免费文献传递   相关文献

Role of Mitochondrial Alternative Oxidase(AOX) in Photoprotection in Apple Detached Leaf under Water Stress

AOX途径在苹果离体叶片失水过程中的光破坏防御作用



全 文 :书!"#$%&
,2016,36(5):0964-0970
犃犮狋犪犅狅狋.犅狅狉犲犪犾.犗犮犮犻犱犲狀狋.犛犻狀.
  !"#$:10004025(2016)05096407               犱狅犻:10.7606/j.issn.10004025.2016.05.0964
%&(
:20160125;)*&%+(:20160430
,-./

()*+,%-.
(ZR2012CM039)、/%0123456789:$;$%<=>?@ABCD-.(2012KF05)
0123

EFG
(1988-),H,IJKL;,MNOPQR:STUV;WXYZKL。Email:xxy555111@163.com

[\:0

] ,IJ,KL^,MNOP_`;WTabcdKL。Email:sunshan03@163.com
犃犗犡456789:;<=>?@AB
CDEFG0H
!"#
1,2,
$%&
1,
()
2,
* +1,,-.2
(1()_`KLe,(/f271000;2(ghi%;j,%%k,(/f271018)
I J:lmnopqrstuvwxyz(AOXyz){|}~€_‚ƒQ„…Z†‡:S,ˆ_‰Š‹
ŒŽq‚ƒl‘

[’AOX“”•|–-—˜™(SHAM)šW,›œž_‚ƒ‚Ÿ ¡Q¢£¤¥%
¦o9820nmQZx§¦o,¨ RJIPtest}©,mnª«|’4¬AOXyzZQ­®:S。¨_¯°:|}~
±²€

‹ŒŽ‚ƒZAOX³´µ¶·¸,SHAM“”AOXyz¹,‚ƒº;»¼>ZQ“”;½«|~
±²€

‹ŒŽ‚ƒPSⅡ¾¿Qu%ÀÁZÂÃÄÅ(TRo/ABS)、PSⅡÆÇZÈÃO QA ÉÊË QB ZÌÍ
(ETo/TRo)€Î,PSⅡÏÐÀÁ¬Ñx§ZQÒ(ABS/RC)ÓÔ,ÕPSⅠZÖitu×¾³´(ΔI/Io)ØÙÚÛ;
SHAM“”AOXyz¹,TRo/ABS9ETo/TRoÜÝހÎ,ABS/RCÜÝÞÓÔ,›œßàªΔI/Io Z€Î。
KLál

|}~±²€

‹ŒŽ‚ƒPSⅡº;ªQ“”,ÕSHAMšW½¸>PSⅡQ“”Z›œ,ßàª
PSⅠZQ“”;‚ƒ«|’4¬,AOXwxÓâ㋌Ž‚ƒZ>NQ„…†‡ä”,åæã{PSⅠçè>N
Z­®:S

KLM

_

‹ŒŽ

«|

rswxyz

Q„…†‡
ANOP$
:Q945.78 !QRST:A
犚狅犾犲狅犳犕犻狋狅犮犺狅狀犱狉犻犪犾犃犾狋犲狉狀犪狋犻狏犲犗狓犻犱犪狊犲(犃犗犡)犻狀犘犺狅狋狅狆狉狅狋犲犮狋犻狅狀
犻狀犃狆狆犾犲犇犲狋犪犮犺犲犱犔犲犪犳狌狀犱犲狉犠犪狋犲狉犛狋狉犲狊狊
XUXiuyu1,2,CHENGLailiang1,JINLiqiao2,SUNShan1,LIUMeijun2
(1ShandongInstituteofPomology,Taian,Shandong271000,China;2ColegeofLifeScience,ShandongAgriculturalUniversi
ty,Taian,Shandong271018,China)
犃犫狊狋狉犪犮狋:Thepurposeofthisstudyistoexploretheroleofmitochondrialalternativeoxidase(AOX)in
photoprotectioninappleleavesunderwaterstress.Aftertreatedwithsalicylhydroxamicacid(SHAM)to
inhibittheAOXpathway,westudiedtheeffectsofAOXpathwayonphotoprotectionin犕犪犾狌狊犺狌狆犲犺犲狀狊犻狊
detachedleavesunderwaterstressbysimultaneouslyanalyzingchlorophylafluorescencetransientand
lightabsorbanceat820nm.TheresultsindicatedthatwaterstressinducedtheupregulationofAOXac
tivity.TheinhibitionofAOXpathwaycausedmoreseverephotoinhibition.Underwaterstress,maximum
quantumyieldofprimaryPSⅡphotochemistry(TRo/ABS)andPSⅡtrappedelectronbeingtransferred
fromQAtoQB(ETo/TRo)decreased,averageabsorbedphotonfluxperPSⅡreactioncenter(ABS/RC)
increased,whilethemaximumPSⅠredoxacitity(ΔI/Io)wasnotaffected.AftertreatedwithSHAMto
inhibittheAOXpathway,ABS/RCmarkedlyincreased,TRo/ABS,ETo/TRoaswelasΔI/Iosignificant
lydecreased.ItwasindicatedthatunderwaterstresstheinhibitionofAOXpathwaycausedmoresevere
photoinhibition,especialytothePSⅠ.Generaly,theresultsdemonstratethattheAOXpathwayplayed
animportantroleinthephotoprotectionin犕.犺狌狆犲犺犲狀狊犻狊leavesunderwaterstress,particularlyinthe
photoprotectionofPSⅠ.
犓犲狔狑狅狉犱狊:apple;犕犪犾狌狊犺狌狆犲犺犲狀狊犻狊Rehd.;waterstress;mitochondrialalternativeoxidase;photoprotec
tion
  éêëìíî9ïðñu,òóôõö÷¼
>
[1]。
òóøßà#$‚ƒ«|

º;Q“”

£ù
’úQÒZ·¸

¼>œûßà#$QRüýZQ
„…
[24]。
½þÿZÜu’4¬

#$Üu!Ý"#
ZQ„…†‡ä”

OÕ­®QRä$%ْúQ
ÒZ&

ˆ(ZQ„…†‡KL)*¬+‚Ÿq
,

-.ï/ÈÃÉÊ
[5]、
01‚2 3ïZ45
6
[6]、MehlerÀÁ[7]7³´tZv899v8:;
"<=
[8],
Õ{+‚Ÿq>ZQ„…†‡ä”KL
?@

ABZKLºC

opq¬Z AOXyzÒ
DèEFG5‚Ÿq,Z’ú×¾¥

OÕHIJ
Q{‚ƒKLZQ“”
[910]。AOXyzZQ„…
†‡:SM½NOP

QR

2S=TU#$ÓV@
AW@
[1113],
XY½ŠU#$¬ãZ[çè>NZ
Q„…†‡:S\Ø]&^

_ã¬<>NZ_‚_```

i)}a½
òó

bòóFc

Y;þ’4¬7defËòó~


ègòó~{_h#$Zij9;W;u
kl=XYZÚÛMèiÂ&^
[1416],
Õòó~
€ZQ„…†‡ä”KLm{n@

opq=KL
ºCòó~€_h#$456·¸
[17],Jia=
W@òóïð€Qwx

rsÀÁZ·¸ûtu
_‚ƒZQ“”
[18],
X AOXyz{òó~€
_h#$Q„…†‡ZÚÛv(\Ø]&^

w
x

UKLyS_z{‰Š‹ŒŽq‚ƒ:
‘

mnAOXwxyzZQ„…†‡:S,ˆÿ
l_Uó|}9~`€W0‚

1 ‘ƒ9X„
1.1 UVWX
A‘ƒl`#+()_`KLeA…Z
2B;‹ŒŽ(犕犪犾狌狊犺狌狆犲犺犲狀狊犻狊),+2014~
2015B;þ†y‡þˆÝùZ‰Š,‡Š3~4ƒ
‹ëŒC‚

SŽa¹

‘’“”@ABS+
A

1.2 UVYZ
•‚ƒS–z1.0cmZ—˜ü—L‚™ƒ,‹
š}l›œ

ݜž+:|¬
(CK),ŸÝœž
+2mmol·L-1Z|–-— ™(SHAM)¡¢¬,
£¤šW2h;+¹•‚™ƒ¯Y¥¦ò§,¨ ©½
20%PEG¡¢Ó,ªY*+«|;«|šWZ›œ
S¬­®¯
(MSL1000N1,°­)ܱ1000μmol·
m-2·s-1ZQ²šW(QÛÁ¦oZ³9QJ)。
}潫|šWZ0、2、4hœ‡´Ü±mgµ¶
ž

1.3 [\]R^_`
1.3.1 ;<>a •‚™ƒ¯Y¥ò,D·C52
´aB

‹¸60min¹,SPSYPRO|ˆ¹(WES
COR,º<)ܱ|ˆž。
1.3.2 bcdefg »‚¼½¾=[19]ZX„,
¿S OXYTHERM tÈÀ(Hansatech,Á<),½
25 ℃ ± ² €  ž w x ’ Í,À Á B  à Ä
OXYTHERMtÈÀZÅÂÆÇ*¤Å”。+À
ÁȬɸ2mLʙHË¢(pH6.8),¸ ·–z
1.0cmZ‚™ƒ,½£¤¬ž‚ƒZ5t’Í,
Ì5t’ÍÍËΞÏj¹

»‚10~20mincÐ
tÑÒÃZ€ÎÓÍÔՂƒÖwx’Í
(Rtotal);
Öwx’͝ž¹

>×½ÀÁȬ¸·2mLØ
è20mmol·L-1SHAMZʙHË¢(pH6.8),
¸·‚™ƒ

+25℃±²€ÙÂ20min,½£¤¬
ž‚ƒZ5t’Í

Ì5t’ÍÍËΞÏj¹

»‚10~20mincÐtÑÒÃZ€ÎÓÍÔՂ
ƒCOXyzwx’Í(RCOX)。AOXyzwx’Í
(RAOX)= Rtotal-RCOX。»‚ÓÚX„}杞7
’Û›«|œÐšWܹZÖwx’Í
、AOXyz
wx’Í9COXwx’Í。
1.3.3 hijCk820狀犿Ce%lmnop 
ݜ¡Q9820nmQÀÞS MPEA2)ßÒ#$
EÍ}©¹
(Hansatech,Á<)Â。žµ²
Strasser=[20]ZX„,à½5000μmol·m
-2·s-1
Z³9áQ€Âݜ¡Q

+¹gâáQ

½
1000μmol·m
-2·s-1ZãáQ€Â820nmQ
ÀÞ

»‚Strasser=[2122]1äZJIPtest¶‚}©
5695ÿ          EFG,=:AOXyz½_q‚ƒ«|’4¬ZQ„…†‡:S


{ÇåZ OJIP¡Q¢£¤¥%¦oܱ}
©

æ€#ç/ÔÕm{ûí¡QZèé
(ΔVt)、Ï
ÐÀÁ¬Ñx§ZQÒ
(ABS/RC)、K?Zm{û
í¡Q
(WK)、ÀÁ¬ÑÆÇZÂÃÄÅ(TRo/
ABS)、ÆÇÒ¬S+ÈÃÉÊZÂÃÄÅ(ETo/
TRo)=µ¶:
ΔVt=Δ[(犉t-犉O)/(犉m-犉O)];
ABS/RC=4×(犉K -犉O)×犉M/(犉J-犉O)/
(犉M-犉O);
WK=(犉K-犉O)/(犉J-犉O);
TRo/ABS=(犉M-犉O)/犉M;
ETo/TRo=(犉M-犉J)/(犉M-犉O);

,犉M=犉P,犉O、犉K、犉J9犉P }æl¤êÁ
¹20μs、300μs、3ms930ms7Öiݜ¡Qé。
»‚820nmZQx§¦o(Ä735±15nmZ
ãáQ¢£
),
ˆ820nmQx§ZÖié9ÖQé
èéZm{é
(ΔI/I0):l¸ÂPSⅠ Öitu×¾
Ò¥Zkl

1.4 qrYZ
ëS MicrosoftExcel2003ì²{¶‚ܱš
W9íî

ëSDPSì²{ۛšWZž¨_Ü
±<Ô}©

ëSÖQèﵶ„
(LSD,α=
0.05)ðnۛšWÜÐZèﵶ´。
2 ¨_T}©
2.1 sCtu>k犛犎犃犕YZvwxyz;<>
aB{|
  î1µñ,‹ŒŽq‚ƒZ|ˆé«|œÐ
ZòþÕóô€Î

Y½«|(

«|2h9«|4h
}æõl-0.5MPa,、-0.8MPa9-1.5MPa,öY
К÷½µ¶´èï
(犘<0.05)。øù«|šW’


{²œ9SHAM šWœÜЂƒ|ˆÛ÷
½µ¶èï

2.2 sCtu>k犛犎犃犕YZvwxyz;<}
~de45B{|
  O¯1ûˆú!,éê|}~4ÃZ·¸,{
²œ‹ŒŽ‚ƒZÖwx9AOXwxšµ¶Ô
û

T«|(mð

«|2hœÖwx9AOXwx
}æÓâª15.1%941.7%,«|4hœ}æÓâ
ª29.4%983.7%。՛ÿCOXwxyzZ³´
ü+u¬·¸
(犘>0.05),XYeýÖwxZð-
ÛÔÀÕµ¶€Î

ÕSHAM šWœZ‹ŒŽ
‚ƒÖwx’Í9 AOXwx’Í°µ€Î,öø
ù«|’4¬SHAM{AOXyz“”E_Ξ。
þ¯°«|’4¬‹ŒŽ‚ƒÖwxZ·¸MN
ۛQÿ!"¯ñšWœÐÜн0.05|‹÷½µ¶´èï;
€›
î1 JQ€«|’4¬‹ŒŽ‚ƒ|ˆZíu
Thedifferentnormallettersindicatesignificantdifference
amongtreatmentsat0.05level.Thesameasbelow
Fig.1 Changesinthewaterpotentialof犕.犺狌狆犲犺犲狀狊犻狊
leavesduringdehydrationwithlight
1 犛犎犃犕YZtu>?@Awxyz;<€de、犃犗犡de、犆犗犡deB‚
Table1 Changesinthetotalrespiration,AOXrespirationandCOXrespirationin犕.犺狌狆犲犺犲狀狊犻狊leavesduring
dehydrationandSHAMapplication
šW
Treatment
«|œÐ
Dehydration
time/h
Öwx
Totalrespiration
/(μmol·m-2·s-1)
AOXwx
AOXrespiration
/(μmol·m-2·s-1)
COXwx
COXrespiration
/(μmol·m-2·s-1)
AOXwx/
ÖwxAOX
respiration/Total
respiration/%
COXwx/Öwx
COXrespiration/Total
respiration/%
CK
0 2.92±0.45c 0.78±0.13c 2.14±0.32a 27±4c 73±10a
2 3.36±0.21b 1.11±0.08b 2.25±0.13a 33±2b 67±9b
4 3.78±0.48a 1.45±0.13a 2.34±0.35a 38±3a 62±10b
SHAM
0 2.47±0.25b 0.32±0.05b 2.16±0.21a 13±3d 87±11a
2 2.74±0.33a 0.43±0.03a 2.31±0.3a 16±2d 84±10a
4 2.84±0.32a 0.49±0.05a 2.36±0.27a 17±4d 83±11a
#

ۛ!"¯ñ›ÝšWۛ«|œÐÜн0.05|‹÷½µ¶´èï;€›
Note:Differentlettersinthesametreatmentbutdifferentdehydrationtimesindicatesignificantdifferenceamongtreatmentsat0.05level;
Thesameasbelow.
669 ! " # $ % &                   36$
ãÄ+AOXwxyz·¸£ùZ。
2.3 sCtu>^犛犎犃犕YZvwxyz;<ƒ
f;„…jC†‡opB{|
  «|~%‹ŒŽq‚ƒ‚Ÿ ¡Q¢£
¤¥%¦oº;ª°µíu

&m{¡Q¦o½2
msšÓÔiLé,½30msš€Î,X«|2h
9«|4h¦oiÏèïÛ°µ(î2,A);Ì
SHAM “”AOXyz¹,m{¡Q¦o½2msš
iLZé°µÔû

ö«|2h9«|4h¦o
iÏ!Cª°µèï

&«|~(¼>
,2msš
éÓÔå(°µ

î2,B)。ÓÚ¨_)°«|~
€‹ŒŽq‚ƒQRÈÃÉÊ*ÉÊ*¬È
ÃO犙A Ë犙B ÉÊÙ+;ÕSHAMšW“”AOX
yz¹
,¸
>ªÈÃO犙A Ë犙B ÉÊÙ+,-,ö
éê«|~4ÃZ·¸

þ`Ù+,-(¼>

2.4 sCtu>^犛犎犃犕YZvwxyz;;„…jCˆqB{|
  lª.°|}~€,AOXwxyz{‹Œ
Ž‚ƒPSⅡÀÁ¬Ñ9QRÈÃÉÊ*ZÚÛ,Ü
ÝÞ}©ªmgZ‚Ÿ ¡Qµ¶

Äî3,Aû
ˆú!

éê«|4ÃZ·¸

À/PSⅡÖiQu
%EÍZµ¶
(TRo/ABS)óô€Î,ÕSHAM š
WZTRo/ABSÜÝހÎ,¯ °«|~€‹Œ
Ž‚ƒº;ªQ“”

Փ”AOXyz¹¸>
î2 SHAMšW€«|’4¬‹ŒŽ‚ƒ‘’‚Ÿ ¡Q¢£¤¥%¦oZíu
Fig.2 Changesofthefastchlorophylafluorescencetransientin犕.犺狌狆犲犺犲狀狊犻狊leavesduringdehydrationand
SHAMapplication
î3 SHAMšW€«|’4¬‹ŒŽ‚ƒZ‘’‚Ÿ ¡Qµ¶Zíu
Fig.3 Changesofthepromptfluorescenceparametersin犕.犺狌狆犲犺犲狀狊犻狊leavesduring
dehydrationandSHAMapplication
7695ÿ          EFG,=:AOXyz½_q‚ƒ«|’4¬ZQ„…†‡:S
î4 SHAMšW€«|’4¬‹ŒŽ‚ƒ820nmQÀÞ(ãáQž)Zíu
Fig.4 Changesofkineticcurvesofmodulated820nmreflection(measuredwithfarredlight)in犕.犺狌狆犲犺犲狀狊犻狊
leavesduringdehydrationandSHAMapplication
ª«|~€ZQ“”4Ã

›œ
,WK ZÓÔû
:l‚ƒQRÈÃÉÊ*P680€q0ٓZl
1

öTDt2Rq
(OEC)ZÙ3èg[2122]。½«
|’4¬

«|šW9SHAM šWšØ%‹Œ
Ž‚ƒ WK !C°µèï(î3,B),)°«|šW
9«|’4¬“” AOXyzšW{PSⅡ€q0
š4°µÚÛ

Ÿ>

éê«|šWœÐZòþ

‹
ŒŽ‚ƒZ ABS/RCµ¶Ôû,ÕYETo/TRo
µ¶€Î

ÕSHAM šWÜÝÞ¸5ª‚ƒABS/
RCÔû9ETo/TRo€ÎZ6Ã,öi)Í˵¶


þ¯°«|’4¬“”AOXyz¹ÜÝÞ
Î7ªPSⅡZQÒx§、899›ùQ"<ÜÐZ
ÈÃÉÊ

2.5 sCtu>^犛犎犃犕 YZvwxyz;<
犘犛Ⅰ‰ŠB{|
  Ï:Z|}~;Ø%ãáQ¢£Z820nm
Qx§¦oZiϺ;°µíu

î4,A);ÕS
SHAM“”AOXyz¹,éê|}~4ÃZ·
¸
,820nmQx§¦oZ<6óôíQ(î4,B)。
›œ
,ΔI/IoÀ/ªPSⅠÀÁ¬ÑP700ZÖitu
×¾Ò¥
,¯
ñPSⅠZ³´[23]。Äî5û=,éê
«|œÐZòþ

{²œ‹ŒŽ‚ƒPSⅠZ³´
>赶ÚÛ

½?d|}±²€
(0h),AOXyz
ٓ{‹ŒŽ‚ƒPSⅠZ³´@>赶ÚÛ,
X½|}~€

“”AOXwxµ¶Î7ªPSⅠ
Z³´

öœÐ(þ“”4Ã(¼>

ˆÓ¨_)
°‹ŒŽ‚ƒPSⅠ ½JQ7«|~€Øº;
Q“”

ÕY½SHAM“”AOXyz¹9«|~
€Aº;Q“”

ö«|~œÐ(þ
,PSⅠQ
“”(¼>

3 n 
UKL¨_¯°

JQ€‹ŒŽ‚ƒopq
î5 SHAMšW€«|~€‹ŒŽ‚ƒPSⅠÖit
u×¾Ò¥
(ΔI/Io)Zíu
Fig.5 ChangesofthemaximumPSⅠredoxactivity
(ΔI/Io)of犕.犺狌狆犲犺犲狀狊犻狊leavesduring
dehydrationandSHAMapplication
¬AOXZ³´éê«|~4ÃZ·¸Õ°µÓ
Ô

̓”AOXyz¹,ÜÝÞ¸>ª‹ŒŽ‚
ƒ«|’4¬ZQ“”

)°«|~€

opq¬
AOXyz½‹ŒŽZQ„…†‡¬àê>NZ
:S

MèKLºC



ûÂ

òó

B¾CDE
=Vð~ø¢£#$ AOX³´ZÓâ[12,2426],
FþûÒãÄ+Vð~€wx*2R$’Ã×
¾•£ù³´tZÄ;

#$û[’G³ AOXy
zHIJÈÃÉÊÒ¥

Î7tu3&
[27]。
XˆÓ
{Vð€AOXZKLiK*¬½NOP、QR、L
M=TU#$

ŠU#$¬;ØmL

U@ANO
½ŠU#$¬W°ªòó~€AOX³´ÓÔþ
Ý?

ˆPg+òó€AOXyzZKLiQ}ã•
AOXyz:lݱ:RZwxÈÃÉÊ*,g#Z
S?)D½TU

Ä4

UBˆ7³´tZÄ;9G
5XY
[2830],
X{ AOXyzZQ„…†‡:SÀ
@KL

ü+Carlos=KLªòó€AOXyzÒ
­®QRÈÃÉÊ
[12],
XVKL;ØmLòó€
869 ! " # $ % &                   36$
AOXyz{QR"<çqZ­®Ð?。WX=^,
QR:SÈÃÉÊãÄPSⅠ9PSⅡYâ:SZ›
‹LZ

4ãPSⅠ×ãPSⅡÙË&,Kø£ù
QRÒ¥Z€Î

lªmnòó€AOXyz{Q
RÈÃÉÊçqZ­®Ð?

WX[€H}©ª¡
Qµ¶

‚Ÿ ¡Q¢£¤¥%¦o¬ K?Z!Cã
PSⅡ€q0Dt2Rq(OEC)Ù&ZÝùl
1
[31];PSIIÆÇÒ¬S+ÈÃÉÊZÂÃÄÅ
(ETo/TRo),TPQ\tu×¾Zð-èg[32]。U
KL¬

«|7SHAMšWšØßà WK º;°µ
íu

)°|}~9SHAMšW{‹ŒŽ‚ƒ
PSⅡ€q0>è°µÚÛ。XSHAM šW¹ÜÝ
Þ·¸ª‚ƒ«|’4¬ ABS/RCZÓÔ,)°
AOXyzٓ¹ÜÝÞ¸5ªPSⅡÀÁ¬ÑZ«
³

&AOXyz{«|’4¬ZPSⅡÀÁ¬Ñç
èݞZ­®:S

ÕSHAMšW¹ETo/TRoZ
€Î])° AOXٓ¹Î7ª|}~€PSⅡ
TPSⅠÜÐÈÃÉÊ。
PSⅠÙq0ZÈÃÉÊ,;ªÙPSⅡ³´9
Ùq0ÈÃÉÊqZÚÛ>

›œ@ÙPSⅠ³´Z
ÚÛ
[33]。PSⅠQ“”Z^_klãYÖitu×
¾Ò¥
(ΔI/Io)Z€Î[31]。UKL¬,ΔI/Io ½|}
~€;4°µíu

ÕSSHAM “”AOXyz
¹
,ΔI/Io µ¶€Î,)° AOXyz{«|‚ƒZ
PSⅠçè>NZ­®:S。
`ÓeÚ

opq¬AOX³´ZM¤Óâ,½
|}~€‹ŒŽ‚ƒZQ„…†‡¬ºaê>
NZ:S

åæã{PSⅠçè>NZ­®:S。b
+òó~€AOXyz½_h#$¬çqZQ
„…†‡ä”

WX•ÜÝÞKL

ˆ‹!Q

[1] ALLENCD,MACALADYAK,CHENCHOUNIH,犲狋犪犾.
Aglobaloverviewofdroughtandheatinducedtreemortality
revealsemergingclimatechangerisksforforests[J].犉狅狉犲狊狋
犈犮狅犾狅犵狔犪狀犱犕犪狀犪犵犲犿犲狀狋,2010,259(4):660684.
[2] CHAVESM M.Effectsofwaterdeficitsoncarbonassimila
tion[J].犑.犈狓狆.犅狅狋.,1991,42:116.
[3] QUICK W P,CHAVESM M,WENDLERR,犲狋犪犾.The
effectofwaterstressonphotosyntheticcarbonmetabolismin
fourspeciesgrownunderfieldconditions[J].犘犾犪狀狋犆犲犾犾犈狀
狏犻狉狅狀.,1992,15:2535.
[4] LONGSP,HUMPHRIESS,FALKOWSKIPG.Photoinhi
bitionofphotosynthesisinnature[J].犃狀狀狌.犚犲狏.犘犾犪狀狋
犘犺狔狊犻狅犾.犘犾犪狀狋犕狅犾.犅犻狅犾.,1994,45:633662.
[5] TAKAHASHIS,MILWARDSE,FANDY,犲狋犪犾.How
doescyclicelectronflowaleviatephotoinhibitionin犃狉犪犫犻犱狅狆
狊犻狊[J].犘犾犪狀狋犘犺狔狊犻狅犾狅犵狔,2009,149:15601567.
[6] JAHNSP,LATOWSKID,STRZALKAK.Mechanismand
regulationoftheviolaxanthincycle:Theroleofantennapro
teinsandmembrancelipids[J].犅犻狅犮犺犻犿犻犮犪犲狋犅犻狅狆犺狔狊犻犮犪犃犮
狋犪,2009,1787:314.
[7] FRANCK F,HOUYOUX P A,The Mehlerreactionin
chlamydomonsduringphotosyntheticinductionandsteady
statephotosynthesisinwildtypeandinamitochondrialmu
tant[J].犘犺狅狋狅狊狔狀狋犺犲狊犻狊,2008,5:581584.
[8] DINAKARC,ABHAYPRATAPV,YEARLASR,犲狋犪犾.
ImportanceofROSandantioxidantsystemduringthebenefi
cialinteractionsofmitochondrialmetabolism withphotosyn
theticcarbonassimilation[J].犘犾犪狀狋犪,2010,231:461474.
[9] YASHIDAK,TERASHIMAI,NOGUCHIK.Distinctroles
ofthecytochromopathwayandalternativeoxidaseinleafpho
tosynthesis[J].犘犾犪狀狋犆犲犾犾犘犺狔狊犻狅犾.,2006,47(1):2231.
[10] YASHIDAK,TERASHIMAI,NOGUCHIK.Upregula
tionofmitochondrialalternativeoxidaseconcomitantwith
chloroplastoverreductionbyexcesslight[J].犘犾犪狀狋犆犲犾犾
犘犺狔狊犻狅犾.,2007,48(4):606~614.
[11] NOGUCHIK,YASHIDAK.Interactionbetweenphotosyn
thesisandrespirationiniluminatedleaves[J].犕犻狋狅犮犺狅狀犱狉犻
狅狀,2008,8:8799.
[12] BARTOLICG,GOMEZF,GERGOFFG.Upregulationof
themitochondrialalternativeoxidasepathwayenhancespho
tosyntheticelectrontransportunderdroughtconditions[J].
犑狅狌狉狀犪犾狅犳犈狓狆犲狉犻犿犲狀狋犪犾犅狅狋犪狀狔,2005,415:12691276.
[13] ¼½¾,cÃ,ûdã,=.ÂÃÓÔûª2S‚ƒop
qrstuvwxyz{Q„…†‡:SZef
[J].#$
;W%&
,2013,49(1):6369.
MENGXL,ZHANGZS,GAOHY,犲狋犪犾.Temperaturerise
enhancesphotoprotectionincucumberleavesviamitochondri
alalternativeoxidase(AOX)pathway[J].犘犾犪狀狋犘犺狔狊犻狅犾狅犵狔
犑狅狌狉狀犪犾,2013,49(1):6369.
[14] ghi,jkl,mno.òó~{3`_h#$‚ƒI
p¨$

¬ijåq7‚Ÿqr¬¨$ZÚÛ
[J].òóFc
ghKL
,2014,32(3):1523.
WANGSC.ZOUYJ.MAFW.Influenceofdroughtstress
9695ÿ          EFG,=:AOXyz½_q‚ƒ«|’4¬ZQ„…†‡:S
onleafanatomicalstructureandmicromorphoilogytraitsand
choloplastultrastructureofthree犕犪犾狌狊species[J].犃犵狉犻犮狌犾
狋狌狉犪犾犚犲狊犲犪狉犮犺犻狀狋犺犲犃狉犻犱犃狉犲犪狊,2014,32(3):1523.
[15] BRAYEA.Molecularresponsetowaterdeficit[J].犘犾犪狀狋
犘犺狔狊犻狅犾狅犵狔,1993,103:10351040
[16] mps,o°l,otÁ,=.ۛU´_‰Š‚ƒU…u
™TU{òó~ZÛÁ
[J].!"#$%&,2001,31(8):
15961602.
MACH,LIMJ,LICY,犲狋犪犾.Responseofascorbicacidme
tabolisminapplerootstocksleavesunderdroughtstress[J].犃犮狋犪
犅狅狋.犅狅狉犲犪犾.犗犮犮犻犱犲狀狋.犛犻狀.2001,31(8):15961602.
[17] opq,v w.òó{_h#$‚Ÿ ¡Qµ¶ZÚÛ
[J].fxgh,%,2008,36(31):1353613538
LICX,CAOH.Effectsofdroughtonchlorophylfluores
cenceparametersof犕犪犾狌狊plant[J].犑狅狌狉狀犪犾狅犳 犃狀犺狌犻
犃犵狉犻.犛犮犻.,2008,36(31):1353613538.
[18] JIAHS,HANYQ,LIDQ.Photoinhibitionandactiveox
ygenspeciesproductionindetachedappleleavesduringdehy
dration[J].犘犺狅狋狅狊狔狀狋犺犲狋犻犮犪,2003,41(1):151156.
[19] ¼½¾,cäy,cÃ,=.zr™{‚ƒopqrstu
vwxyz½Q„…†‡¬Z:S
[J].ÁS;j%&,
2012,23(7):18031808.
MENGXL,ZHANGLT.ZHANGZS,犲狋犪犾.Roleofmito
chondrialalternativeoxidase(AOX)pathwayinphotoprotec
tionin犚狌犿犲狓K1leaves[J].犆犺犻狀犲狊犲犑狅狌狉狀犪犾狅犳犃狆狆犾犻犲犱
犈犮狅犾狅犵狔,2012,23(7):18031808.
[20] STRASSERRJ,TSIMILLIMICHAEL M,QIANGS,犲狋
犪犾.Simultaneous犻狀狏犻狏狅recordingofpromptanddelayedflu
orescenceand820nmreflectionchangesduringdryingandaf
terrehydrationoftheresurrectionplant犎犪犫犲狉犾犲犪狉犺狅犱狅狆犲狀
狊犻狊[J].犅犻狅犮犺犻犿.犅犻狅狆犺狔狊.犃犮狋犪,2010,1797:13131326.
[21] STRASSERRJ,SRIVATAVA A,TSIMILLIMICHAEL
M.TheFluorescencetransientasatooltocharacterizeand
screenphotosyntheticsample[M]//YUNUSM,PATHRE
U,MOHANTY P.ProbingPhotosynthesis:Mechanism,
RegulationandAdaptation.Taylor&Francis,Bristol:Ple
numPress,2000:445483.
[22] STRASSERRJ,TSIMILLIMICHAELM,SRIVATAVA A.
Analysisofthechlorophylafluorescencetransient.[M]//PA
PAGEORGIOUG,GOVINDJEE.AdvancesinPhotosynthesis
andRespiration.Netherlands:KAPPress,2004,147.
[23] SCHELLERHV,HALDRUPA.Photoinhibitionofphoto
systemⅠ[J].犘犾犪狀狋犪,2005,221:58.
[24] GONZALEZMELER M A,RIBASCARBO M,GILESL,
犲狋犪犾.Theeffectofgrowthandmeasurementtemperatureon
theactivityofthealternativerespiratorypathway[J].犘犾犪狀狋
犘犺狔狊犻狅犾.,1999,120(3):765772.
[25] RACHMILEVITCHS,XUY,GONZALEZMELERMA,
犲狋犪犾.Cytochromeandalternativepathwayactivityinroots
ofthermalandnonthermal犃犵狉狅狊狋犻狊.speciesinresponseto
highsoiltemperature[J].犘犺狔狊犻狅犾犘犾犪狀狋犪狉狌犿,2007,129
(1):163174.
[26] VANLERBERGHEGC,MCINTOSHL.Alternativeoxi
dase:fromgenetofunction[J].犃狀狀狌.犚犲狏.犘犾犪狀狋犘犺狔狊犻狅犾.
犪狀犱犘犾犪狀狋犕狅犾.犅犻狅犾.,1997,48:703~734.
[27] WANGER AM.Aroleforactiveoxygenspeciesassecondmes
sengersintheinductionofalternativeoxidasegeneexpressionin
犘犲狋狌狀犻犪犺狔犫狉犻犱犪cels[J].犉犈犅犛犔犲狋,1995,368:339~342.
[28] MAXWELLDP,WANG Y,MCINTOSHL.Thealternative
oxidaselowersmitochondrialreactiveoxygenproductioninplant
cels[J].犘狉狅犮犲犲犱犻狀犵狊狅犳狋犺犲犖犪狋犻狅狀犪犾犃犮犪犱犲犿狔狅犳犛犮犻犲狀犮犲狊狅犳
狋犺犲犝狀犻狋犲犱犛狋犪狋犲狊狅犳犃犿犲狉犻犮犪,1999,96:82718276.
[29] ROBSONCA,VANLERBERGHEGC.Transgenicplant
celslackingmitochondrialalternativeoxidasehaveincreased
susceptibilityto mitochondriadependentandindependent
pathwaysofprogrammedceldeath[J].犘犾犪狀狋犘犺狔狊犻狅犾狅犵狔,
2002,129:19081920.
[30] SONGXS,WANGYJ,MAO W H,犲狋犪l.Effectsofcu
cumbermosaicvirusinfectiononelectrontransportandan
tioxidantsysteminchloroplastsandmitochondriaofcucum
berandtomatoleaves[J].犘犺狔狊犻狅犾狅犵犻犪犘犾犪狀狋犪狉狌犿,2009,
135:246257.
[31] o|},ûdã,STRASSERRJ.‘’‚Ÿ ¡Q¢£¤
¥%}©½QR:SKL¬ZÁS
[J].#$;W%T}Ã
;$%%&
,2005,31(6):559566.
LIP M,GAO H Y,STRASSERRJ.Applicationofthe
chlorophylfluorescenceinductiondynamicsinphotosynthesis
study[J].犑狅狌狉狀犪犾狅犳犘犾犪狀狋犘犺狔狊犻狅犾狅犵狔犪狀犱犕狅犾犲犮狌犾犪狉犅犻
狅犾狅犵狔,2005,31(6):559566.
[32] c ~,€,o|},=.¿S‘’¡Q、ò‚¡Q9
820nmQÀޛޝƒ„mnòó{‹ŒŽ‚ƒQR
ä$Z&ä”
[J].#$;W%&,2013,49(6):551560.
ZHANGD,CHENCS,LIPM,犲狋犪犾.Efectsofdroughton
thephotosyntheticapparatusin犕犪犾狌狊犺狌狆犲犺犲狀狊犻狊leavesexplored
bysimultaneousmeasurementofpromptfluorescence,delayed
fluorescenceandmodulatedlightreflectionat820nm[J].犘犾犪狀狋
犘犺狔狊犻狅犾狅犵狔犑狅狌狉狀犪犾,2013,49(6):551560.
[33] ] ,g@…,g=†,=.£¤«|{‘.‡ˆ’‰q‚
ƒPSⅠ9PSⅡßÒZÚÛ[J].Š‹%&,2008,35(1):16.
SUNS,WANGSM,WANGJX,犲狋犪犾.Effectsofdehydra
tioninthedarkonfunctionsofPSⅠ andPSⅡinapricot
(犘狉狌狀狌狊犪狉犿犲狀犻犪犮犪L.‘JinTaiyang’)leaves[J].犃犮狋犪犎狅狉狋犻
犮狌犾狋狌狉犪犲犛犻狀犻犮犪.2008,35(1):16.

!"

#$%
)  
079 ! " # $ % &                   36$