, Joshi J,
Scherer鄄Lorenzen M, Spehn E M, Bazeley鄄White E, Weilenmann
M, Caldeira M C, Dimitrakopoulos P G, Finn J A, Huss鄄Danell
K, Jumpponen A, Mulder C P H, Palmborg C, Pereira J S,
Siamantziouras A S D, Terry A C, Troumbis A Y, Schmid B,
Loreau M. General stabilizing effects of plant diversity on grassland
productivity through population asynchrony and overyielding.
Ecology, 2010, 91(8): 2213鄄2220.
[20] 摇 Mittelbach G G, Steiner C F, Scheiner S M, Gross K L,
Reynolds H L, Waide R B, Willig M R, Dodson S I, Gough L.
What is the observed relationship between species richness and
productivity?. Ecology, 2001, 82(9): 2381鄄2396.
[21] 摇 Hector A, Schmid B, Beierkuhnlein C, Caldeira M C, Diemer
M, Dimitrakopoulos P G, Finn J A, Freitas H, Giller P S, Good
J, Harris R, H觟gberg P, Huss鄄Danell K, Joshi J, Jumpponen A,
K觟rner C, Leadley P W, Loreau M, Minns A, Mulder C P H, O忆
Donovan G, Otway S J, Pereira J S, Prinz A, Read D J, Scherer鄄
Lorenzen M, Schulze E D, Siamantziouras A S D, Spehn E M,
Terry A C, Troumbis A Y, Woodward F I, Yachi S, Lawton J H.
Plant diversity and productivity experiments in European
grasslands. Science, 1999, 286(5442): 1123鄄1127.
[22] 摇 Fridley J D. Resource availability dominates and alters the
relationship between species diversity and ecosystem productivity
in experimental plant communities. Oecologia, 2002, 132 ( 2):
271鄄277.
[23] 摇 Guo Q F, Shaffer T, Buhl T. Community maturity, species
saturation and the variant diversity鄄productivity relationships in
grasslands. Ecology Letters, 2006, 9(12): 1284鄄1292.
[24] 摇 Davidson A, Csillag F, Wilmshurst J. Diversity鄄productivity
relations at a northern prairie site: An investigation using spectral
data. Community Ecology, 2007, 8(1): 87鄄102.
[25] 摇 Venail P A, Maclean R C, Meynard C N, Mouquet N. Dispersal
scales up the biodiversity鄄productivity relationship in an
experimental source鄄sink metacommunity. Proceedings of the
Royal Society B鄄Biological Sciences, 2010, 277 ( 1692 ):
2339鄄2345.
[26] 摇 Bradford J B, Lauenroth W K, Burke I C, Paruelo J M. The
influence of climate, soils, weather, and land use on primary
production and biomass seasonality in the US Great Plains.
Ecosystems, 2006, 9(6): 934鄄950.
[27] 摇 Garbulsky M F, Pe觡uelas J, Gamon J, Inoue Y, Filella I. The
photochemical reflectance index (PRI) and the remote sensing of
leaf, canopy and ecosystem radiation use efficiencies: a review
and meta鄄analysis. Remote Sensing of Environment, 2011, 115
(2): 281鄄297.
[28] 摇 Harpole W S, Tilman D. Grassland species loss resulting from
reduced niche dimension. Nature, 2007, 446(7137): 791鄄793.
[29] 摇 LeBauer D S, Treseder K K. Nitrogen limitation of net primary
productivity in terrestrial ecosystems is globally distributed.
Ecology, 2008, 89(2): 371鄄379.
[30] 摇 Gao Y Z, Chen Q, Lin S, Giese M, Brueck H. Resource
manipulation effects on net primary production, biomass allocation
and rain鄄use efficiency of two semiarid grassland sites in Inner
Mongolia, China. Oecologia, 2011, 165(4): 855鄄864.
[31] 摇 Ren Z W, Qi L, Chu C J, Zhao L Q, Zhang J Q, Dexiecuo A,
Yang Y B, Wang G. Effects of resource additions on species
richness and ANPP in an alpine meadow community. Journal of
Plant Ecology, 2011, 3(1): 25鄄31.
[32] 摇 LeBauer D S, Treseder K K. Nitrogen limitation of net primary
productivity in terrestrial ecosystems is globally distributed.
Ecology, 2008, 89(2): 371鄄379.
[33] 摇 Chen Q, Hooper D U, Shan L. Shifts in species composition
constrain restoration of overgrazed grassland using nitrogen
fertilization in Inner Mongolian Steppe, China. PLoS One, 2011,
6(3): e16909, doi: 10.1371 / journal.pone.0016909.
[34] 摇 Li J Z, Shan L, Friedhelm T, Pan Q M, Klaus D. Above and
belowground net primary productivity of grassland influenced by
supplemental water and nitrogen in Inner Mongolia. Plant and
Soil, 2011, 340(1 / 2): 253鄄264.
[35] 摇 Huxman T E, Smith M D, Fay P A, Knapp A K, Shaw M R,
Loik M E, Smith S D, Tissue D T, Zak J C, Weltzin J F,
Pockman W T, Sala O E, Haddad B M, Harte J, Koch G W,
Schwinning S, Small E E, Williams D G. Convergence across
biomes to a common rain鄄use efficiency. Nature, 2004, 429
(6992): 651鄄654.
[36] 摇 Brueck H, Erdle K, Gao Y Z, Giese M, Zhao Y, Peth S, Lin S.
Effects of N and water supply on water use鄄efficiency of a semiarid
grassland in Inner Mongolia. Plant and Soil, 2010, 328(1 / 2):
495鄄505.
[37] 摇 Bell C, McIntyre N, Cox S, Tissue D, Zak J. Soil microbial
0314 摇 生摇 态摇 学摇 报摇 摇 摇 34卷摇
http: / / www.ecologica.cn
responses to temporal variations of moisture and temperature in a
Chihuahuan desert grassland. Microbial Ecology, 2008, 56(1):
153鄄167.
[38] 摇 Niinemets 譈, Kull K. Co鄄limitation of plant primary productivity
by nitrogen and phosphorus in a species鄄rich wooded meadow on
calcareous soils. Acta Oecologica, 2005, 28(3): 345鄄356.
[39] 摇 Fynn R W S, O忆 Connor T G. Determinants of community
organization of a South African mesic grassland. Journal of
Vegetation Science, 2005, 16(1): 93鄄102.
[40] 摇 Elser J J, Bracken M E S, Cleland E E, Gruner D S, Harpole W
S, Hillebrand H, Ngai J T, Seabloom E W, Shurin J B, Smith J
E. Global analysis of nitrogen and phosphorus limitation of primary
producers in freshwater, marine and terrestrial ecosystems.
Ecology Letters, 2007, 10(12): 1135鄄1142.
[41] 摇 Milchunas D G, Lauenroth W K. Quantitative effects of grazing on
vegetation and soils over a global range of environments. Ecological
Monographs, 1993, 63(4): 327鄄366.
[42] 摇 Wang S P, Wang Y F, Hu Z Y, Chen Z Z, Fleckenstein J,
Schnug E. Status of iron, manganese, copper, and zinc of soils
and plants and their requirement for ruminants in inner Mongolia
steppes of China. Communications in Soil Science and Plant
Analysis, 2003, 34(5): 655鄄670.
[43] 摇 Hwang B C, Lauenroth W K. Effect of nitrogen, water and
neighbor density on the growth of Hesperis matronalis and two
native perennials. Biological Invasions, 2008, 10(5): 771鄄779.
[44] 摇 Sasaki T, Okayasu T, Jamsran U, Takeuchi K. Threshold changes
in vegetation along a grazing gradient in Mongolian rangelands.
Journal of Ecology, 2008, 96(1): 145鄄154.
[45] 摇 Sch觟nbach P, Wan H W, Martin G, Bai Y F, M俟ller K, Lin L
J, Susenbeth A, Taube F. Grassland responses to grazing: effects
of grazing intensity and management system in an Inner Mongolian
steppe ecosystem. Plant and Soil, 2011, 340(1 / 2): 103鄄115.
[46] 摇 Shan Y M, Chen D M, Guan X X, Zheng S X, Chen H J, Wang
M J, Bai Y F. Seasonally dependent impacts of grazing on soil
nitrogen mineralization and linkages to ecosystem functioning in
Inner Mongolia grassland. Soil Biology and Biochemistry, 2011,
43(9): 1943鄄1954.
[47] 摇 Xu Y Q, Li L H, Wang Q B, Chen Q S, Cheng W X. The pattern
between nitrogen mineralization and grazing intensities in an Inner
Mongolian typical steppe. Plant and Soil, 2007, 300 ( 1 / 2 ):
289鄄300.
[48] 摇 Altesor A, Oesterheld M, Leoni E, Lezama F, Rodriguez C.
Effect of grazing on community structure and productivity of a
Uruguayan grassland. Plant Ecology, 2005, 179(1): 83鄄91.
[49] 摇 Bakker C, Van Bodegom P M, Nelissen H J M, Ernst W H O,
Aerts R. Plant responses to rising water tables and nutrient
management in calcareous dune slacks. Plant Ecology, 2006, 185
(1): 19鄄28.
[50] 摇 Klimek S, Richter gen Kemmermann A, Hofmann M, Isselstein J.
Plant species richness and composition in managed grasslands:
The relative importance of field management and environmental
factors. Biological Conservation, 2007, 134(4): 559鄄570.
[51] 摇 Pavl 觷u V, Hejcman M, Pavl 觷u L, Gaisler J. Restoration of grazing
management and its effect on vegetation in an upland grassland.
Applied Vegetation Science, 2007, 10(3): 375鄄382.
[52] 摇 Questad E J, Foster B L. Coexistence through spatio鄄temporal
heterogeneity and species sorting in grassland plant communities.
Ecology Letters, 2008, 11(7): 717鄄726.
[53] 摇 Marion B, Bonis A, Bouzill佴 J B. How much does grazing鄄induced
heterogeneity impact plant diversity in wet grasslands?.
Ecoscience, 2010, 17(3): 229鄄239.
[54] 摇 Sebasti伽 M T, de Bello F, Puig L, Taull M. Grazing as a factor
structuring grasslands in the Pyrenees. Applied Vegetation
Science, 2008, 11(2): 215鄄223.
[55] 摇 Liu Y S, Pan Q M, Liu H D, Bai Y F, Simmons M, Dittert K,
Han X G. Plant responses following grazing removal at different
stocking rates in an Inner Mongolia grassland ecosystem. Plant and
Soil, 2011, 340(1 / 2): 199鄄213.
[56] 摇 Sch觟nbach P, Wan H W, Schiborra A, Gierus M, Bai Y F,
M俟ller K, Glindemann T, Wang C J, Susenbeth A, Taube F.
Short鄄term management and stocking rate effects of grazing sheep
on herbage quality and productivity of Inner Mongolia steppe. Crop
and Pasture Science, 2009, 60(10): 963鄄974.
[57] 摇 Wan H W, Bai Y F, Sch觟nbach P, Gierus M, Taube F. Effects
of grazing management system on plant community structure and
functioning in a semiarid steppe: scaling from species to
community. Plant and Soil, 2011, 340(1 / 2): 215鄄226.
[58] 摇 Wu Z T, Dijkstra P, Koch G W, Pe觡uelas J, Hungate B A.
Responses of terrestrial ecosystems to temperature and precipitation
change: a meta鄄analysis of experimental manipulation. Global
Change Biology, 2011, 17(2): 927鄄942.
[59] 摇 Baer S G, Kitchen D J, Blair J M, Rice C W. Changes in
ecosystem structure and function along a Chronosequence of
restored grasslands. Ecological Applications, 2002, 12 ( 6 ):
1688鄄1701.
[60] 摇 Baer S G, Blair J M, Collins S L, Knapp A K. Soil resources
regulate productivity and diversity in newly established Tallgrass
prairie. Ecology, 2003, 84(3): 724鄄735.
[61] 摇 Kardol P, Bezemer T M, van der Putten W H. Temporal variation
in plant鄄soil feedback controls succession. Ecology Letters, 2006,
9(9): 1080鄄1088.
[62] 摇 Kulmatiski A, Beard K H, Stevens J R, Cobbold S M. Plant鄄soil
feedbacks: a meta鄄analytical review. Ecology Letters, 2008, 11
(9): 980鄄992.
[63] 摇 Baer S G, Blair J M. Grassland establishment under varying
resource availability: A test of positive and negative feedback.
Ecology, 2008, 89(7): 1859鄄1871.
[64] 摇 McLauchlan K K. The nature and longevity of agricultural impacts
1314摇 15期 摇 摇 摇 王常顺摇 等:草地植物生产力主要影响因素研究综述 摇
http: / / www.ecologica.cn
on soil carbon and nutrients: a review. Ecosystems, 2006, 9(8):
1364鄄1382.
[65] 摇 McLauchlan K K, Hobbie S E, Post W M. Conversion from
agriculture to grassland builds soil organic matter on decadal
timescales. Ecological Applications, 2006, 16(1): 143鄄153.
[66] 摇 Luo C Y, Xu G P, Wang Y F, Wang S P, Lin X W, Hu Y G,
Zhang Z H, Chang X F, Duan J C, Su A L, Zhao X Q. Effects of
grazing and experimental warming on DOC concentrations in the
soil solution on the Qinghai鄄Tibet Plateau. Soil Biology and
Biochemistry, 2009, 41(12): 2493鄄2500.
[67] 摇 Arft A M, Walker M D, Gurevitch J, Alatalo J M, Bret鄄Harte M
S, Dale M, Diemer M, Gugerli F, Henry G H R, Jones M H,
Hollister R D, J佼nsd佼ttir I S, Laine K, L佴vesque E, Marion G
M, Molau U, M覬lgaard P, Nordenh覿ll U, Raszhivin V, Robinson
C H, Starr G, Stenstr觟m A, Stenstr觟m M, Totland 覫, Turner P
L, Walker L J, Webber P J, Welker J M, Wookey P A.
Responses of tundra plants to experimental warming: Meta鄄
analysis of the international tundra experiment. Ecological
Monographs, 1999, 69(4): 491鄄511.
[68] 摇 Walker R D, Pastor J, Dewey B W. Effects of wild rice (Zizania
palustris) straw on biomass and seed production in northern
Minnesota. Canadian Journal of Botany, 2006, 84 ( 6 ):
1019鄄1024.
[69] 摇 Aerts R, Cornelissen J H C, Dorrepaal E. Plant performance in a
warmer world: General responses of plants from cold, northern
biomes and the importance of winter and spring events. Plants and
Climate Change, 2006, 41: 65鄄78.
[70] 摇 Dormann C F, Woodin S J. Climate change in the Arctic: Using
plant functional types in a meta鄄analysis of field experiments.
Functional Ecology, 2002, 16(1): 4鄄17.
[71] 摇 Rustad L. Global change鄄matter of time on the Prairie. Nature,
2001, 413(6856): 578鄄579.
[72] 摇 Hovenden M J, Newton P C D, Wills K E, Janes J K, Williams
A L, Vander Schoor J K, Nolan M J. Influence of warming on soil
water potential controls seedling mortality in perennial but not
annual species in a temperate grassland. New Phytologist, 2008,
180(1): 143鄄152.
[73] 摇 Hudson J M G, Henry G H R. Increased plant biomass in a High
Arctic heath community from 1981 to 2008. Ecology, 2009, 90
(10): 2657鄄2663.
[74] 摇 Natali S M, Schuur E A G, Rubin R L. Increased plant
productivity in Alaskan tundra as a result of experimental warming
of soil and permafrost. Journal of Ecology, 2012, 100 ( 2 ):
488鄄498.
[75] 摇 Wu H H, Dannenmann M, Fanselow N, Wolf B, Yao Z S, Wu
X, Br俟ggemann N, Zheng X H, Han X G, Dittert K, Butterbach鄄
Bahl K. Feedback of grazing on gross rates of N mineralization and
inorganic N partitioning in steppe soils of Inner Mongolia. Plant
and Soil, 2011, 340(1 / 2): 127鄄139.
[76] 摇 Klein J A, Harte J, Zhao X Q. Experimental warming, not
grazing, decreases rangeland quality on the Tibetan plateau.
Ecology Application, 2007, 17(2): 541鄄557.
[77] 摇 Post E, Pedersen C. Opposing plant community responses to
warming with and without herbivores. Proceedings of the National
Academy of Sciences of the United States of America, 2008, 105
(34): 12353鄄12358.
[78] 摇 Wang S P, Duan J C, Xu G P, Wang Y F, Zhang Z H, Rui Y
C, Luo C Y, Xu B, Zhu X X, Chang X F, Cui X Y, Niu H S,
Zhao X Q, Wang W Y. Effects of warming and grazing on soil N
availability, species composition, and ANPP in an alpine
meadow. Ecology, 2012, 93(11): 2365鄄2376.
[79] 摇 Klein J A, Harte J, Zhao X Q. Decline in medicinal and forage
species with warming is mediated by plant traits on the Tibetan
plateau. Ecosystems, 2008, 11(5): 775鄄789.
2314 摇 生摇 态摇 学摇 报摇 摇 摇 34卷摇