全 文 :第 25 卷第 11 期
2005 年 11 月
生 态 学 报
A CTA ECOLO G ICA S IN ICA
V o l. 25,N o. 11
N ov. , 2005
原始森林土壤 NH+4 öNO -3 生境特征
与某些针叶树种的适应性
崔晓阳, 宋金凤
(东北林业大学林学院, 哈尔滨 150040)
基金项目: 国家自然科学基金资助项目 (30371146, 39770608)
收稿日期: 2004207206; 修订日期: 2005209229
作者简介: 崔晓阳 (1964~ ) , 男, 山东宁津人, 博士, 教授, 主要从事森林土壤和森林生态学研究. E2m ail: c- xiaoyang@ 126. com
Foundation item: T he N ational N atural Science Foundation of Ch ina (N o. 30371146, 39770608)
Rece ived date: 2004207206; Accepted date: 2005209229
Biography: CU I X iao2Yang, Ph. D. , P rofesso r, m ain ly engaged in fo rest so il and fo rest eco logy. E2m ail: c- xiaoyang@ 126. com
摘要: 在陆地生态系统中, 生存地段的土壤养分环境构成了植物的“营养生境”。植物在长期进化过程中往往产生对原生营养生
境的生态适应, 其中对N H +4 和NO -3 两种无机氮源的吸收、利用特性便可能是这种适应的一个重要方面。由于硝化抑制 (限制)
或微生物对NO -3 的强烈吸收、固持作用, 酸性、弱酸性的原始森林土壤中N H +4 含量大都远高于NO -3 , 从而形成了以N H +4 占绝
对优势的“氮营养生境”。很多针叶树种 (尤其是演替晚期阶段占优势者)对其长期所处的N H +4 优势生境产生了充分适应, 以致
对非还原态氮 (NO -3 )的吸收、利用能力严重下降。这些针叶树往往表现出典型的“喜铵性”, 而在NO -3 优势环境中则会引起氮
代谢失调和生长下降。从氮同化酶、高耐铵性、根对N H +4 和NO -3 的相对吸收能力及NO -3 吸收的反馈控制、养分关系与养分平
衡、根部碳流失、光合作用及耐荫性等多方面阐述了喜铵针叶树适应的生理生化机制。这种生态适应可能是顶极森林群落维持
长期稳定的重要机制之一, 而采伐干扰后NO -3 明显增加的立地条件则可能会导致喜铵的“原优势针叶树种”更新困难。在温带
退化森林生态系统恢复与重建过程中, 顶极针叶树种对N H +4 营养生境的固有适应性是必须充分考虑的问题。
关键词: 森林土壤; 铵态氮; 硝态氮; 针叶树种; 生态适应; 生理生化机制
文章编号: 100020933 (2005) 1123082211 中图分类号: S718. 5 文献标识码: A
So il NH+4 öNO -3 n itrogen character ist ics in pr imary forests and the adaptab il ity
of som e con iferous spec ies
CU I X iao2Yang, SON G J in2Feng (Colleg e of F orestry , N ortheast F orestry U niversity , H arbin 150040, Ch ina ). A cta Ecolog ica
S in ica , 2005, 25 (11) : 3082~ 3092.
Abstract: In terrestria l eco system s, so il nu trien t regim es at a p lan t’s living site generally rep resen t the p lan t’s“nu trit ion
hab ita t”. P lan t species frequen tly w ell adap t to their o riginal“nu trit ion hab ita t”during a long p rocess of evo lu t ion, and the
apparen t p reference fo r ammon ium o r n itra te n itrogen sou rce (N H +4 o r NO -3 ) m igh t be an impo rtan t aspect of the adap tat ion.
P lan ts typ ically favo r the n itrogen fo rm mo st abundan t in their natu ral hab ita ts.
N itra te has been recogn ized as the dom inan t m ineral n itrogen fo rm in mo st agricu ltu ral so ils and the m ain n itrogen sou rce
fo r crop s, bu t it is no t u sually the case in fo rest eco system s. A large num ber of studies show that the“nu trit ion hab ita ts”
associated w ith p rim ary fo rest so ils are typ ically dom inated by N H +4 ra ther than NO -3 , generally w ith NO -3 con ten t m uch low er
than N H +4 . L ow levels of NO -3 in these fo rest so ils generally co rrespond to low net rates of n itrificat ion. T he p robab le reasons
fo r th is phenom enon include: (1) n itrificat ion lim itat ions andöo r inh ib it ions caused by low er pH , low er N H +4 availab ility
(au to troph ic n itrifiers can’t successfu lly compete fo r N H +4 w ith hetero troph ic o rgan ism s and p lan ts) , o r allelopath ic inh ib ito rs
( tann in s o r h igher2mo lecu lar2w eigh t p roan thocyan idin s) in the so il; o r (2) substan t ia l m icrob ial acqu isit ion of n itra te in the
so ils w h ich m akes net n itrificat ion rates substan t ia lly less than gro ss n itrificat ion rates even though the lat ter are rela t ively
h igh.
M any con iferous species (especially such late successional tree species as T sug a heterop hy lla, P inus banksiana, P icea
g lauca, P seud otsug a m ez iesii, P icea abies and etc. ) fu lly adap t to their o riginal N H +4 2dom inated“nu trit ion hab ita ts”so that
their capacit ies of abso rb ing and using non2reduced fo rm s of n itrogen (e. g. NO -3 ) substan t ia lly decrease. T hese con ifers
typ ically show dist inct p reference to N H +4 and reduced grow th due to n itrogen2m etabo lism diso rder w hen NO -3 is the m ain
n itrogen sou rce. T he physio logical and b iochem icalm echan ism s that accoun t fo r the adap tat ion to N H +4 2dom inated system s (o r
lim ited ab ility to use NO -3 ) fo r the con iferous species include:
( i) distribu t ion and activity of enzym es fo r catalyzing n itrogen reduction and assim ilat ion, generally characterized by low er
n itra te reductase (N R ) ;
( ii) greater to lerance to N H +4 o r rap id detox ificat ion of ammon ium nitrogen in the roo ts;
( iii) low er capacity of abso rp t ion to NO -3 by roo ts that m igh t be con tro lled by feedback regu lat ions of certa in N 2t ran spo rt
compounds, such as glu tam ine;
( iv) rela t ions and balance betw een n itrogen and o ther elem en ts ( such as Ca2+ , M g2+ , and Zn2+ etc. ). Som e N H +4 2
p refered con ifers m igh t be mo re adap ted (to leran t) to low er base cat ion condit ions;
(v) NO -3 nu trit ion, ra ther than N H +4 , that m ay lead to the lo ss of considerab le quan tit ies of o rgan ic and ino rgan ic carbon
to the su rrounding m edia and m yco rrh izal sym bion t and p robab ly con tribu te to slow er grow th.
(vi) the m etabo lic co st of reducing NO -3 to N H +4 that m ay m ake shade2to leran t con ifers favo r the up take of reduced
n itrogen (N H +4 ).
T he adap tat ion of la te successional con ifers to N H +4 2dom inated hab ita ts has p rofound eco logical imp licat ions. F irst, it
m igh t be an impo rtan t p rerequ isite fo r the clim ax fo rest comm un it ies dom inated by these con ifers to m ain tain long2term
stab ility. Second, p rim ary con iferous o r con iferous2broadleaved fo rests have been w idely pertu rbed because of comm ercial
exp lo ita t ion, w here the so il ammon ium nitrogen poo l tends to be largely transfo rm ed to n itra te after distu rbance. In such a
situat ion, the con iferous species that w ere dom inan t in undistu rbed eco system s m ay becom e poo r competito rs fo r n itrogen, and
the site w ill be occup ied by early succesional (p ioneer) p lan ts bet ter adap ted to n itra te u t ilizat ion. In o ther w o rds, the imp licit
adap tat ion of m any con ifers dom inan t in undistu rbed comm unit ies to ammon ium nitrogen w ill cause difficu lt ies in their
regenerat ion on distu rbed sites, w h ich m ust be taken in to accoun t in the p ract ical resto rat ion of degraded temperate fo rest
eco system s.
Key words: fo rest so il; ammon ium; n itra te; con iferous trees; adap tat ion; physio logical and b iochem ical m echan ism s
现代生态学中所涉“生境”概念, 既可泛指某类生物经常生活的习惯性局域生态环境, 也可特指某生物群体或个体目前所处
的具体位置, 强调现实生态环境[1 ]。在自然生态系统中, 植物种的生境由其生存地段的土壤和小气候等要素组成, 它为该植物直
接提供了各种环境资源和个性化的生活条件。由于植物所需的矿质养分资源基本上是从土壤中获取, 因此生存地段的土壤养分
环境便构成了其营养生境 (nu trit ion hab ita t)。
在长期进化过程中, 植物往往产生对特定营养生境 (原生营养生境) 的生理适应 (physio logical adap tat ion) 和形态适应
(anatom ical adap tat ion) , 以致分化出不同的营养基因型或不同营养特性的生理生态类群。例如, 植物在土壤低磷胁迫的长期选
择压力下, 常形成根系形态的改变与特化、专性根分泌物 (如有机酸和胞外磷酸酶) 大量增加及根对溶液中低浓度H 2PO -4 的有
效吸收 (低Cm in和 K m )等适应机制, 以提高对土壤磷的吸收能力[2, 3 ]。又如, 长期适应了石灰性土壤的植物 (喜钙植物, calcico le)
对高浓度的 Ca2+ 同时具有忍耐和逃避功能, 并形成特异性的缺铁适应机制—诱导原生质膜产生还原酶或根分泌麦根酸类
(m ugineic acid, aven ic acid) 植物铁载体 (phyto sideropho re) [4 ]。由于对土壤养分吸收、利用和运转 ( t ranslocat ion) 的特性差异,
因而植物有着多种不同的养分效率 (nu trien t efficiency)模式[5 ]。实际上, 通常所说的“喜肥植物”和“耐瘠植物”也很可能是不同
物种对其原始生境中的土壤肥力状况长期适应的结果。
氮是植物必需的大量元素之一, 通常植物在生长发育过程中吸收的氮要高于其它矿质元素, 因而氮常成为限制植物生长的
主要元素[6 ]。土壤中的氮以各种复杂的化学形态存在, 其中可被植物吸收利用的主要是硝态氮 (NO -3 )和铵态氮 (N H +4 )。植物对
氮营养环境的长期适应不仅表现为土壤肥力或养分需求的数量差异, 也不仅限于获取氮素的某些特殊行为 (如共生固氮和菌根
对有机氮的吸收) , 更重要的还表现为对NO -3 和N H +4 两种不同形态氮源的偏向选择性[7~ 9 ], 而且这是在其它营养元素方面所
不具备的特征。大量栽培实验表明, 很多植物在长期进化过程中形成了对不同形态氮素的偏向利用特性: 有些种类在纯NO -3
或NO -3 占优势的氮营养环境中吸收氮素较多, 生长较好, 表现为喜硝性 (n itroph ilous 类植物即其典型代表) [10~ 15 ]; 另一些植物
380311 期 崔晓阳 等: 原始森林土壤N H +4 öNO -3 生境特征与某些针叶树种的适应性
则在纯N H +4 或N H +4 优势环境中生长速度快, 生理反应较好, 表现出喜N H +4 性[8, 16~ 24 ]。尽管植物吸收N H +4 和NO -3 的特性受
介质N 浓度、pH 值和温度等环境因子的影响[21, 22, 25~ 29 ] , 但对两种氮源的不同反应仍主要取决于种的特性[30~ 33 ]。这种差异是植
物对NO -3 或N H +4 的相对吸收能力、由NO -3 向N H +4 的还原能力、对N H +4 的同化能力以及与氮源形态有关的碳、氮整体代谢
过程所决定的[31, 34~ 38 ] , 是植物营养特性的反映[30, 39 ]。而植物产生上述氮代谢差异, 可能主要是对其原始营养生境 (NO -3 优势生
境或N H +4 优势生境)长期生理适应的结果, 一般来说植物总是趋于偏好其自然生境中最丰富的氮源形态[8, 31, 40 ]。本文从这一观
点出发, 试图通过大量相关例证, 阐明原始森林土壤的N H +4 öNO -3 生境特征及某些针叶树对这种特定氮营养生境的生态适应,
以期为温带退化森林生态系统恢复提供营养生态学理论依据。
1 原始森林土壤 NH+4 öNO -3 生境特征
111 低NO -3 水平与硝化抑制
本文“原始森林土壤”是指未被干扰的成熟期森林土壤 ( so ils of m atu re fo rest) , 在大多数情况下它意味着某一地区长期稳
定的森林群落 (顶极群落 clim ax)下的土壤。由于湿润气候和较强淋溶作用的长期影响, 大多数原始森林土壤都呈酸性或弱酸性
反应。很多研究表明, 从北方针叶林至热带雨林, 酸性、弱酸性原始森林土壤中N H +4 的供应大都远高于NO -3 (表 1) , 硝态氮相
对和绝对的过低现象在原始针叶林或演替后期阶段的稳定系统中尤为明显。
表 1 一些原始森林土壤的 NH+4 öNO -3 状况和净氮矿化 (M in. ) ö硝化 (N it. )速率
Table 1 NH+4 öNO -3 status and net n itrogen m ineral ization (M in. ) ön itr if ication (N it. ) rates of some undisturbed forest so ils
地点
Site
林型
Fo rest type
土壤 So il
类型
C lassification
深度
D ep th (cm ) pH
N H +4 2N
(Λgög) NO -3 2N(Λgög) M in.(Λgög) N it1(Λgög) 资料来源A dap ted from
美国怀俄明
W yom ing, U SA
美国印第安纳
Indiana, U SA
美国新英格兰
N ew England,
U SA
美国新墨西哥
N ew M exico, U SA
美国西北部
Pacific
N o rthw est, U SA
美国黄松
L odgepo le p ine
槭类M ap le
栎类O ak
硬阔
N o rthern hardwoods
栎2松
O ak2p ine
美国黄松
Pondero sa p ine
针叶混交林
M ixed Conifer
云杉2冷杉
Sp ruce2fir
花旗松
Douglas2fir
银枞
Silver fir
T yp ic
C ryobo ralfs
0~ 10 5. 00 0159 0104 01691) 0104 [ 41 ]
T yp ic
D ystroch rep t
FF2)
0~ 15
517
518 90415 1119214 5503)26 45024 [ 42 ]
T yp ic
D ystroch rep t
FF
0~ 15
512
318 97211 412014 50017 2203
A quic
F ragio rthod
FF
0~ 15
15~ 30
410
411
413 811215516 710218114 950110— 12080— [ 42 ]
T yp ic
U dip samm ent
FF
0~ 15
15~ 30
410
415
419 1017012111 012011012 42060— t race30—
T yp ic
U stro then t
FF
0~ 10
614
618 28211 114011 505 tracetrace [ 42 ]
T yp ic
U do rthen t
FF
0~ 10
514
518 70710 218011 20012 205
D ystric
C ryoch rep t
FF
0~ 20
512
417 56918 017012 8020 tracetrace
FF
0~ 15
511
416 37212 111011 8010 52 [ 42 ]
FF
0~ 15
314
410 38414 015011 303 tracetrace
美国新墨西哥
N ew M exico,
U SA
美国黄松
Pondero sa p ine
— 0~ 15 510 1139 0119 — — [ 43 ]
针叶混交林
M ixed conifer
— 0~ 15 511 2165 0123 — —
山杨A spen — 0~ 15 511 4141 0124 — —
云冷杉 Sp ruce2fir — 0~ 15 416 1132 0125 — —
美国俄勒冈
O regon, U SA
北美西部圆柏
W estern jun iper — 0~ 15 519 1132 0150 — — [ 43 ]
铁杉H em lock — 0~ 15 418 0197 0118 — —
铁杉2云杉
H em lock2Sp ruce — 0~ 15 318 4153 0108 — —
美国纽约州
N ew Yo rk, U SA
铁杉和云杉
H em lock and Sp ruce
frigid T yp ic
H ap lo rthods
0~ 5
5~ 15
3154)
218 6105)613 010< 011 —— —— [ 46 ][ 44 ]
4803 生 态 学 报 25 卷
续表 1
湿地针叶林
W etland Conifer
—
0~ 5
5~ 15
314
312 21392106 01270100 011186)01076 0100001069
加拿大BC 省
B rit ish Co lum bia,
Canada
北方针叶林
Bo real coniferous fo rest
Podzo ls
FF
0~ 10
—
—
1507)
10
< 5
< 1
—
—
—
— [ 45 ]
瑞典北部
N o rthern Sw eden
欧洲赤松
Sco ts p ine
T yp ic o r Entic
H ap locryods
表土
Top so il
315 20128) 0106 - 011 - 0102 [ 46 ]
加拿大安大略
O ntario, Canada
针叶混交林
Conifer2m ixed Podzo ls 0~ 1010~ 20 317418 12009)— 70— 33410)90 376 [ 47 ]
中国长白山
Changbai
M ountain, Ch ina
阔叶红松林
Ko rean p ine2broadleaved
fo rest
暗棕壤
D ark B row n
Fo rest So il
0~ 5 (FF)
5~ 11
11~ 25
618
514
516 4881062125414 914016014 ——— ——— [ 48, 49 ]
中国长白山
Changbai
M ountain, Ch ina
阔叶红松林
Ko rean p ine2broadleaved
fo rest
暗棕壤
D ark B row n
Fo rest So il
0~ 10 617 — — 11311) 0162 [ 50 ]
云冷杉林
Sp ruce2fir fo rest 山地棕针土M ountainB row nConiferous
Fo rest So il
0~ 10 518 — — 111 0135
中国大兴安岭
Great X ingan
M ountain, Ch ina
落叶松林
L arch fo rest
棕色针叶林土
B row n
Coniferous
Fo rest So il
A 层
A ho rizon
419 1516 213 — — [ 51 ]
中国西双版纳
X ishuangbanna,
Ch ina
季雨林
T rop ical Seasonal
Rainfo rest
砖红壤
L ato so l
0~ 10 3175 19175 4171 6155 16128 [ 52, 53 ]
(1)室内培养 1 个月测定值M in1 and N it1 determ ined w ith L ab. incubations fo r one mouth; (2) FF: 森林枯枝落叶层 Fo rest floo r; (3)室内
培养 4 周测定值 D eterm ined w ith L ab. incubations fo r 4 w eek s; (4) pH (CaC l2) ; (5) kgöhm 2; (6) 埋袋法培养 40d 测定值 (kgö(hm 2·d) )
D eterm ined w ith buried po lyethylene bag technique incubated fo r about 40 days (kgö(hm 2·d) ) ; (7) 埋袋法培养 6 周测定值D eterm ined w ith
buried po lyethylene bag technique incubated fo r about 6 w eek s; (8) N H +4 2N 和NO -3 2N 用离子交换树脂法N H +4 2N and NO -3 2N determ ined w ith
ion ic resins (Λg per cap su le) , M in. 和N it. 用埋袋法培养 1 个月测定 (Λgö(g·d) ) M in. and N it. determ ined w ith buried po lyethylene bag
technique incubated fo r about 1 mouth (Λgö(g·d) ) ; (9)m göm 2; (10) 年净矿化ö硝化量A nnual net N m ineralizationönitrification; (11) 室内
25℃培养 30d 测定 (kgö(hm 2·d) )D eterm ined w ith L ab. incubations at 25℃ fo r 30 days (kgö(hm 2·d) )
尽管NO -3 可能因不易被胶体吸附 (易流失)而在许多土壤中会低于N H +4 , 但森林土壤过低的NO -3 水平往往与过低的净硝
化速率 (net n itrificat ion rate)有关[42, 54~ 56 ], 表 1 中的一些实例也反映出这一趋势。在室内或野外培养实验中, 森林土壤常表现
出较弱的硝化潜力 (n itrificat ion po ten tia l)和较长的硝化滞后期 (L ag in n itrificat ion) [55, 57 ]。因此, 大多数人认为酸性森林土壤中
存在着不同程度的硝化抑制。对于森林土壤的硝化抑制机理, 国内外研究者先后提出下面一些解释:
(1) 一般认为自养硝化菌 (au to troph ic n itrifiers) 是不耐酸的, 所以森林土壤固有的低 pH 值常常抑制了硝化作
用[53, 55, 56, 58~ 62 ]。
(2)低N H +4 可给性限制了NO -3 生成, 因为自养硝化菌与异养微生物和植物竞争有效氮源 (N H +4 )时处于劣势[42, 63~ 67 ]。在成
熟森林生态系统中, 净氨化速率一般处于一定的较低水平, 使土壤N H +4 主要通过有效的封闭式循环 (C lo sed N cycle) 进入植被
和微生物养分库[68 ], 结果便导致N H +4 源缺乏和硝化抑制[69, 70 ]。另一方面, 处于演替晚期阶段的森林凋落物 (尤其针叶凋落物)
大都具有较高的CöN 值, 并含有较高的木素、单宁或游离酚类物质。在这种情况下, 不仅有机质的分解速率会较低, 土壤和凋落
物层中N H +4 或活性有机氮的异养微生物固定或化学固定 (与多元酚形成难被微生物利用的稳定复合物或腐殖质) 也都较强
烈, 从而大大降低了氮的矿化 (尤其净矿化)速率[71~ 79 ] , 因此也就缺乏足够的可被硝化菌利用的N H +4 源。
然而最近却有研究表明, 瑞典北方针叶林土壤的硝化作用并非受限于N H +4 源, 因为当加入易矿化有机氮 (甘氨酸) 后N H +4
大量积累, 而NO -3 并没有显著增加, 推测演替晚期阶段硝化作用的限制因素可能是缺乏适当的环境条件或存在较高浓度硝化
抑制成分 (游离酚类) [46 ]。
580311 期 崔晓阳 等: 原始森林土壤N H +4 öNO -3 生境特征与某些针叶树种的适应性
(3) 树干淋洗或凋落物分解释放的化感物质 (如单宁或多元酚类) 抑制硝化微生物活性[80~ 85 ], 而且这种抑制在演替过程中
逐渐加强[80 ]。这一观点虽由来已久, 但也一直存在不同看法[64, 86~ 89 ]。近来有研究表明, 一些高分子多元酚 (h igher mo lecu lar
w eigh t p roan thocyan idin s) 抑制微生物活性[79 ] , 而低分子酚类物质 ( low mo lecu lar w eigh t pheno lics) 除了直接对硝化微生物产
生抑制外, 更可能作为异养微生物的有效碳源而被利用[90, 91 ]。正如在 (2) 中刚提到的, 较高浓度的游离酚可以促进矿质氮的生
物固定或导致活性氮被结合到多元酚复合物中[92 ] , 因而会对硝化作用产生间接抑制。
(4)温带、寒温带原始林或北方针叶林下土壤冷湿, 不利于氮矿化和硝化作用进行[35, 51, 58, 93, 94 ]。而且, 硝化作用对冷湿条件
的反应可能比氨化作用更敏感[95 ] , 因而会导致N H +4 相对“积累”。
112 微生物对NO -3 的强烈吸收固定——另类全新观点
与矿化和硝化有关的森林土壤氮转化过程十分复杂, 许多问题尚不完全清楚。关于原始森林土壤的硝化作用近来有另一种
截然不同的观点。 15N 同位素稀释实验 (15N iso tope2dilu t ion techn ique) 表明, 原始针叶林土壤微生物养分库内的硝酸盐周转速
率比先前预想的高很多[96 ]; 在许多这样的森林土壤中总硝化速率 (gro ss n itrificat ion rate) 都相当高, 而微生物对NO -3 的同化
作用却又异常强烈, 几乎能消耗掉所产生的所有NO -3 , 因此净硝化速率远不能反映土壤的总硝化速率[43, 96 ]。换言之, 某些原始
森林土壤过低的NO -3 水平可能主要是由于微生物强烈的同化作用, 而非如前所述的“硝化抑制”。
无论哪种原因导致森林土壤的低NO -3 水平, 起码有一点是可以肯定的: 酸性、弱酸性的原始森林土壤为森林植物提供了
以N H +4 占优势的氮营养生境, 这与多数荒地土壤和农田土壤中NO -3 供应占优势的情况完全不同[55, 97, 98 ]。
2 某些针叶树种的适应特点——喜铵性
森林树种对其长期所处的营养生境往往有着深刻的改造与适应。尤其是某些在演替晚期阶段或顶极阶段占优势的针叶树
种, 如加州铁杉 (T sug a heterop hy lla)、北美短叶松 (P inus banksiana)、花旗松 (P seud otsug a m ez iesii)、白云杉 (P icea g lauca)、挪
威云杉 (P icea abies)和海岸松 (P inus p inaster) 等, 其有关特性在北美、北欧和澳洲国家颇受关注。这些针叶树的凋落物分解特
点和硝化抑制成分往往造就了典型的酸性及N H +4 占绝对优势的土壤环境, 有机质分解释放的氮素养分一般只停留在N H +4 形
态[58, 80, 81, 93, 99~ 101 ]; 由于硝化抑制或微生物对NO -3 的强烈固定, 土壤中NO -3 的浓度往往极低[97 ]。从进化的角度看, 这些树种对
N H +4 应该有着较高的吸收和利用效率, 而对NO -3 的高效吸收利用似乎就是冗余的。事实上, 顶极群落的长期稳定性使得它们
在各自的原始生境中对N H +4 产生了充分适应 (comp lete adap tat ion) , 以至于对非还原态氮 (NO -3 ) 的吸收与利用能力严重下
降[17, 35, 97, 102, 103 ]。这样, 就会在栽培实验中表现出强烈的铵偏向选择, 且只在N H +4 占优势的营养环境中生长良好 (表 2)。
3 适应的生理生化机制
针叶树种往往表现出“喜铵性”和相应程度的“厌硝性”, 其主要生理生化机制可能在于下列几方面:
(1) 氮同化酶 植物对某种氮营养环境产生适应的一个重要先决条件可能在于催化NO -3 还原和N H +4 同化的酶类[31, 106 ]。
首先, 硝酸还原酶 (N R )作为硝酸盐同化的起始酶和限速酶, 其活性与植物同化NO -3 的能力密切相关。树木的N R 活性可分布
在根部和叶部, 喜N H +4 的针叶树通常根中的N R 活性较高, 而叶中的N R 活性较低[32, 107~ 109 ]。即使经过NO -3 的诱导, 多数情况
下也是根中的N R 活性增加, 而叶中的变化不大[102 ]; 而且, 达到其最大NO -3 吸收速率所需的诱导时间也很长[97 ]。所以这些针
叶树往往不能有效地利用NO -3 , 不能把NO -3 作为主要氮源。
另一方面, N H +4 (或N H 3) 同化是高等植物氮同化的共有步骤。喜N H +4 的针叶树根部和叶部通常都具有较高的将游离
N H +4 转化为谷氨酸的谷氨酰胺合成酶 (GS) 和谷氨酸合成酶 (GO GA T ) , 有的还具有较高的直接将N H +4 合成为谷氨酸的谷氨
酸脱氢酶 (GDH )活性[102, 107, 110, 111 ]。当这些针叶树吸收大量的N H +4 进入体内后, 这些酶可以将N H +4 迅速转化成氨基酸, 同时避
免了N H +4 毒害发生。尽管 GDH 一般不是氮同化的主要酶 (P rim ary N assim ilat ing enzym e) , 但在有外源N H +4 加入或N H +4 浓
度较高时, GDH 的活性会显著增强[36, 102, 110, 112 ]。
(2)解毒作用与高耐铵性 很多植物在介质或体内N H +4 度较高时会发生“铵毒害”[113 ]。进入植物体内的N H +4 离子必须被
迅速同化以避免其对组织的毒害作用[114~ 116 ]。N H +4 主要在根部通过 GSöGO GA T 途径同化为谷氨酰胺和谷氨酸 (即所谓“解毒
作用”) , 以免将N H +4 直接输送到更敏感的茎、叶部位[31, 117 ]。
然而越来越多的研究表明, 一些喜N H +4 针叶树不仅具有上述较强的同化“解毒功能”, 还具有相对较强的耐铵能力。在供
应N H +4 氮源的情况下, 即使体内 (细根、叶等)积累了较高浓度的游离N H +4 也不出现明显的毒害迹象[33, 35, 97, 118 ]。有人认为, 这
些树种的体内可能具有N H +4 的贮存库, 它们主要通过贮存作用消除或降低N H +4 的潜在毒害[119 ]。
( 3) 根对N H +4 öNO -3 离子的相对吸收及NO -3 吸收的反馈控制 相对于N H +4 而言, 有的针叶树 (如北美短叶松) 根系对
NO -3 的吸收速率低下, 在NO -3 环境中氮的吸收环节 (而不是对NO -3 的还原能力) 成为限制生长的瓶颈[35 ]。据认为, 白云杉根
系对NO -3 的吸收速率明显低于N H +4 , 可能是因为原生质膜上相应的NO -3 载体蛋白数量较少, 而非载体对两种形态氮的亲和
6803 生 态 学 报 25 卷
力有差异[97 ]。
表 2 一些针叶树种对 NH+4 öNO -3 氮源的反应
Table 2 Respon se of some con ifer spec ies to ammon ium (N H +4 ) ön itrate (NO -3 ) n itrogen
树种 Fo rest species 对N H
+4 öNO -3 的反应
Response to N H +4 öNO -3 资料来源 Reference
加州铁杉 T sug a heterop hy lla
在N 浓度相同的单一氮源中, 幼苗吸收N H +4 速率是NO -3 的 312 倍; 在 50∶
50 的混合氮源中, 吸收 N H +4 的数量是NO -3 的 211 倍。In N H +4 o r NO -3 only
treatm ent of equimo lar so lu tion, N H +4 w as taken up at 312 tim es the rate of
NO -3 1 In N H +4 + NO -3 (50: 50) treatm ent, N H +4 up take w as 211 tim es as
m uch as NO -3 up take.
[ 102 ]
北美短叶松 P inus banksiana
在遮荫与不遮荫情况下, 以相同浓度的N H +4 或NO -3 单一氮源栽培幼苗, 12
周后, N H +4 处理苗株积累的氮量是NO -3 处理的 211~ 214 倍, 前者地上生物
量为后者的 115~ 216 倍。Seedlings w ere grow n ( in a shaded o r unshaded
ligh t regim e) w ith either N H +4 o r NO -3 as the so le n itrogen source in a 122
w eek cultu re. To tal n itrogen accum ulation and shoo t b iom ass of ammonium 2
fed p lan ts w ere 211~ 214 and 115~ 216 tim es greater, respectively, than
that of n itrate2fed p lan ts. [ 35 ]
白云杉 P icea g lauca
苗木经过充分的硝态氮诱导后, 植入摩尔浓度相等的N H +4 或NO -3 溶液中
短期培养。每 g 鲜根对N H +4 的吸收量可达NO -3 吸收量的 20 倍, 细胞质的
N H +4 浓度达 NO -3 浓度 10 倍。A fter induced w ith NO -3 , seedlings w ere
transp lan ted in N H +4 o r NO -3 so lu tions fo r a sho rt2t im e cultu re. U p take of
N H +4 (per gram of fresh roo ts) w as up to 20 tim es greater than that of NO -3
from equimo lar so lu tion, cytop lasm ic concentration of N H +4 w as up to 10
tim es greater than that of NO -3 , and physio logical p rocessing of NO -3 w as
m uch less than that of N H +4 .
[ 97 ]
欧洲赤松和欧洲落叶松 P inus
sy lvestris and L arix d ecid ua
同时供应N H +4 和NO -3 的条件下, 对N H +4 的吸收速率明显高于NO -3 , 约可
高出 6 倍。A bso rb ing N H +4 p referen tially over NO -3 w hen supp lied w ith N H +4
+ NO -3 nitrogen sources, w ith N H +4 net up take rate about 6 tim es h igher
than NO -3 up take rate.
[ 32 ]
花旗松 P seud otsug a m ez iesii
在供应N H +4 氮源时, 苗株生物量、相对生长速率 (RGR ) 及侧根数皆达到最
高。W ho le2seedling biom ass, relat ive grow th rate (RGR ) , and num ber of
lateral roo ts, w ere greatest in seedlings grow n w ith N H +4 .
[ 36 ]
在混合氮源中优先吸收N H +4 , N H +4 营养优于NO -3 营养。A bso rb ing N H +4
p rio r to NO -3 in m ixed nitrogen sources, N H +4 nutrit ion superio r to NO -3
nutrit ion.
[ 104, 105 ]
挪威云杉 P icea abies 吸收的N H
+4 多于NO -3 , 在N H +4 条件下生长较好。A bso rbed mo re n itrogen
in N H +4 than in NO -3 , grow ing better w hen supp lied w ith N H +4 .
[ 17, 19 ]
海岸松 P inus p inaster
在较高浓度下供应N H +4 或N H +4 + NO -3 混合氮源的苗株干重比供应NO -3
单一氮源者约高 3 倍。D ry m ass of seedlings supp lied w ith N H +4 o r N H +4 +
NO -3 nitrogen at h igher concentrations w as app roxim ately th reefo ld greater
than seedlings supp lied w ith NO -3 alone.
[ 33 ]
多种针叶树M any conifers 对NO
-3 的吸收利用能力低下, 适于N H +4 营养环境。L ow er ab ility to use
NO -3 , be mo re adap ted to N H +4 nutrit ion.
[ 16 ]
然而, 喜N H +4 的针叶树以NO -3 为氮源时导致的生长下降往往并不能简单地从根系对NO -3 的吸收速率低来解释, 其中氮
代谢因素可能是问题的关键[33 ]。首先, 植物对NO -3 的吸收受其代谢过程所决定的内部“库”和“流”的反馈作用所控制。一些内
部生化因子, 如叶和运输液中 (尤其后者) 羧化物和胺类组分的浓度, 控制着NO -3 的吸收以及高亲和力NO -3 载体编码基因的
转录[120~ 124 ]。某些针叶树在供应NO -3 时吸收的氮虽然减少, 但是体内的游离氨基酸甚至N H +4 的浓度反而显著高于相应的
N H +4 处理[33, 35 ], 这意味着韧皮部和木质部中主要氮运输化合物 (如谷酰胺等) 的浓度也会相应升高[33 ], 而正是这类组分可能向
根部氮吸收位置提供了“反馈信号”[122, 123, 125 ]。因此, 针叶树对NO -3 的吸收速率低于对N H +4 的吸收, 可能就是吸收NO -3 后氮代
谢失调和某些游离有机氮积累所引起的反馈调节的结果。
进一步讲, 针叶树以NO -3 为主要氮源时的氮代谢失调可能与微量元素代谢性缺乏有关。NO -3 还原导致OH - 离子失衡, 为
此植物体内会合成大量有机酸以维持酸碱平衡[33, 126 ]; 而有机酸 (阴离子) 对 Zn2+ 等金属离子有强烈的螯和作用, 根部过多的有
机阴离子可能会阻碍一些微量元素向冠部运输[127 ]。W arren 等发现, 以较高浓度供应 NO -3 单一氮源时, 海岸松 (P inus
780311 期 崔晓阳 等: 原始森林土壤N H +4 öNO -3 生境特征与某些针叶树种的适应性
p inaster)幼苗针叶的 Zn 营养接近缺乏的临界浓度, 且出现典型的缺锌症状[33 ]。锌是RNA 聚合酶的成分, 它参与了蛋白质合成
的转录过程; 锌还与细胞分裂有关。植物分生组织中一般都需要较高浓度的锌及其它微量元素, 所以缺锌 (和其它微量元素) 会
减少细胞分裂、细胞伸长及蛋白质合成, 并导致氨基酸或酰胺类“反馈物质”积累[33 ]。在这种情况下, 喜N H +4 针叶树以NO -3 为
氮源导致的代谢性生长下降就不可避免。
(4)养分关系与养分平衡 由于N H +4 和NO -3 离子的电性差异, 二者对其它养分离子的吸收具有不同影响。通常N H +4 抑
制 K+ 、Ca2+ 、M g2+ 等养分离子的吸收, 增加 P (H 2PO -4 或H PO 2-4 )的吸收; 而NO -3 的作用则相反[17, 27, 102, 128, 129 ]。因此有人认为,
适应了N H +4 营养的树种可能对低阳离子养分具有更高的耐受力[102 ] , 而针叶树对Ca、M g 的低需求或组织中的低Ca、M g 现象
也多有报道[130~ 134 ]。另一方面, 树木吸收N H +4 后会导致根际土壤酸化[104, 135 ] , 因而有利于A l、M n 及难溶性 P 的吸收[129, 136, 137 ]。
无论从离子平衡还是从根际效应看, NO -3 似乎都不利于 P 的吸收。至于在硝态氮环境中喜铵性针叶树的磷营养是否会出现问
题, 目前尚无确切证据。不过, 针叶树NO -3 营养导致的代谢性缺锌已经引起关注, 这在上面已作了讨论。
(5)光合作用 两种不同氮源导致的氮代谢差异和其他矿质营养差异必然会影响到植物的光合作用, 包括叶绿素含量与组
成、R ub isco 含量与活性、CO 2 气孔导度和叶肉导度、净光合速率和光合作用的水分利效率等[31, 138, 139 ]。不过, 海岸松针叶的
R ub isco 含量和以单位叶质量计算的最大光合速率 (A m ax)不受氮源形态的影响[33 ] , 多数喜铵针叶树光合作用指标对N H +4 、NO -3
两种氮源的响应尚有待研究。
(6) 根部碳流失 当吸收NO -3 后, 根的酸碱平衡和电荷平衡至少部分地靠OH - 或 HCO -3 的直接排放来维持, 而排出的
HCO -3 又主要源自苹果酸脱羧作用。因此,NO -3 营养会导致数量可观的有机和无机碳向根周围介质和菌根共生体中流失[9, 140 ],
并可能在一定程度上导致生长下降[33 ]。
除了上述生理、生化原因外, 还有一个值得注意的事实, 即多数在演替晚期阶段占优势的针叶树种具有耐荫性 (尤其幼年
期)。由于同化NO -3 需要额外多消耗能量 (由NO -3 至N H +4 的还原过程) , 而在光合能量获取方面对耐荫植物同化NO -3 又是不
利的, 这可能促使耐荫植物选择喜还原态氮 (N H +4 )的进化策略[7 ]。同时, 这也可以部分地解释为什么针叶树的N R 活性大都分
布在根部, 而叶部的N R 活性往往较低[102 ]。有关雨林群落的研究也表明, 先锋树种 (喜光) 具有高水平的N R 活力, 叶硝酸盐同
化占优势, 而低N R 活性则一般是郁闭林树种的特性[141 ]。实际上, 弱光或遮荫可以认为是土壤N H +4 优势生境之外导致耐荫针
叶树喜铵性的另一耦合性长期环境因素。
4 结语
在酸性、弱酸性的原始森林土壤中,N H +4 含量大都远高于NO -3 , 从而形成了以N H +4 占优势的“氮营养生境”。很多在演替
晚期阶段占优势的针叶树种对其长期所处的N H +4 优势生境产生了充分适应, 表现为明显的“喜铵性”和“厌硝性”。国内外研究
者提出了各种原始森林土壤矿质氮转化过程的控制机理和针叶树适应N H +4 营养生境的生理生化机制, 但对若干机理、机制问
题的认识尚有待完善。
晚期演替针叶树种对N H +4 营养生境的固有适应性具有深刻的生态学和林学意义。首先, 这可能是顶极森林群落维持长期
稳定的一个重要先决条件。然而, 最大的现实问题是原始针叶林或针阔混交林已大面积遭受采伐破坏, 干扰后土壤N H +4 氮库
趋于大部分转化为NO -3 [35, 41, 42, 45, 51, 69, 97 ]。在NO -3 增多的干扰立地上, 适于N H +4 营养的“原优势针叶树种”(幼苗)将变成氮素养
分资源的弱势竞争者 (立地被更适于NO -3 营养的先锋植物占据) 并由此导致其更新困难[35, 97 ], 这一问题在退化森林生态系统
恢复与重建过程中须予以充分考虑。另外, 在人工林培育 (包括苗木培育)过程中, 也应注意喜铵针叶树的氮营养特性。我国温带
针阔混交林区、寒温带针叶林区及高海拔针叶林区都有大面积的退化森林生态系统和多个“顶极性”针叶树种, 因此系统地研究
森林土壤氮营养生境特征和针叶树种的适应性问题在我国颇具现实意义。
揭示森林土壤矿质氮转化过程的控制机理和森林树种适应某一特征性氮营养生境的生理机制有助于从根本上解决上述生
态学和林学问题, 所以该领域的基础性研究也将有着良好前景。
References:
[ 1 ] Cai X M , Shang Y C. Genera l E cology. Beijing: Beijing U niversity P ress, 1995. 29~ 32.
[ 2 ] Zhang F S, L i X L , W ang J G, et a l. E nv ironm en ta l S tress and R h iz osp here N u trition of P lan t. Beijing: Ch ina A gricu ltu ral P ress, 1998.
4~ 50.
[ 3 ] W ang Q R , L i J Y, L i Z S. D ynam ics and p ro spect on studies of h igh acquisit ion of so il unavailab le pho spho rus by p lan ts. P lan t
N u trition and F ertiliz er S cience, 1998, 4 (2) : 107~ 116.
[ 4 ] L iao H , Yan X L. A d vanced S cience of P lan t N u trition. Beijing: Science P ress, 2003. 197~ 202.
[ 5 ] L ynch J. T he ro le of nu trien t2efficiency of crop s in modern agricu ltu re. J . C rop P ro. , 1998, 1: 241~ 264.
[ 6 ] A erts R , Chap in F S. T he m ineral nu trit ion of w ild p lan t revisited: a re2evaluation of p rocesses and patterns. A d v E col. R es. , 2000,
30: 1~ 67.
8803 生 态 学 报 25 卷
[ 7 ] Gutsch ick V P, A lamo s L , M exico N. Evo lved strategies in n itrogen acquisit ion by p lan ts. T he A m erican N atu ra list, 1981, 118 (5) : 607
~ 637.
[ 8 ] T urnbullM H , Schm idt S, E rsk ine P D , et a l. Roo t adap tation and nitrogen source acquisit ion in natural eco system s. T ree P hy siology ,
1996, 16: 941~ 948.
[ 9 ] P lassard C, Bonafo s B and Touraine B. D ifferen tial effects of m ineral and o rganic N sources, and of ectom yco rrh izal infection by
H ebelom a cy lind rosp orum , on grow th and N utilization in P inus p inaster. P lan t Cell E nv iron, 2000, 23: 1195~ 1205.
[ 10 ] V essey J K, H enry L T , Chaillou S, et a l. Roo t2zone acidity affects relat ive up take of n itrate and ammonium from m ixed nitrogen
sources. J . P lan t N u tr. , 1990, 13: 95~ 116.
[ 11 ] Stadler J and Gebauer G. N itrate reduction and nitrate conten t in ash trees (F rax inus ex celsior L. ) : distribu tion betw een compartm ents,
site comparison and seasonal variat ion. T rees, 1992, 6: 236~ 240.
[ 12 ] Cui X Y. Behavio rs in n itrogen nutrit ion of P inus kora iensis and B etu la p la typ hy lla and their in terspecific differen tiat ion. Ch inese J ou rna l
of A pp lied E cology , 1998, 9 (2) : 123~ 127.
[ 13 ] Zhang Y D , Fan Z Q ,W ang Q C, et a l. Effect of differen t n itrogen fo rm s on grow th of F rax inus m and shu rica seedlings. Ch inese J ou rna l
of A pp lied E cology , 2000, 11 (5) : 665~ 667.
[ 14 ] W alch2L iu P, N eum ann G, Bangerth F, et a l. Rap effects of n itrogen fo rm on leaf mo rphogensis in tobacco. E xp. B ot. , 2000, 51: 227~
237.
[ 15 ] Guo S, B rück H and Sattelm acher B. Effects of supp lied n itrogen fo rm on grow th and w ater up take of F rench bean (P haseolus vu lg aris
L. ) p lan ts. P lan t and S oil, 2002, 239: 267~ 275.
[ 16 ] V an den D riessche R. Response of conifer seedlings to n itrate and ammonium sources of n itrogen. P lan t S oil, 1971, 34: 421~ 439.
[ 17 ] Ingestad T. M ineral nu trien t requ irem ents of P inus sy lvestris and P icea abies seedlings. P hy siol. P lan t. , 1979, 45: 373~ 380.
[ 18 ] F in lay R D , Ek H , O dham G, et a l. U p take, translocation, and assim ilat ion of n itrogen from N 2labelled ammonium and nitrate sources
by in tact ectom yco rrh izal system s of F ag us sy lva tica infected w ith P ax illus involu tus. N ew P hy tol. , 1989, 113: 47~ 55.
[ 19 ] M arschner H , H ausslings M , Geo rge E. Ammonium and nitrate up take rates and rh izo sphere pH in non2m yco rrh izal roo ts of N o rw ay
sp ruce (P icea abies (L. ) Karst. ). T rees, 1991, 5: 14~ 21.
[ 20 ] M iller P M , Eddlem an L M , M iller J M. T he response of juvenile and sm all adu lt w estern jun iper (J un ip erus occid en ta lis) to n itrate and
ammonium fert ilization. Can. J . B ot. , 1991, 69: 2344~ 2352.
[ 21 ] Peuke D A and T ischner R. N itrate up take and reduction of a specially cu lt ivated sp ruce seedlings. P icea abies (L. ) Karst. J . E xp.
B ot. , 1991, 239: 723~ 728.
[ 22 ] Garnett T P and Sm ethurst P J. Ammonium and nitrate up take by E uca lyp tus n itens: effects of pH and temperature. P lan t S oil, 1999,
214: 133~ 140.
[ 23 ] M ajerow icz N , Kerbauy G B, N ievo la C C, et a l. Grow th and nitrogen m etabo lism of Catasetum f im bria tum (O rch idaceae) grow n w ith
differen t n itrogen sources. E nv ironm en ta l and E xp erim en ta l B otany , 2000, 44: 195~ 206.
[ 24 ] Cui X Y. N itrogen nutrit ion patterns of larch and ash trees and their in terspecific differen tiat ion. Ch inese J ou rna l of A pp lied E cology ,
2001, 12 (6) : 815~ 818.
[ 25 ] C lark son D T. Facto rs affecting m ineral nu trien t acquisit ion by p lan ts. A nn. R ev. P lan t. P hy siol. , 1985, 36: 77~ 116.
[ 26 ] B loom A J. Ammonium and nitrate as n itrogen sources fo r p lan t grow th. IS I A tlas of S cience, 1988, 1: 55~ 59.
[ 27 ] Serna M D , L egaz B F, P rimo2m illo E. T he influence of n itrogen concentration and ammonium önitrate ratio on N 2up take, m ineral
compo sit ion and yield of citrus. P lan t and S oil, 1992, 147: 13~ 23.
[ 28 ] Jones H E and D igh ton J. T he use of nutrien t b ioassays to assess the response of E uca lyp tus g rand is to fert ilizer app lication 2. A field
experim ent. Canad ian J ou rna l of F orest R esearch , 1993, 23: 7~ 13.
[ 29 ] Jones H E, H gberg P, O h lsson H. N utrien t assessm ent of a fo rest fert ilization experim ent in no rthern Sw eden by roo t b ioassays.
F orest E cology and M anag em en t, 1991, 64: 59~ 69.
[ 30 ] Falkengren2Grerup U. In terspecies differences in the p reference of ammonium and nitrate in vascu lar p lan ts. O ecolog ia, 1995, 102: 305~
311.
[ 31 ] C laussen W and L enz F. Effect of ammonium o r n itrate nu trien t on net pho to synthesis, grow th, and activity of the enzym es nitrate
reductase and glu tam ine synthetase in b lueberry, raspberry and straw berry. P lan t and S oil, 1999, 208: 95~ 102.
[ 32 ] M alago liM , CannalA D , Q uaggio tt i S, et a l. D ifferences in n itrate and ammonium up take betw een Sco ts p ine and European larch. P lan t
and S oil, 2000, 221: 1~ 3.
[ 33 ] W arren C R and A dam s M A. Po ssib le cause of slow grow th of n itrate2supp lied P inus p inaster. Can. J . F or. R es. , 2002, 32: 569~ 580.
[ 34 ] Raven J A , W o llenw eber B, H andeley L L. A comparison of ammonium and nitrate as n itrogen sources fo r pho to litho troph s. N ew
P hy tolog ist, 1992, 121: 19~ 32.
[ 35 ] L avo ie N , V ézina L , M argo lis H A. A bso rp tion and assim ilat ion of n itrate and ammonium ions by jack p ine seedlings. T ree P hy siology ,
1992, 11: 171~ 183.
[ 36 ] Bedell J P, Chalo t M , Garn ier A , et a l. Effects of n itrogen source on grow th and activity of n itrogen2assim ilat ing enzym es in Douglas2
fir seedlings. T ree P hy siology , 1999, 19: 205~ 210.
[ 37 ] B ijlsm a R J , L am bers H and Koo ijm an A L. A dynam ic w ho le2p lan t model of in tegrated m etabo lism of n itrogen and carbon 1.
Comparative eco logical imp lication of ammonium 2nitrate in teractions. P lan t and S oil, 2000, 220: 49~ 69.
[ 38 ] B ijlsm a R J and L am bers H. A dynam ic w ho le2p lan t model of in tegrated m etabo lism of n itrogen and carbon 2: Balanced grow th driven by
C fluxes and regulated by signals from C and N substrate. P lan t and S oil, 2000, 220: 71~ 87.
[ 39 ] W ang X Z, W ang X Y, Feng X. Studies on the rates of NO -3 and N H +4 up take of detached roo ts and N RA of leaves of differen t
ammonium to lerated p lan ts. J ou rna l of S hand ong A g ricu ltu ra l U niversity , 1999, 30 (1) : 47~ 52.
[ 40 ] Stew art G R , Pearson J , Kershaw J L , et a l. B iochem ical aspects of ino rgan ic n itrogen assim ilat ion by woody p lan ts. A nna les d es
S cience F orestieres, 1989, 46 ( supp l) : 648~ 653.
[ 41 ] Giardina P and Rhoades C C. C lear cu tt ing and burn ing affect n itrogen supp ly, pho spho rus fractions and seedling grow th in so ils from a
W yom ing lodgepo le p ine fo rest. F orest E cology and M anag em en t, 2001, 140: 19~ 28.
[ 42 ] V itousek P M , Go sz J R , Grier C C, et a l. A comparative analysis of po ten tial n itrification and nitrate mobility in fo rest eco system s.
E colog ica l M onog rap hs, 1982, 52 (2) : 155~ 177.
[ 43 ] Stark J M and H art S C. H igh rates of n itrification and nitrate tu rnover in undistu rbed conferous fo rests. N atu re, 1997, 385: 61~ 64.
980311 期 崔晓阳 等: 原始森林土壤N H +4 öNO -3 生境特征与某些针叶树种的适应性
[ 44 ] O h rui K, M itchell M J, B ischoff J M. Effect of landscape po sit ion on N m ineralization and nitrification in a fo rested w atershed in the
A dirondack M ountains of N ew Yo rk. Can. J . F or. R es. , 1999, 29: 497~ 508.
[ 45 ] P resco tt C E, Hope G D , B levins L L. Effect of gap size on lit ter decompo sit ion and so il n itrate concentrations in a h igh2elevation
sp ruce2fir fo rest. Can. J. F or. R es. , 2003, 33: 2210~ 2220.
[ 46 ] D eL uca T H , N ilsson M C, Zack risson O. N itrogen m ineralization and pheno l accum ulation along a fire ch rono sequence in no rthern
Sw eden. O ecolog ia, 2002, 133: 206~ 214.
[ 47 ] D evito K, W estrook C J , Sch iff S L. N itrogen m ineralization and nitrification in up land and peatland fo rest so ils in two Canadian sh ield
catchm ents. Can. J . F or. R es. , 1999, 29: 1793~ 1804.
[ 48 ] L i Y W. Chem i2eco logical studies on the n itrogen cycle p rocesses of fo rest (É ). A cta E colog ica S in ica, 1995, 15, Supp. (B) : 31~ 40.
[ 49 ] L i Y W. Chem i2eco logical studies on the n itrogen cycle p rocesses of fo rest (Ê ). A cta E colog ica S in ica, 1995, 15, Supp. (B) : 148~ 159.
[ 50 ] Zhou C P, O uyang H. T emperature and mo isture effects on so il n itrogen m ineralization in deciduous broad2leaved fo rest. A cta
P hy toecolog ia S in ica, 2001, 25 (2) : 204~ 209.
[ 51 ] Cui X Y. Eco logy of fo rest n itrogen nutrit ion in no rtheast Ch ina. H arb in: N o rtheast Fo restry U niversity P ress, 1998. 14~ 16.
[ 52 ] Sha L Q , Cao M. N utrien ts in treefall gap of trop ical seasonal rainfo rest in X ishuangbana. J ou rna l of N ortheast F orestry U niversity ,
1999, 27 (6) : 78~ 80.
[ 53 ] Sha L Q , M eng Y, Feng Z L , et a l. N itrification and net N m ineralization rate of so ils under differen t trop ical fo rests in X ishuang2
banna, Southw est Ch ina. A cta P hy toecolog ica S in ica, 2000, 24: 152~ 156 .
[ 54 ] Go sz J R and W h ite C S. Seasonal and annual variat ion in n itrogen m ineralization and nitrification along an elevational gradien t in N ew
M exico. B iog eochem istry , 1986, 2: 281~ 297.
[ 55 ] Donaldson J M and H enderson G S. N itrification po ten tial of secondary2succession up land oak fo rests É . M ineralization and
nitrification during labo rato ry incubations. S oil S ci. S co. A m. J . , 1990, 54: 892~ 897.
[ 56 ] Johnson D W. N itrogen reten tion in fo rest so ils. J . E nv ieon. Q ual. , 1992, 21: 1~ 12.
[ 57 ] Cui X Y and Zheng G Q. So il n itrogen status of larch p lan tations in comparison w ith secondary broad2leaved fo rest. J ou rna l of F orestry
R esearch , 1998, 9 (1) : 13~ 15.
[ 58 ] Berg B. N utrien t release from lit ter and hum us in coniferous fo rest so ils: A m ini2review. S cand. J. F or. R es. , 1986, 1: 359~ 369.
[ 59 ] B ink ley D and H art S C. T he components of n itrogen availab ility assessm ents in fo rest so ils. A d vances in S oil S cience, 1989, 10: 57~
112.
[ 60 ] M o J M , Kong G H. Effects of lit ter and understo ry removal on so il N availab ility in a subtrop ical p ine fo rest of Ch ina. A cta E colog ica
S in ica, 1997, 17 (1) : 109~ 112.
[ 61 ] Evans C A ,M iller E K, F riedland A J. N itrogen m ineralization associated w ith b irch and fir under differen t so il mo istu re regim es. Can.
J . F or. R es. , 1998, 28: 1890~ 1898.
[ 62 ] L i G C, H an X G, H uang J H. D ry2season dynam ics of so il ino rgan ic n itrogen poo ls in p rim ary L ithocarp us xy locarp us fo rest and
degraded vegetations in A iL ao M ountain, Yunnan P rovince. A cta P hy toecolog ica S in ica, 2001, 25 (2) : 210~ 217.
[ 63 ] Johnson D W and Edw ards N T. Effects of stem girdling on biochem ical cycles in a m ixed deciduous fo rest in eastern T ennessee Ê .
So il n itrogen m ineralization and nitrification rates. O ecolog ia, 1979, 40: 259~ 271.
[ 64 ] L am b D. So il n itrogen m ineralization in a secondary rainfo rest succession. O ecolog ia, 1980, 47: 257~ 263.
[ 65 ] A dam s M A and A ttiw ill P M. N itrogen m ineralization and nitrate reduction in fo rests. S oil B iol. B iochem. , 1982, 14: 197~ 202.
[ 66 ] Johnson D W and Ball J T. Environm ental po llu tion and impacts on so ils and fo rests of N o rth Am erica. W ater A ir S oil P ollu t. , 1990,
54: 3~ 20.
[ 67 ] A ttiw ill P M , Po lglase P J , W eston C J , et a l. N utrien t cycling in fo rests of sou th2eastern A ustralia. In: P. M. A ttiw ill and M. A.
A dam s, eds. N u trition of E uca lyp ts. Commonw ealth Scien tific and Industrial Research O rganization Publish ing, M elbourne, A ustralia,
1996. 191~ 228.
[ 68 ] Co le D W. N itrogen up take and translocation by fo rest eco system s. In: F. E. C lark and T. Ro ssw all, eds. T errestria l n itrog en cy cles.
E col. B u ll. 33: 219~ 232.
[ 69 ] V itousek P M. C learcu tt ing and the n itrogen cycle. T errestrial n itrogen cycles. E col. B u ll. , 1981, 33: 631~ 642.
[ 70 ] Robertson G P. Facto rs regulating nitrification in a p rim ary and secondary succession. E cology , 1982, 63: 1561~ 1573.
[ 71 ] M o rtland M M and W o lco tt A R. So rp tion of ino rgan ic n itrogen compounds by so ils m aterials. In: W. V. Bartho lom ew and F. E.
C lark, ed. So il n itrogen. A gron. M onogr. 10. A SA ,M adison,W I, 1965. 150~ 197.
[ 72 ] N omm ik H and V ah tras K. Reten tion and fixation of ammonium and ammonia in so ils. In F. J. Stevensen, et a l. eds. N itrogen in
agricu ltu ral so ils. A gron. M ongr. 22. A SA ,M adison,W I. , 1982. 123~ 172.
[ 73 ] Berg B, Ekbohm G, M cC laugherty C. L ign in and ho locellu lo se relat ions during decompo sit ion in a Sco ts p ine fo rest. Can. J . B ot. , 1984,
62: 2540~ 2550.
[ 74 ] Berg B and M cC laugherty C. N itrogen release from lit ter in relat ion to disappearance of lign in. B iochem istry , 1987, 4: 219~ 224.
[ 75 ] Sch im el J P and F irestone M K. Ino rgan ic N inco rpo ration by coniferous fo rest floo r m aterial. S oil B iol. B iochem. , 1989, 21: 41~ 46.
[ 76 ] Sch im el J P and F irestone M K. N itrogen inco rpo ration and flow th rough a coniferous fo rest so il p rofile. S oil S ci. S oc. A m. J . , 1989b,
53: 779~ 784.
[ 77 ] N o rthup R R. Po lypheno l contro l of n itrogen release from p ine lit ter. N atu re, 1995, 377: 227~ 229.
[ 78 ] N o rthup R R. Po lypheno ls as regulato rs of p lan t2lit ter2so il in teractions in no rthern Califo rn ia’s pygm y fo rest: a po sit ive feedback?
B iochem istry , 1998, 42: 189~ 220.
[ 79 ] Sch im el J P. T he ro le of balsam pop lar secondary chem icals in contro lling so il nu trien t dynam ics th rough succession in the A laskan taiga.
B iochem istry , 1998, 42: 221~ 234.
[ 80 ] R ice E L and Pancho ly S K. Inh ib it ion of n itrification by clim ax eco system s. A m. J . B ot. , 1972, 59: 1033~ 1040.
[ 81 ] R ice E L and Pancho ly S K. Inh ib it ion of n itrification by clim ax eco system s Ê . A ddit ional evidence and po ssib le ro le of tann ins. A m.
J . B ot. , 1973, 60: 691~ 702.
[ 82 ] L odh i and Killingbeck M A. Comparative inh ib it ion of n itrifiers and nitrification in a fo rest comm unity as a resu lt of the allelopath ic
nature of various tree species. A m. J . B ot. , 1978, 65: 1135~ 1137.
[ 83 ] O lson R K and Reiners W A. N itrification in subalp ine Balsam fir so ils: T ests fo r inh ib ito ry facto rs. S oil B iol. B iochem. , 1983, 15: 413
~ 418.
0903 生 态 学 报 25 卷
[ 84 ] Baldw in I T , O lson R K and ReinersW A. P ro tein b inding pheno lics and the inh ib it ion of n itrification in subalp ine balsam fir so ils. S oil
B iol. B iochem. , 1983, 15: 419~ 423.
[ 85 ] W h ite C S. V o latile and w ater2so lub le inh ib ito rs of n itrogen m ineralization and nitrification in a pondero sa p ine eco system. B iol. F ertil.
S oils, 1986, 2: 97~ 104.
[ 86 ] Robertson G P and V itousek P M. N itrification po ten tials in p rim ary and secondary succession. E cology , 1981, 62: 376~ 386.
[ 87 ] Cooper A B. Supp ression of n itrate fo rm ation w ith in an exo tic conifer p lan tation. P lan t S oil, 1986, 93: 383~ 394.
[ 88 ] B rem ner J M and M cCarthy G W. Effects of terpeno ids on nitrification in so il. S oil S ci. S oc. A m. J . , 1988, 52: 1630~ 1633.
[ 89 ] B rais S, Cam iréC, Bergeron Y, et a l. Changes in nutrien t availab ility and fo rest floo r characterist ics in relat ion to stand age and fo rest
compo sit ion in the southern part of the bo real fo rest of no rthw estern Q uebec. F orest E cology and M anag em en t, 1995, 76: 181~ 189.
[ 90 ] Sch im el J , Granstr m A. F ire severity and vegetation response in the bo real Sw edish fo rest. E cology , 1996, 77: 1436~ 1450.
[ 91 ] Souto X C, Ch iapusio G, Pellissier F. Relationsh ip s betw een pheno lics and so il m icroo rgan ism s in sp ruce fo rests: sign ificance fo r natural
regenration. J . Chem. E col. , 2000, 26: 2025~ 2034.
[ 92 ] B radley R L , T itus B D , P reston C P. Changes to m ineral N cycling and m icrob ial comm unities in b lack sp ruce hum us after addit ions of
(N H 4) 2SO 4 and condensed tannins ex tracted from K alm ia ang ustif olia and balsam fir. S oil B iol. B iochem. , 2000, 32: 1227~ 1240.
[ 93 ] Pasto r J and Po st W M. Influence of clim ate, so ilmo istu re, and succession on fo rest carbon and nitrogen cycles. B iochem istry , 1986, 2:
3~ 21.
[ 94 ] Cui X Y. Fo rest So il and fo rest p roductivity po ten tial in no rtheast Ch ina. H arb in: H eilongjiang Science and T echno logy P ress, 1994. 37
~ 92.
[ 95 ] Ineson P, T aylo r K, H arrison A F, et a l. Effects of clim ate change on nitrogen dynam ics in up land so ils 1. A transp lan t app roach.
G loba l Chang e B iology , 1998, 4 (1) : 143~ 152.
[ 96 ] D avidson E A , H art S C and F irestone M K. In ternal cycling of n itrate in so ils of a m ature coniferous fo rest. E cology , 1992, 73: 1148~
1156.
[ 97 ] Kronzucker H J , SiddiqiM H and Glass A D M. Conifer roo t discrim ination against so il n itrate and the eco logy of fo rest succession.
N atu re, 1997, 385: 59~ 61.
[ 98 ] Glass A D and Siddiqi M Y. N itrogen abso rp tion by p lan t roo ts. In: H. S. Strivatava and R. P. Singh. , eds. N itrog en N u trition in
H ig her P lan ts. A ssociated Publish ing Co. , N ew D elh i, 1999. 21~ 56.
[ 99 ] V ogt M and Edmonds R L. NO -3 and N H +4 level in relat ion to site quality in Douglas2fir so il and lit ter. N orthw ea t S ci. , 1982, 56: 83~
89.
[ 100 ] T urner D P and F ranz E H. T he influence of w estern hem lock and w estern redcedar on m icrob ial num bers, n itrogen m ineralization and
nitrification. P lan t S oil, 1985, 88: 259~ 267.
[ 101 ] Rash id G H and Scheafer R. Seasonal variat ion in the n itrogen m ineralization and m ineral n itrogen accum ulation in two temperate fo rest
so ils. P ed obiolog ia, 1988, 31: 335~ 347.
[ 102 ] Knoepp J D , T urner D P, T ingey D T. Effects of ammonium and nitrate on nutrien t up take and activity of n itrogen assim ilat ing enzym es
in w estern hem lock. F orest E cology and M anag em en t, 1993, 59: 179~ 191.
[ 103 ] Kronzucker H J , SiddiqiM Y and Glass A D M. Kinetics of N H +4 influx in sp ruce. P lan t P hy siol. , 1996, 110: 773~ 779.
[ 104 ] O lsthoo rn A F M , Keltjens W G, V an B B, et a l. Influence of ammonium on fine roo t developm ent and rh izo sphere pH of Douglas2fir
seedling in sand. P lan t and S oil, 1991, 133: 75~ 81.
[105 ] V an den D riessche R and D angerfield J. Response of Douglas2fir seedlings to n itrate and ammonium nitrogen sources under various
environm ental condit ions. P lan t S oil, 1975, 42: 685~ 702.
[ 106 ] L ee J A , Stew ard G R. Eco logical aspects of n itrogen assim ilat ion. A d vances in B otan ica l R esearch , 1976, 6: 1~ 43.
[ 107 ] V ézina L P,M argo lis H A and O uim et R. T he activity, characterization and distribu tion of the n itrogen assim ilat ion enzym e, glu tam ine
synthetase, in jack p ine seedlings. T ree P hy siol. , 1988, 4: 109~ 118.
[ 108 ] M argo lis H A , V ézina L P, O uim et R , et a l. Relation of ligh t and nitrogen source to grow th, n itrate reductase and glu tam ine synthetase
activity of jack p ine seedlings. P hy siol P lan t, 1988, 72: 790~ 795.
[ 109 ] Seith B, Setzer B, F laig H , et a l. A ppearance of n itrate reductase and glu tam ine synthetase in differen t o rgans of the Sco ts p ine (P inus
sy lvestris) seedlings as affected by ligh t, n itrate and ammonium. P hy siol P lan t, 1994, 91: 419~ 426.
[ 110 ] Srivastata H S and Singh t R P. Ro le and regulation of L 2glu tam ate dehydrogenase activity in h igher p lan ts. P hy tochem istry , 1987, 26:
597~ 610.
[ 111 ] V o llbrech t A , Klein E, Kasem ir H. D ifferen t effects of supp lied ammonium on glu tam ine sythetase activity in m ustard (S inap is a lba) and
p ine (P inus sy lvestris) seedlings. P hy siol P lan t, 1989, 77: 129~ 135.
[ 112 ] O ak s A and H irel B. N itrogen m etabo lism in roo ts. A nnu. R ev. P lan t P hy siol. , 1985, 36: 345~ 365.
[ 113 ] Gerendás J , Zhu Z. Bendixen R , et a l. Physio logical and biochem ical p rocesses related to ammonium toxicity in h igher p lan ts. Z.
Pf lanz enern h r. B od enk , 1997, 160: 239~ 251.
[ 114 ] M eh rer I and M oh r H. Ammonium toxicity: descrip tion of the syndrom e in S inap sis a lba and the search fo r its causation. P hy siol.
P lan t, 1989, 77: 545~ 554.
[ 115 ] M agalhaes J R , H uber D M and T sai C Y. Evidence of increased 15N 2ammonium assim ilation in tom ato p lan ts w ith exogenous Α2
ketoglu tarate. P lan t S ci. , 1992, 85: 135~ 141.
[ 116 ] Pearson J and Stew art G R. T he depo sit ion of atmo spheric ammonia and its effects on p lan ts. N ew P hy tol. , 1993, 125: 283~ 305.
[ 117 ] Barker A V and M ills H A. Ammonium and nitrate nu trit ion of ho rticu ltu ral crop s. H ort. R ev. , 1980, 2: 395~ 423.
[118 ] F laig H and M oh r H. A ssim ilation of n itrate and ammonium by the Sco ts p ine (P inus sy lvestris) seedling under condit ions of h igh
nitrogen supp ly. P hy siol P lan t, 1992, 84: 568~ 576.
[ 119 ] V o llbrech t P and Kasem ir H I. Effects of exogenously supp lied ammonium on roo t developm ent of Sco ts p ine (P inus sy lvestris) seedling.
B ot A cta, 1992, 105 (4) : 306~ 312.
[ 120 ] Cooper H D and C lark son D T. Cycling of am ino nitrogen and o ther nu trien ts betw een shoo ts and roo ts in cereals as a po ssib le
m echanism in tegrating shoo t and roo t in the regulation of nutrien t up take. J . E xp. B ot. , 1989, 40: 753~ 762.
[ 121 ] M uller B, Touraine B and Rennenberg H. In teraction betw een atmo spheric and pedo spheric n itrogen nutrit ion in sp ruce (P icea abies L.
Karst) seedlings. P lan t Cell E nv iron. , 1996, 19: 345~ 355.
[ 122 ] Gessler A , Schneider C, V on S D , et a l. F ield and labo rato ry experim ents on net up take of n itrate and ammonium by the roo ts of sp ruce
190311 期 崔晓阳 等: 原始森林土壤N H +4 öNO -3 生境特征与某些针叶树种的适应性
(P icea abies) and beech (F ag us sy lva tica) trees. N ew P hy tol. , 1998, 138: 275~ 285.
[ 123 ] Fo rde B G and C lark son D T. N itrate and ammonium nutrit ion of p lan ts: physio logical and mo lecu lar aspects. A d v. B ot. R es. , 1999,
33: 1~ 90.
[ 124 ] V idm ar J J , Zhuo D , SiddiqiM Y, et a l. Regulation of h igh2affin ity n itrate transpo rter genes and h igh2affin ity n itrate influx by nitrogen
poo ls in roo ts of barley. P lan t P hy siol. , 2000, 123: 307~ 318.
[125 ] W eber P, Stoerm er H , Gessler A , et a l. M etabo lic responses of N o rw ay sp ruce (P icea abies) trees to long2term fo rest m anagem ent
p ractices and acute (N H 4) 2SO 4 fert ilization: transpo rt of so lub le non2p ro tein n itrogen compounds in xylem and ph loem. N ew . P hy tol. ,
1998, 140: 461~ 475.
[ 126 ] Raven J A and Sm ith F A. N itrogen assim ilat ion and transpo rt in vascu lar land p lan ts in relat ion to in tercellu lar pH regulation. N ew
P hy tol. , 1976, 76: 415~ 431.
[ 127 ] O lykan S T and A dam s J A. P inus rad ia ta seedling grow th and m icronutrien t up take in a sand cultu re experim ent, as affected by the
fo rm of n itrogen. N . Z. J . F or. S ci. , 1995, 25: 49~ 60.
[ 128 ] J ia H J. Study on the abso rp tion and utilization of N H +4 2N and NO -3 2N by aspen seedlings. S hand ong F orest S cience and T echnology ,
1990, (1) : 62~ 66.
[ 129 ] Ruan J Y, Zhang F S, M ing H W. Effect of n itrogen fo rm and pho spho rus source on the grow th, nu trien t up take and rh izo sphere so il
p roperty of Cam ellia sinensis L. P lan t and S oil, 2000, 223: 63~ 71.
[ 130 ] Ryan P J , Gessel S P, Zaso sk i R J. A cid to lerance of Pacific N o rthw est conifers in so lu tion cu ltu re É . Effect of h igh alum inum
concentration and so lu tion acidity. P lan t S oil, 1986, 96: 239~ 257.
[ 131 ] Xu L Y, L i J Q. Seasonal dynam ics of m ineral elem ent concentrations in Ko rean p ine seedlings. F orest S cience and T echnology , 1989,
(4) : 3~ 6.
[ 132 ] H em issari H S. T empo ral variat ions of nu trien t concentration in Sco ts p ine needle. S cand. J . F or. R es. , 1990, 59 (2) : 177~ 193.
[ 133 ] W ang Z Q , L iu X K. Seasonal dynam ics of nu trien t elem ents in the leaves, b ranches and bark of P inus koea iensis and J ug lans
m and shu rica m ixed fo rest. J . N ortheast F orestry U niversity , 1991, 19 ( supp. ) : 251~ 257.
[ 134 ] Rathfon R A. T empo ral variat ions of nu trien t concentration in the needles of P itch p ine, L oblo lly p ine and their hybrid p ine. F or. E col.
M anag. , 1993, 58 (1ö2) : 137~ 151.
[ 135 ] Rygiew ica P T , B ledsoe C S, Zaso sk i R J. Effects of ectom yco rrh izae and so lu tion pH on 15N ammonium up take by coniferous seedlings.
Can. J . F or. R es. , 1984a, 14: 885~ 892.
[ 136 ] Gahoonia T S. Influence of roo t2induced pH on the so lub ility of so il alum inum in the rh izo sphere. P lan t and S oil, 1993, 149: 289~ 291.
[ 137 ] M ajdi H and Persson H. Effects of ammonium sulphate app lication on the chem istry of bu lk so il, rh izo sphere, and fine2roo t distribu tion
in a P icea abies (L. ) Stand. P lan t and S oil, 1995, 168~ 169: 151~ 160.
[ 138 ] W u C, W ang Z Q , Fan Z Q , et a l. Effects of differen t concentrations and fo rm ratio s of n itrogen on ch lo rophyll b io synthesis,
pho to synthesis, and biom ass part it ion ing in F rax inus m and sh ru rica seedlings. A cta P hy toecolog ica S in ica, 2003, 27 (6) : 771~ 779.
[ 139 ] Xu C Y. Effects of fine roo t nu trit ion on leaf pho to synthesis of M anchurian ash seedlings. N o rtheast Fo restry U niversity Po stdocto rate
Paper, 2001. 37~ 40. .
[ 140 ] V uo rinen A H , Ro ssi P, V apaavuo ri E M. Com bined effect of ino rgan ic carbon and differen t n itrogen sources in the grow th m edia on
biom ass p roduction and nitrogen up take in young w illow and birch p lan ts. P lan t P hy siol. , 1995, 147: 236~ 242.
[ 141 ] Stew art G R , H egarty E E, Spech t R L. Ino rgan ic n itrogen assim ilat ion in p lan ts of A ustralian rainfo rest comm unities. P hy siolog ia
P lan tarum , 1988, 74: 26~ 33.
参考文献:
[ 1 ] 蔡晓明, 尚玉昌. 普通生态学 (下). 北京: 北京大学出版社, 1995. 29~ 32.
[ 2 ] 张福锁, 李晓林, 王敬国, 等. 环境胁迫与植物根际营养. 北京: 中国农业出版社, 1998. 4~ 50.
[ 3 ] 王庆仁, 李继云, 李振声. 植物高效利用土壤难溶态磷研究动态及展望. 植物营养与肥料学报, 1998, 4 (2) : 107~ 116.
[ 4 ] 廖红, 严小龙. 高级植物营养学. 北京: 科学出版社, 2003. 197~ 202.
[ 12 ] 崔晓阳. 红松白桦的氮营养行为及其种间分异. 应用生态学报, 1998, 9 (2) : 123~ 127.
[ 13 ] 张彦东, 范志强, 王庆成, 等. 不同形态氮素对水曲柳幼苗生长的影响. 应用生态学报, 2000, 11 (5) : 665~ 667.
[ 24 ] 崔晓阳. 落叶松、水曲柳的氮营养行为及其种间分异. 应用生态学报, 2001, 12 (6) : 815~ 818.
[ 39 ] 王宪泽, 王晓云, 冯火斤. 不同耐铵性植物幼苗离体根对NO -3 2N 和N H +4 2N 选择吸收速率及叶片N RA 的研究. 山东农业大学学报,
1999, 30 (1) : 47~ 52.
[ 48 ] 李玉文. 森林群落N 循环过程化学生态研究 É . 生态学报, 1995, 15, (Supp. B) : 31~ 40.
[ 49 ] 李玉文. 森林群落N 循环过程化学生态研究 Ê . 生态学报, 1995, 15, (Supp. B) : 148~ 159.
[ 50 ] 周才平, 欧阳华. 温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响, 植物生态学报, 2001, 25 (2) : 204~ 209. .
[ 51 ] 崔晓阳. 东北森林土壤氮素营养的生态学. 哈尔滨: 东北林业大学出版社, 1998. 14~ 16.
[ 52 ] 沙丽清, 曹敏. 西双版纳热带季雨林林冠下及林窗土壤养分对比研究. 东北林业大学学报, 1999, 27 (6) : 78~ 80.
[ 53 ] 沙丽清, 孟盈, 冯志立, 等. 西双版纳不同热带森林土壤氮矿化和硝化作用研究. 植物生态学报, 2000, 24: 152~ 156.
[ 60 ] 莫江明, 孔国辉. 凋落物和林下收割对鼎湖山马尾松林土壤有效氮动态的影响. 生态学报, 1997, 17 (1) : 109~ 112.
[ 62 ] 李贵才, 韩兴国, 黄建辉. 哀牢山木果柯林及其退化植被下土壤无机氮库的干季动态特征. 植物生态学报, 2001, 25 (2) : 210~ 217.
[ 94 ] 崔晓阳. 东北森林的土壤潜力. 哈尔滨: 黑龙江科学技术出版社, 1994. 37~ 92.
[ 128 ] 贾慧君. 小叶杨吸收利用N H +4 2N 和NO -3 2N 的研究. 山东林业科技, 1990, (1) : 62~ 66.
[ 131 ] 徐丽英, 李俊清. 红松幼苗矿质元素含量的季节动态, 林业科技, 1989, (4) : 3~ 6.
[ 133 ] 王政权, 刘秀坤. 红松胡桃楸混交林叶、枝、皮营养元素季节动态, 东北林业大学学报, 1991, 19 (专) : 251~ 257.
[ 138 ] 吴楚, 王政权, 范志强, 等. 不同氮浓度和形态比例对水曲柳幼苗叶绿素合成、光合作用以及生物量分配的影响. 植物生态学报, 2003, 27
(6) : 771~ 779.
[ 139 ] 徐程扬. 细根营养对水曲柳叶片光合作用的影响, 哈尔滨: 东北林业大学博士后出站报告, 2001. 37~ 40.
2903 生 态 学 报 25 卷