免费文献传递   相关文献

Phenotypic Variations in Natural Populations of Vatica mangachapoi in Hainan, China

海南岛青梅天然居群表型变异


【目的】 通过居群取样以及果实与叶片性状测定,揭示青梅居群间和居群内的表型变异规律,为其天然林保护与经营以及种质资源收集、保存与利用提供科学依据,亦为海南岛青梅种及变种的修订提供基础数据。【方法】 在全面调查海南岛青梅天然分布区的基础上,对9个天然居群133个单株的17个果实与叶片形态性状进行研究,运用巢式方差分析、多重比较、相关分析以及聚类分析等方法,探讨青梅天然居群表型多样性水平及其与地理、环境因子的相关性。【结果】 巢式方差分析结果表明,17个果实和叶片形态性状在青梅居群间和居群内均存在极显著差异 (P < 0.01),说明这些性状在居群间与居群内均存在丰富的变异; 居群内的变异 (50.57%) 远大于居群间 (11.38%),居群平均表型分化系数为18.31%;各性状的分化系数变化幅度为4.52% (叶片侧脉数) ~40.31% (果实小萼片长宽比)。相关分析表明,叶片长与叶柄长、叶片长宽比与叶片最宽处至基部的距离呈显著 (P < 0.05)或极显著(P < 0.01)正相关,果实大萼片长与叶片侧脉数、叶柄长显著负相关; 青梅果实和叶片形态性状与年均气温、年降水量相关不显著,叶片侧脉数、叶柄长与海拔呈显著正相关,而果实大萼片长与海拔呈显著负相关, 叶片侧脉数、叶片长与1月平均气温呈显著负相关。利用居群间欧式距离进行UPGMA聚类分析,将9个青梅天然居群分为3类。【结论】 应加强现存青梅天然林及其生境的保护,对于变异丰富的卡法岭等居群以及具特殊土壤生境的石梅湾居群应予以重点保护; 居群内变异是海南岛青梅居群变异的主要来源,开展种质资源收集、迁地保存与遗传改良时,可适当增加居群内个体数,减少居群取样数; 由于海南岛各青梅居群间形态性状变异幅度大,且为连续变异,本研究不支持以往发表的分布于海南岛的青梅新种和变种。

【Objective】Vatica mangachapoi is an endangered tree species distributed naturally in Hainan Island, China. Its population decreased rapidly along with heavy loss of natural forest resources and habitat fragmentation due to over-harvesting and devastating forests for arable land. Efficient strategies are urgently needed for conserving natural forest resources of this species. Moreover, the taxonomy of this species is in controversy, taxonomic status of some varieties still need to be proved. Properties of fruits and leaves were measured for trees sampled from different populations to reveal phenotypic variations within and among natural populations. The study would provide scientific evidences for conservation and management of natural forests, and collection, conservation and utilization of genetic resources of the species, and provide basic data for revision of the taxonomy of species and its varieties. 【Method】 Based on surveys of whole range of natural distribution of V. mangachapoi in Hainan Island, 17 traits of fruit and leaf morphology were investigated for 133 individuals in 9 natural populations, and level of phenotypic diversity in its natural populations was assessed, and relationship between the diversity level and geographic and environmental factors was estimated using nest design, multiple comparison test, correlation analysis and cluster analysis.【Result】The variance analysis showed significant differences in the 17 morphological traits of fruit and leaf both within and among populations, indicating abundant variation among and within populations. The within-population variation (50.57%) was far greater than the among-population variation (11.38%); and the average phenotypic population differentiation coefficient was 18.31% with a range from 4.52% for the number of lateral leaf veins to 40.31% for the length/width ratio of the short sepal. Correlation analysis revealed that there were significant positive correlations between leaf length and petiole length, leaf length/width ratio and distance from the widest position to leaf base, while the length of long fruit sepals were in significantly negative correlation with the number of lateral leaf veins and petiole length. No significant correlation was found between fruit and leaf traits and mean annual air temperature and precipitation. While there were significantly negative correlation between number of lateral vein, leaf length and mean air temperature in January, and the number of lateral veins and petiole length increased remarkably with the increment of elevation. The 9 natural populations were divided into 3 groups by UPGMA cluster analysis based on Euclidean distance calculated from phenotypic traits.【Conclusion】It is important to conserve the remaining natural forests and habitats of V. mangachapoi, and in particular, more attention need to be paid to conservation of populations with abundant variations such as Kafaling (Population 4) and populations with special soil conditions such as Shimeiwan (Population 7). Within-population variation was the main source of variation, more individual trees and fewer populations should be used for genetic improvement and conservation of genetic resources. Furthermore, the findings of the present study do not support the new species and varieties in the Hainan Island which were published previously since morphological variation of fruit and leaf varied greatly and continuously, and the variation range were of considerable overlap among individuals within population and among all populations.


全 文 :第 51 卷 第 2 期
2 0 1 5 年 2 月
林 业 科 学
SCIENTIA SILVAE SINICAE
Vol. 51,No. 2
Feb.,2 0 1 5
doi:10.11707 / j.1001-7488.20150219
收稿日期: 2014 - 09 - 26; 修回日期: 2014 - 11 - 26。
基金项目: 林业公益性行业科研专项“青皮、格木、檀香、紫檀良种选育与高效培育技术研究”(201204301-2)。
* 曾杰为通讯作者。青梅种质资源调查与收集过程中得到海南石梅湾、霸王岭、五指山、吊罗山、卡法岭、热带天堂等地林业部门的大力支
持,沙二 (云南省勐腊县林业局)、汪奕衡 (中国科学院植物研究所) 参与部分种实和标本采集工作,本所的刘丹、张迪参与果实、叶片的测量
工作,国家气象信息中心提供气象数据,在此一并致谢。
海南岛青梅天然居群表型变异*
尚帅斌 郭俊杰 王春胜 赵志刚 曾 杰
(中国林业科学研究院热带林业研究所 广州 510520)
摘 要: 【目的】通过居群取样以及果实与叶片性状测定,揭示青梅居群间和居群内的表型变异规律,为其
天然林保护与经营以及种质资源收集、保存与利用提供科学依据,亦为海南岛青梅种及变种的修订提供基础
数据。【方法】在全面调查海南岛青梅天然分布区的基础上,对 9 个天然居群 133 个单株的 17 个果实与叶
片形态性状进行研究,运用巢式方差分析、多重比较、相关分析以及聚类分析等方法,探讨青梅天然居群表型
多样性水平及其与地理、环境因子的相关性。【结果】巢式方差分析结果表明,17 个果实和叶片形态性状在
青梅居群间和居群内均存在极显著差异 ( P < 0. 01),说明这些性状在居群间与居群内均存在丰富的变异 ; 居
群内的变异 (50. 57% ) 远大于居群间 (11. 38% ),居群平均表型分化系数为 18. 31% ;各性状的分化系数变
化幅度为 4. 52% (叶片侧脉数 ) ~ 40. 31% (果实小萼片长宽比 )。相关分析表明,叶片长与叶柄长、叶片长
宽比与叶片最宽处至基部的距离呈显著 ( P < 0. 05 )或极显著 ( P < 0. 01 )正相关,果实大萼片长与叶片侧脉
数、叶柄长显著负相关 ; 青梅果实和叶片形态性状与年均气温、年降水量相关不显著,叶片侧脉数、叶柄长与
海拔呈显著正相关,而果实大萼片长与海拔呈显著负相关,叶片侧脉数、叶片长与 1 月平均气温呈显著负相
关。利用居群间欧式距离进行 UPGMA 聚类分析,将 9 个青梅天然居群分为 3 类。【结论】应加强现存青梅
天然林及其生境的保护,对于变异丰富的卡法岭等居群以及具特殊土壤生境的石梅湾居群应予以重点保护 ;
居群内变异是海南岛青梅居群变异的主要来源,开展种质资源收集、迁地保存与遗传改良时,可适当增加居
群内个体数,减少居群取样数 ; 由于海南岛各青梅居群间形态性状变异幅度大,且为连续变异,本研究不支
持以往发表的分布于海南岛的青梅新种和变种。
关键词: 青梅; 天然居群; 表型多样性; 海南岛
中图分类号: S718. 54 文献标识码: A 文章编号: 1001 - 7488(2015)02 - 0154 - 09
Phenotypic Variations in Natural Populations of Vatica mangachapoi
in Hainan,China
Shang Shuaibin Guo Junjie Wang Chunsheng Zhao Zhigang Zeng Jie
(Research Institute of Tropical Forestry,CAF Guangzhou 510520)
Abstract: 【Objective】Vatica mangachapoi is an endangered tree species distributed naturally in Hainan Island,
China. Its population decreased rapidly along with heavy loss of natural forest resources and habitat fragmentation due to
over-harvesting and devastating forests for arable land. Efficient strategies are urgently needed for conserving natural forest
resources of this species. Moreover,the taxonomy of this species is in controversy,taxonomic status of some varieties still
need to be proved. Properties of fruits and leaves were measured for trees sampled from different populations to reveal
phenotypic variations within and among natural populations. The study would provide scientific evidences for conservation
and management of natural forests,and collection,conservation and utilization of genetic resources of the species,and
provide basic data for revision of the taxonomy of species and its varieties. 【Method】Based on surveys of whole range of
natural distribution of V. mangachapoi in Hainan Island,17 traits of fruit and leaf morphology were investigated for 133
individuals in 9 natural populations,and level of phenotypic diversity in its natural populations was assessed,and
第 2 期 尚帅斌等: 海南岛青梅天然居群表型变异
relationship between the diversity level and geographic and environmental factors was estimated using nest design,multiple
comparison test,correlation analysis and cluster analysis.【Result】The variance analysis showed significant differences in
the 17 morphological traits of fruit and leaf both within and among populations,indicating abundant variation among and
within populations. The within-population variation ( 50. 57% ) was far greater than the among-population variation
(11. 38% ); and the average phenotypic population differentiation coefficient was 18. 31% with a range from 4. 52% for
the number of lateral leaf veins to 40. 31% for the length /width ratio of the short sepal. Correlation analysis revealed that
there were significant positive correlations between leaf length and petiole length,leaf length /width ratio and distance from
the widest position to leaf base,while the length of long fruit sepals were in significantly negative correlation with the
number of lateral leaf veins and petiole length. No significant correlation was found between fruit and leaf traits and mean
annual air temperature and precipitation. While there were significantly negative correlation between number of lateral
vein,leaf length and mean air temperature in January,and the number of lateral veins and petiole length increased
remarkably with the increment of elevation. The 9 natural populations were divided into 3 groups by UPGMA cluster
analysis based on Euclidean distance calculated from phenotypic traits.【Conclusion】It is important to conserve the
remaining natural forests and habitats of V. mangachapoi, and in particular,more attention need to be paid to
conservation of populations with abundant variations such as Kafaling ( Population 4) and populations with special soil
conditions such as Shimeiwan ( Population 7 ) . Within-population variation was the main source of variation,more
individual trees and fewer populations should be used for genetic improvement and conservation of genetic resources.
Furthermore,the findings of the present study do not support the new species and varieties in the Hainan Island which
were published previously since morphological variation of fruit and leaf varied greatly and continuously,and the variation
range were of considerable overlap among individuals within population and among all populations.
Key words: Vatica mangachapoi; natural population; phenotypic diversity; Hainan Island
表型是生物遗传变异的表征,植物居群的表型
特征与其生境密切相关,其多样性水平是遗传多样
性与环境异质性的综合体现 (臧润国等,2009 )。
表型多样性在适应和进化上具有重要意义,是生态
学与遗传学研究的重要内容 ( 李斌等,2002;
Pigliucci et al.,2006; Mizianty et al.,2007)。利用表
型性状研究居群遗传多样性具有简便、快捷、费用低
等优点。学者们进行表型多样性研究,多集中于探
索物种变异模式、变异来源以及变异与环境因子的
关系 (Hausmann et al.,2001; Sanou et al.,2006)。
叶片形态与植物生理生化特征以及繁殖特性密切相
关 (Chechowitz et al.,1990; Weight et al.,2008),作
为一 种 可 量 化 的 特 征 被 广 泛 用 于 植 物 分 类
(Duminil et al.,2009; Weight et al.,2008)、表型变
异 (曾杰等,2005; 辜云杰等,2009; Sisó et al.,
2001; Cardillo et al.,2006; Li et al.,2006)研究。果
实和种子形态亦多应用于植物分类与表型多样性研
究中,植物种实性状主要受遗传因素控制,亦为适应
各种环境而产生分化 (李伟等,2013),种实表型性
状影响种子萌发和幼苗定居,进而影响居群的分布
格局 ( Simons et al.,2006; Leverett et al.,2014;
Parciak,2002),异质生境中的种实形态变异一直是
生态学与进化生物学研究的内容之一 (Venable et
al.,1985)。
青梅 ( Vatica mangachapoi)又名青皮,为龙脑
香科 (Dipterocarpaceae) 青梅属( Vatica) 植物,是
典型的热带雨林树种,其高可达 30 m 以上,胸径
达 1. 2 m。青梅天然分布于越南、泰国、菲律宾、印
度尼西亚,我国仅海南岛有分布。青梅一般生长
于海拔 800 m 以下,对土壤具有较强的适应性,从
滨海沙地到低山、中高山的山地砖红壤性土、砖黄
壤土均有分布(许涵等,2007)。青梅心材质地坚
硬,结构细致,极耐腐蚀,为海南五大珍贵硬材之
一,也是国际热带木材市场上的重要商品材之一
(Appanah et al.,1998) ; 其叶片、茎中含有大量可
利用的次生代谢物,可用于香料、药物开发 (Qin et
al.,2011)。
长期以来过度采伐利用、毁林开荒,特别是随
着 橡 胶 树 ( Hevea brasiliensis )、荔 枝 ( Litchi
chinensis)等热作园、果园的兴起,盲目开垦、乱砍
滥伐等导致青梅天然居群生境破碎化,天然林资
源丧失严重,居群规模急剧减小 (李意德,1995),
青梅现已被列为国家二级重点保护植物,加强青
梅天然林保护,制定有效的资源保护策略迫在眉
睫。而制定策略的前提是了解其居群规模和遗传
背景 (Mamo et al.,2006),根据其现存居群大小与
551
林 业 科 学 51 卷
遗传多样性水平进行针对性的科学保护 ( Lee et
al.,2006; 2013 )。有关青梅遗传多样性研究,目
前仅见黄久香等 (2008 ) 用 AFLP 标记分析海南
岛 7 个居群遗传多样性的报道。开展青梅表型多
样性研究既能初步揭示其居群遗传多样性水平,
亦能探究其生态适应性,一方面可为青梅现有居
群保护提供理论依据; 另一方面,可为其遗传改良
奠定基础,有助于青梅人工林的规模发展。再者,
有关青梅的分类学问题亦存在争论,一些变种,如
万宁青梅 ( V. mangachapoi ssp. hainanensis var.
wanningensis) 等是否成立尚待从居群水平上证
实。本研究在全面调查海南岛青梅天然分布区的
基础上,以 9 个青梅天然居群为研究对象,系统测
定了果实、叶片的 17 个表型性状,旨在揭示其表
型性状在居群间和居群内个体间的变异规律,为
其天然林保护与经营以及种质资源收集利用提供
科学依据,亦为海南岛青梅种及变种的修订提供
基础数据。
1 材料与方法
1. 1 居群取样 由于龙脑香科树种结实大小年现
象严重,加之青梅果实成熟期间常发生台风危害,
大规模的青梅采种较为困难。2011 年 9 月至 2013
年 10 月,在对海南岛青梅天然林全面调查的基础
上,开展青梅果实以及标本的采集工作,其中 2011
年 9 月完成乌烈居群的采样工作,2013 年 7—10
月采集了霸王岭、尖峰岭、甘什岭、卡法岭、三亚热
带天堂、五指山什顺村、石梅湾、陀烈 8 个居群的
标本和果实,共计 9 个居群,133 个单株。每个居
群内取样植株间距在 100 m 以上。对于每个采样
植株,随机采集果实,于其树冠中上部南向采集枝
条制作标本,用全球定位系统 (GPS) 测定其经纬
度和海拔。居群的地理位置、立地条件以及取样
情况见表 1。
表 1 青梅 9 个天然居群的地理位置与环境因子①
Tab. 1 Geographical location and environmental factors of the 9 natural populations of Vatica mangachapoi
居群
Populations
编号
Codes
纬度
Latitude
(N)
经度
Longitude
(E)
海拔
Elevation /
m
年均气温
MAAT /

年降水量
MAP /
mm
7 月平均气温
MATJU /℃
1 月平均气温
MATJA /℃
土壤类型
Soil type
取样株数
Number of
samples
霸王岭 Bawangling Pop. 1 19°07 109°06 400 ~500 23. 6 1 751 28. 6 18. 0 砖红壤 Latosol 6
尖峰岭 Jianfengling Pop. 2 18°43 108°56 270 ~460 24. 5 1 682 27. 3 19. 4 砖红壤 Latosol 14
甘什岭 Ganshiling Pop. 3 18°22 109°39 200 ~300 24. 5 1 200 28. 0 20. 0 砖红壤 Latosol 11
卡法岭 Kafaling Pop. 4 18°41 109°19 620 ~790 24. 0 1 559 26. 3 17. 2
山地黄壤
Mountain yellow earth
17
热带天堂 Tropical
Paradise Forest Park
Pop. 5 18°15 109°38 290 ~430 25. 5 1 279 28. 5 20. 9 砖红壤 Latosol 8
五指山 Wuzhishan Pop. 6 18°56 109°26 420 ~570 22. 5 1 690 26. 0 17. 0
赤红壤
Lateritic red earth
7
石梅湾 Shimeiwan Pop. 7 18°39 110°15 5 ~70 24. 5 2 032 28. 5 18. 7
滨海沙地
Coastal sandy soil
34
陀烈 Tuolie Pop. 8 18°54 108°51 350 ~520 24. 0 1 240 27. 2 19. 1 砖红壤 Latosol 18
乌烈 Wulie Pop. 9 19°10 109°00 130 ~400 24. 3 1 676 29. 3 18. 7 砖红壤 Latosol 18
①气象数据来源于国家气象信息中心,平均气温根据采种点附近气象站的观测数据计算获得,海拔每升高 100 m,气温下降 0. 6 ℃。The
climatic data were obtained from the National Meteorological Information Center. Mean air temperatures were calculated with data from the meteorological
stations near the sampled populations according to the formulae: T2 = T1 - (A2 - A1 ) × 0. 6 /100,where T1 and T2 are temperature (℃ ),and A1 and A2
are altitude (m) of sampled population and meteorological station nearby,respectively. MAAT: Mean annual air temperature; MAP: Mean annual
precipitation; MATJU: Mean air temperature in July; MATJA: Mean air temperature in January.
1. 2 形态指标测定 龙脑香科树种主要依据叶片、
果实萼片、花粉粒进行分类 (Maguire et al.,1977;
Dayanandan et al.,1999),故选取叶片与果实性状进
行表型多样性分析。果实性状包括果实高、果实宽、
大萼片长和宽以及小萼片长和宽,叶片性状包括侧
脉数、叶片长和宽、叶柄长、叶基至最宽处距离 (以
下简称“基宽距”)、叶基角。因性状间比值与直接
测定的形态性状相比,可能提供额外的变异信息
(Frampton et al.,1990),故计算果实高宽比、大萼片
长宽比、小萼片长宽比、叶片长宽比、叶片长宽乘积
等指标,共计 17 个指标。用游标卡尺测量叶片长和
宽、叶柄长、果实宽和高以及大小萼片长和宽等指
标,测量精度为 0. 01 mm,量角器测量叶基角,精度
为 0. 1°。每个植株随机测量 15 个成熟叶片、30 粒
果实。
1. 3 统计分析 应用巢式设计模型对青梅 17 个表
651
第 2 期 尚帅斌等: 海南岛青梅天然居群表型变异
型性状的调查数据进行方差分析,揭示青梅居群的
表型变异特征。方差分析之前对数据做方差齐性检
验,对方差不齐性的数据进行反余切转换。线性模
型为 Yijk = μ + Pi + Ti( j) + e( ij) k。式中: Yijk 为第 i 居
群第 j 个植株第 k 个观测值; μ 为总均值; Pi为第 i
个居群的效应值 (固定); Ti( j) 为第 i 个居群第 j 个
植株的效应值 (随机) ; e( ij) k为试验误差。依据公
式 V st = δ
2
t / s /( δ
2
t / s + δ
2
s ) 计算居群间表型分化系数
( V st)。式中: δ
2
t / s是居群间方差值; δ
2
s是居群内方
差值 (葛颂等,1988)。应用相关分析揭示各表型
性状间及其与环境因子间的关系,相关系数采用
Pearson 系数(因经度和纬度的跨度较小,未纳入相
关分析 )。上述统计分析在 SPSS 18. 0 软件上
进行。
利用各表型性状的调查数据计算居群间的欧氏
距离 (Euclidean distance),应用非加权配对算数平
均法 (un-weighted pair-group method using arithmetic
averages,UPGMA) 进行系统聚类分析,并运用相关
分析揭示地理距离与欧氏距离间的相关性,这些统
计分析运用 NTSYS PC2. 11 软件进行。
2 结果与分析
2. 1 青梅居群间和居群内的表型变异特征 巢
式方差分析结果(表 2)表明,17 个果实与叶片性
状在青梅居群间和居群内均存在极显著差异
(P < 0. 01),说明青梅在居群间与居群内变异丰
富。9 个青梅居群 17 个表型性状的平均值、标准
差和多重比较结果见表 3。从表 3 可以看出,果实
大 (小) 萼片最长、最宽,叶基角最大,叶柄最短的
是石梅湾居群; 果实最宽,大萼片长宽比最大,果
实高宽比最小的是乌烈居群; 果高和宽最小的为
尖峰岭居群; 叶片最长、最宽,叶柄长、基宽距最
大,叶片侧脉数最多的是卡法岭居群; 三亚热带天
堂居群叶片长、基宽距、叶片长宽比、叶片长宽积
最小; 侧脉数最少的为石梅湾居群和三亚热带天
堂居群; 叶片宽度最小,果高最大的为乌烈和霸王
岭居群。尽管各性状在居群间差异明显,但是大
多表现为连续变异。
表 2 海南岛 9 个青梅居群 17 个表型性状的巢式方差分析①
Tab. 2 Variance analysis of 17 phenotypic traits among and within 9 Vatica mangachapoi
populations on the Hainan Island,China
表型性状
Phenotypic traits
缩写
Abbreviation
均方 Mean square F
居群间 居群内 随机误差 居群间 居群内
Among
populations
Within
population
Random
error
Among
populations
Within
population
侧脉数 Number of lateral leaf veins NLV 227. 10 22. 62 2. 13 106. 61** 10. 62**
叶基角 Angle of leaf base ALB 13 155. 80 2 289. 81 119. 83 109. 79** 19. 11**
叶长 Leaf length LL 5 570. 67 1 849. 69 102. 42 54. 39** 18. 06**
叶宽 Leaf width LW 421. 64 185. 61 15. 91 26. 50** 11. 66**
叶柄长 Leaf petiole length PL 149. 08 24. 71 3. 01 49. 56** 8. 21**
基宽距 Height of maximum leaf width HMW 1 391. 15 532. 43 37. 51 37. 09** 14. 20**
叶片长宽比 Ratio of leaf length to width RLW 6. 15 1. 48 0. 08 78. 21** 18. 86**
叶片长宽积 Leaf length multiply width LMW 12 237 183. 66 4 773 023. 05 308 171. 61 39. 71** 15. 49**
大萼片长 Long-sepal length LSL 5 148. 32 1 254. 51 15. 75 326. 80** 79. 63**
大萼片宽 Long-sepal width LSW 593. 87 97. 29 1. 47 404. 64** 66. 29**
小萼片长 Short-sepal length SSL 1 142. 78 253. 53 2. 87 398. 32** 88. 37**
小萼片宽 Short-sepal width SSW 60. 54 14. 12 0. 18 343. 75** 80. 16**
果实高 Fruit height FH 99. 82 17. 31 0. 36 274. 29** 47. 57**
果实宽 Fruit width FW 125. 39 18. 39 0. 34 374. 23** 54. 89**
大萼片长宽比 Ratio of long-sepal length
to width
RLLW 12. 03 4. 70 0. 05 235. 71** 92. 09**
小萼片长宽比 Ratio of short-sepal
length to width
RSLW 11. 48 6. 78 0. 07 166. 67** 98. 45**
果实高宽比 Ratio of fruit height to width RFHW 0. 13 0. 06 0. 00 44. 78** 19. 20**
① **: P < 0. 01.
751
林 业 科 学 51 卷
表 3 海南岛 9 个青梅居群 17 个表型性状的变异状况(平均值 ±标准偏差) ①
Tab. 3 Variations of 17 phenotypic traits in 9 Vatica mangachapoi populations on the Hainan Island (mean ± SD)
表型性状
Phenotypic
traits
居群 Population
Pop. 1 Pop. 2 Pop. 3 Pop. 4 Pop. 5 Pop. 6 Pop. 7 Pop. 8 Pop. 9
平均值
Mean
NLV
14. 18 ±
1. 60b
13. 03 ±
1. 16cd
13. 21 ±
1. 64c
14. 71 ±
1. 52a
12. 07 ±
1. 02e
13. 90 ±
1. 29b
11. 83 ±
0. 92e
12. 85 ±
1. 15d
12. 78 ±
1. 20d
12. 93 ±
1. 52
ALB /( ° )
71. 5 ±
12. 8e
82. 2 ±
10. 0c
83. 7 ±
14. 2c
75. 9 ±
12. 0d
89. 0 ±
9. 5b
81. 7 ±
21. 0c
91. 9 ±
12. 6a
75. 4 ±
12. 7d
73. 8 ±
9. 0de
81. 8 ±
14. 1
LL /mm
74. 62 ±
7. 86b
68. 30 ±
7. 70e
73. 91 ±
14. 17bc
80. 73 ±
20. 36a
61. 15 ±
8. 10f
70. 64 ±
9. 88cd
71. 46 ±
7. 80d
67. 64 ±
9. 77e
68. 64 ±
7. 21e
71. 10 ±
11. 76
LW /mm
23. 48 ±
2. 62d
25. 06 ±
3. 62c
26. 81 ±
4. 13ab
27. 02 ±
5. 68a
24. 98 ±
2. 81c
25. 38 ±
2. 39b
26. 75 ±
3. 05ab
24. 03 ±
2. 83d
23. 93 ±
2. 59d
25. 54 ±
3. 65
PL /mm
11. 99 ±
0. 41b
11. 00 ±
1. 65cde
11. 83 ±
1. 86b
12. 60 ±
1. 30a
10. 68 ±
1. 03e
11. 29 ±
1. 49c
10. 18 ±
1. 26f
10. 96 ±
0. 96de
11. 16 ±
1. 08cd
11. 12 ±
1. 47
HMW /mm
35. 47 ±
4. 44c
32. 54 ±
4. 07d
37. 87 ±
8. 50b
39. 55 ±
9. 74a
30. 67 ±
3. 41e
36. 69 ±
5. 64b
34. 30 ±
4. 77c
34. 89 ±
5. 90c
34. 67 ±
3. 58c
35. 17 ±
6. 22
RLW
3. 25 ±
0. 53a
2. 79 ±
0. 45de
2. 78 ±
0. 33e
3. 01 ±
0. 37b
2. 47 ±
0. 22g
2. 80 ±
0. 34de
2. 70 ±
0. 22f
2. 84 ±
0. 32cd
2. 89 ±
0. 21c
2. 82 ±
0. 34
LMW / mm2
1 791. 12 ±
251. 35de
1 757. 00 ±
411. 48e
2 073. 13 ±
722. 82b
2 325. 71 ±
1 119. 36a
1 581. 20 ±
357. 48f
1 830. 01 ±
402. 26cd
1 962. 08 ±
400. 50bc
1 668. 21 ±
396. 36ef
1 678. 72 ±
331. 34ef
1 880. 46 ±
590. 51
LSL / mm
44. 78 ±
2. 86d
42. 44 ±
7. 16f
44. 03 ±
3. 85e
42. 27 ±
4. 89f
45. 85 ±
5. 66c
42. 28 ±
6. 74f
50. 63 ±
7. 50a
48. 19 ±
4. 89b
45. 89 ±
8. 36c
46. 19 ±
7. 05
LSW / mm
13. 17 ±
0. 99c
11. 30 ±
1. 41f
13. 34 ±
1. 61bc
12. 11 ±
1. 96d
13. 16 ±
1. 87c
12. 10 ±
1. 62d
14. 43 ±
2. 06a
13. 45 ±
1. 57b
11. 85 ±
1. 91e
12. 98 ±
2. 06
SSL / mm
16. 02 ±
1. 10f
16. 52 ±
3. 36e
16. 22 ±
1. 74f
17. 78 ±
2. 21c
18. 16 ±
2. 95b
17. 02 ±
2. 18d
19. 90 ±
3. 27a
19. 84 ±
2. 99a
16. 79 ±
3. 36d
18. 11 ±
3. 20
SSW / mm
5. 07 ±
0. 44d
4. 48 ±
0. 56h
4. 83 ±
0. 52f
4. 95 ±
0. 62e
5. 22 ±
0. 84b
4. 79 ±
0. 60f
5. 49 ±
0. 83a
5. 15 ±
0. 78c
4. 61 ±
0. 51g
5. 02 ±
0. 75
FH / mm
7. 32 ±
0. 40a
5. 87 ±
0. 92f
7. 19 ±
1. 00b
6. 89 ±
0. 51c
7. 30 ±
0. 49a
6. 08 ±
0. 97e
6. 69 ±
0. 85d
6. 90 ±
0. 82c
7. 32 ±
0. 43a
6. 82 ±
0. 86
FW / mm
6. 93 ±
0. 55c
5. 56 ±
0. 87g
6. 95 ±
0. 99c
6. 61 ±
0. 60d
7. 12 ±
0. 49b
5. 75 ±
1. 00f
6. 44 ±
0. 87e
6. 60 ±
0. 87d
7. 28 ±
0. 44a
6. 57 ±
0. 91
RLLW
3. 42 ±
0. 23e
3. 76 ±
0. 42b
3. 35 ±
0. 44f
3. 54 ±
0. 40d
3. 51 ±
0. 33d
3. 53 ±
0. 46d
3. 53 ±
0. 36d
3. 61 ±
0. 31c
3. 90 ±
0. 52a
3. 60 ±
0. 41
RSLW
3. 19 ±
0. 37g
3. 67 ±
0. 45b
3. 39 ±
0. 40f
3. 62 ±
0. 44cd
3. 50 ±
0. 33e
3. 61 ±
0. 55d
3. 65 ±
0. 50bc
3. 87 ±
0. 41a
3. 65 ±
0. 62bc
3. 63 ±
0. 49
RFHW
1. 06 ±
0. 05a
1. 06 ±
0. 06a
1. 04 ±
0. 03c
1. 05 ±
0. 04bc
1. 03 ±
0. 03d
1. 06 ±
0. 04a
1. 04 ±
0. 04c
1. 05 ±
0. 05b
1. 01 ±
0. 04e
1. 04 ±
0. 04
①居群编号见表 1,表型性状缩写见表 2; 两两居群间具不同字母表示差异显著 (P < 0. 05)。See Tab. 1 for codes of populations,and Tab. 2 for abbreviations of
phenotypic characters. Paired populations without the same letter are significantly different (P < 0. 05) .
2. 2 青梅居群间表型分化 17 个表型性状在青梅
居群间与居群内的方差分量以及各性状的分化系数
见表 4。由表 4 可知,各性状在居群内的方差分量
远远大于居群间,各性状在居群内和居群间方差分
量比值为 1. 48 ~ 21. 10,其平均值为 6. 25。居群间
和居群内的方差分量百分比分别为 11. 38% 和
50. 57%。17 个 表 型 性 状 的 分 化 系 数 平 均 为
18. 31%,其变化幅度为 4. 52% ~ 40. 31%,以叶片
侧脉数的分化系数为最大,小萼片长宽比的为最小。
果实大萼片长、宽的分化系数约为大萼片长宽比的
2 倍,小萼片长、宽分化系数约为小萼片长宽比的 4
倍,而叶片长、宽的分化系数约为叶片长宽比的 2 /3
与 1 /2,说明大、小萼片的形状较叶片稳定。
2. 3 青梅居群表型性状间及其与环境因子的相关
性 表 5 显示了青梅居群 17 个表型性状间的相关
性。由表 5 可知,叶片侧脉数与叶片长、叶柄长、基
宽距以及叶片长宽比呈显著或极显著正相关,与叶
基角呈显著负相关; 叶柄长还与叶片长、基宽距及
叶片长宽比呈显著正相关。果实大 (小) 萼片长与
宽大多显著正相关,仅大萼片长与小萼片宽相关不
显著。果实与叶片性状间,仅大萼片长与侧脉数、叶
柄长相关显著。
青梅 17 个表型性状与居群环境因子的相关分
析结果 (表 6) 表明: 叶片侧脉数与海拔呈极显著
正相关,与 1 月平均气温呈显著负相关; 叶片长与 1
月平均气温也呈显著负相关关系; 叶柄长与海拔呈
显著正相关; 大萼片长则与海拔呈显著负相关; 果
实宽与 7 月平均气温呈显著正相关; 年均气温、年
降水量与青梅表型性状相关不显著。
851
第 2 期 尚帅斌等: 海南岛青梅天然居群表型变异
表 4 海南岛青梅表型变异在居群间和居群内的分布①
Tab. 4 Distribution of phenotypic variances among and within Vatica mangachapoi
populations on the Hainan Island,China
表型性状
Phenotypic
traits
方差分量
Variance component
方差分量百分比
Percentage of variance component (% )
居群间
Among
populations
居群内
Within
populations
随机误差
Random
error
居群间
Among
populations
居群内
Within
populations
随机误差
Random
error
表型分化系数
Phenotypic
differentiation
coefficient (% )
NLV 0. 922 1. 366 2. 130 20. 88 30. 91 48. 21 40. 31
ALB 49. 020 144. 665 119. 831 15. 64 46. 14 38. 22 25. 31
LL 16. 786 116. 485 102. 416 7. 12 49. 42 43. 45 12. 60
LW 1. 065 11. 313 15. 913 3. 76 39. 99 56. 25 8. 60
PL 0. 561 1. 447 3. 008 11. 19 28. 85 59. 97 27. 94
HMW 3. 874 32. 995 37. 506 5. 21 44. 36 50. 43 10. 51
RLW 0. 021 0. 094 0. 079 10. 89 48. 44 40. 67 18. 36
LMW 33 672. 905 297 656. 762 308 171. 612 5. 27 46. 55 48. 19 10. 16
LSL 8. 783 41. 292 15. 754 13. 34 62. 73 23. 93 17. 54
LSW 1. 120 3. 194 1. 468 19. 37 55. 24 25. 38 25. 96
SSL 2. 006 8. 355 2. 869 15. 16 63. 15 21. 69 19. 36
SSW 0. 105 0. 465 0. 176 14. 05 62. 33 23. 62 18. 39
FH 0. 186 0. 565 0. 364 16. 69 50. 67 32. 64 24. 78
FW 0. 241 0. 602 0. 335 20. 48 51. 08 28. 44 28. 62
RLLW 0. 017 0. 155 0. 051 7. 43 69. 64 22. 93 9. 64
RSLW 0. 011 0. 224 0. 069 3. 50 73. 79 22. 72 4. 52
RFHW 0 0. 002 0. 003 3. 47 36. 45 60. 09 8. 69
均值 Mean — — — 11. 38 50. 57 38. 05 18. 31
①表型性状缩写见表 2。See Tab. 2 for abbreviations of phenotypic traits.
表 5 海南岛青梅居群 17 个表型性状间的相关性①
Tab. 5 Correlation between 17 phenotypic traits in Vatica mangachapoi populations on the Hainan Island,China
表型性状
Phenotypic
traits
NLV ALB LL LW PL HMW RLW LMW LSL LSW SSL SSW FH FW RLLW RSLW
ALB -0. 675*
LL 0. 752* -0. 390
LW 0. 031 0. 568 0. 454
PL 0. 915** -0. 643 0. 768* 0. 134
HMW 0. 741* -0. 404 0. 895** 0. 456 0. 767*
RLW 0. 758* -0. 829** 0. 707* -0. 302 0. 692* 0. 557
LMW 0. 537 -0. 005 0. 889** 0. 800** 0. 621 0. 828** 0. 312
LSL -0. 733* 0. 329 -0. 325 -0. 088 -0. 682* -0. 361 -0. 269 -0. 288
LSW -0. 453 0. 415 -0. 054 0. 188 -0. 352 -0. 062 -0. 182 0. 030 0. 789*
SSL -0. 516 0. 382 -0. 234 0. 174 -0. 561 -0. 198 -0. 411 -0. 065 0. 756* 0. 584
SSW -0. 370 0. 410 -0. 063 0. 181 -0. 341 -0. 129 -0. 197 0. 039 0. 738* 0. 898** 0. 728*
FH -0. 086 -0. 244 0. 009 -0. 205 0. 213 0. 044 0. 150 -0. 054 0. 334 0. 428 -0. 014 0. 355
FW -0. 164 -0. 203 -0. 055 -0. 191 0. 146 -0. 001 0. 065 -0. 088 0. 348 0. 373 -0. 002 0. 299 0. 988**
RLLW -0. 223 -0. 248 -0. 316 -0. 390 -0. 298 -0. 335 -0. 059 -0. 395 0. 024 -0. 594 0. 026 -0. 512 -0. 227 -0. 114
RSLW -0. 311 0. 100 -0. 257 0. 065 -0. 425 -0. 112 -0. 377 -0. 124 0. 265 -0. 148 0. 652 -0. 042 -0. 428 -0. 351 0. 586
RFHW 0. 528 -0. 112 0. 348 0. 058 0. 282 0. 237 0. 367 0. 233 -0. 384 -0. 082 -0. 109 -0. 021 -0. 595 -0. 711* -0. 415 -0. 120
①表型性状缩写见表 2。See Tab. 2 for abbreviations of phenotypic traits. * : P < 0. 05;**: P < 0. 01.
2. 4 青梅居群分类 为了研究青梅居群间的亲缘
关系,基于青梅 17 个表型性状计算 9 个居群间的欧
氏距离,利用 UPGMA 法进行聚类,得到居群树状图
(图 1)。可将 9 个居群分为 3 类: 霸王岭、乌烈、甘
什岭、卡法岭聚为一类; 尖峰岭与五指山聚为一类;
三亚热带天堂、陀烈与石梅湾聚为一类。地理上相
邻的居群并未完全聚在一起。进一步对 9 个居群间
的地理距离与欧氏距离进行相关分析发现,二者之
间相关性不显著 (R = 0. 302 2,P = 0. 954 1)。
951
林 业 科 学 51 卷
表 6 海南岛青梅居群表型性状与环境因子的相关性①
Tab. 6 Correlation between geo-ecological factors and phenotypic traits of Vatica mangachapoi
populations on the Hainan Island,China
表型性状
Phenotypic traits
海拔
Elevation
年降水量
MAP
年均气温
MAAT
7 月平均气温
MATJU
1 月平均气温
MATJA
NLV 0. 883** - 0. 006 - 0. 647 - 0. 570 - 0. 715 *
ALB - 0. 624 0. 087 0. 453 0. 068 0. 469
LL 0. 495 0. 253 - 0. 445 - 0. 356 - 0. 681 *
LW - 0. 052 0. 039 0. 129 - 0. 357 - 0. 062
PL 0. 767 * - 0. 220 - 0. 352 - 0. 357 - 0. 464
HMW 0. 536 - 0. 026 - 0. 560 - 0. 484 - 0. 657
RLW 0. 527 0. 287 - 0. 559 - 0. 066 - 0. 656
LMW 0. 354 0. 117 - 0. 186 - 0. 427 - 0. 458
LSL - 0. 687 * 0. 179 0. 352 0. 545 0. 306
LSW - 0. 505 - 0. 021 0. 240 0. 341 0. 270
SSL - 0. 245 0. 033 0. 214 - 0. 061 0. 095
SSW - 0. 301 0. 091 0. 228 0. 186 0. 118
FH - 0. 168 - 0. 346 0. 397 0. 647 0. 309
FW - 0. 235 - 0. 336 0. 448 0. 686 * 0. 346
RLLW - 0. 091 0. 253 0. 089 0. 178 - 0. 031
RSLW 0. 003 - 0. 039 0. 008 - 0. 331 - 0. 040
RFHW 0. 478 0. 176 - 0. 547 - 0. 632 - 0. 409
①环境因子和表型性状的缩写分别见表 1 和表 2。See Tab. 1 and Tab. 2 for abbreviations of environmental factors and phenotypic traits. * :
P < 0. 05; **: P < 0. 01.
图 1 海南岛 9 个青梅天然居群的聚类
Fig. 1 Dendrogram of 9 natural Vatica mangachapoi populations on the Hainan Island,China using UPGMA clustering method for
Euclidean distance derived from 17 phenotypic traits
居群编号见表 1。See Tab. 1 for codes of populations.
3 讨论
3. 1 青梅天然居群表型变异规律 本研究通过对
海南岛 9 个青梅天然居群的 17 个表型性状进行巢
式方差分析发现,海南岛青梅居群间以及居群内个
体间存在丰富的表型变异,其表型分化系数为
18. 31%,换言之,居群内变异占 81. 69%。黄久香
等 (2008)应用 AFLP 标记研究了海南岛 7 个青梅
居群的遗传多样性,发现其具有较高的遗传多样性
(多态位点百分率为 79. 45% ),且居群间的遗传变
异占 19. 8%。本研究结果与其一致。这些研究均
说明居群内变异是海南岛青梅居群变异的主要
来源。
有关海南岛的青梅分类,王兰州 (1985) 根据
大小萼片长和宽、叶柄长等性状将海南岛的青梅确
定为新种———海南青梅 (V. hainanensis),并进一步
根据大萼片长和宽以及叶片长、宽、侧脉数细分为 2
个 新 变 种———腺 瓣 青 梅 ( V. hainanensis var.
glandipetala) 和 细 叶 青 梅 ( V. hainanensis var.
parvifolia); 符国瑷等(2008)则依据叶片侧脉数、大
061
第 2 期 尚帅斌等: 海南岛青梅天然居群表型变异
萼片长确定了一新变种———万宁青梅。本研究居群
采样基本上涵盖了上述新种、新变种的标本采集地
点,调查结果表明,上述形态性状变异幅度大,且为
连续变异,即海南岛青梅居群间以及各居群内个体
间的差异涵盖了上述新种或新变种的变异幅度,亦
未超出青梅鉴别特征的性状描述 (Blanco,1837)。
这些分类学研究仅依据少量标本,缺乏大范围的居
群取样,其分类学结果难以被大多数分类学家所接
受 (许涵等,2007),因而海南青梅及其 2 个变种腺
瓣青梅和细叶青梅未收入“Flora of China”(Li et al.,
2007)。本研究对果实和叶片形态性状的变异分析
结果亦不支持上述所有新种和新变种,并提出了直
接证据。
3. 2 青梅居群间表型性状与生态因子的关系 青
梅表型性状相关分析结果表明,青梅叶柄长度与叶
片长、叶片长宽比呈显著正相关,随叶片长度增大,
叶片长宽比增大,有利于植物获得更多的光能,而增
大的叶片需要更长的叶柄以减少个体内部对光能的
相互遮挡,从而促进个体内部对光能的高效利用
(Takenaka,1994)。青梅表型性状与环境因子间的
相关分析显示,年降水量对青梅果实、叶片形态性状
的变异影响不显著,而 1 月份平均气温对叶片侧脉
数和叶片长影响显著,10 月份至翌年 6 月份为海南
岛旱季,降水较少,叶片侧脉数和叶片长随着 1 月份
平均气温增高而减小以降低植物蒸腾耗水,是对季
节性干旱的适应; 海拔显著影响大萼片长、叶片侧
脉数和叶柄长,随海拔升高,大萼片变短,叶片侧脉
数、叶柄长增大,青梅果实萼片大小与果实散布距离
有关,海拔越高往往风速越大,云雾及雨日增多,萼
片短有利于青梅幼苗定居乃至物种生存 ( Suzuki et
al.,1996),而叶柄长增大,有助于减少青梅个体内
部叶片对光能的相互遮挡,提高其光能利用,亦是对
海拔升高的一种适应。
3. 3 青梅居群保护建议 青梅作为海南岛乡土珍
贵树种,颇具发展潜力和应用前景,然而当前青梅居
群天然林资源急剧减少。为了更好地保护青梅现有
居群,实现青梅资源的可持续利用,提出如下建议:
1) 如上所述,青梅的遗传变异有近 4 /5 存在于居群
内,因此,开展以青梅迁地保护或遗传改良为目的的
种质资源收集时,可适当增加居群内的个体数,减少
居群取样数。2) 尽管居群内变异远大于居群间变
异,但居群间变异反映居群对各种环境的适应性
(庞广昌等,1995),因此,应加强现存青梅天然林保
护,禁止采伐现有天然林木,同时保护其生境,对于
变异丰富的卡法岭等居群应重点保护,考虑到石梅
湾青梅居群的土壤特殊性,对其亦应重点保护; 五
指山什顺村居群和陀烈居群,居群面积较小,人为活
动频繁,生境遭受严重破坏,进行青梅现有居群规模
保护的同时,应结合进行迁地保护,收集其种子育
苗,建立种质资源收集圃,而当自然生境的条件合适
时,再将其后代回归自然。
参 考 文 献
符国瑷,杨永康 . 2008. 海南岛青皮属 (龙脑香科)一新变种和鱼骨
木属 (茜草科)一新组合 . 植物研究,28(3) : 259 - 260.
( Fu G A, Yang Y K. 2008. A new variety of Vatica L.
( Dipterocarpaceae ) and a new combination of Canthium
(Rubiaceae) from Hainan Island. Bulletin of Botanical Research,
28 (3) : 259 - 260. [in Chinese])
葛 颂,王明庥,陈岳武 . 1988. 用同工酶研究马尾松群体的遗传
结构 . 林业科学,24(4) : 399 - 409.
(Ge S,Wang M X,Chen Y W. 1988. An analysis of population genetic
structure of masson pine by isozyme technique. Scientia Silvae
Sinicae,24(4) : 399 - 409. [in Chinese])
辜云杰,罗建勋,吴远伟,等 . 2009. 川西云杉天然种群表型多样
性 . 植物生态学报,33(2) : 291 - 301.
(Gu Y J,Luo J X,Wu Y W,et al. 2009. Phenotypic diversity in
natural populations of Picea balfouriana in Sichuan,China. Chinese
Journal of Plant Ecology,33(2) : 291 - 301. [in Chinese])
黄久香,黄妃本,许 涵,等 . 2008. 海南岛青梅 AFLP 标记的遗传
多样性 . 林业科学,44(5) : 46 - 52.
(Huang J X,Huang F B,Xu H,et al. 2008. Genetic diversity of Vatica
mangachapoi in buke revealed by AFLP. Scientia Silvae Sinicae,44
(5) : 46 - 52. [in Chinese])
李 斌,顾万春,卢宝明 . 2002. 白皮松天然群体种实性状表型多
样性研究 . 生物多样性,10(2) : 181 - 188.
(Li B,Gu W C,Lu B M. 2002. A study on phenotypic diversity of
seeds and cones characteristics in Pinus bungeana. Biodiversity
Science,10(2) : 181 - 188. [in Chinese])
李 伟,林富荣,郑勇奇,等 . 2013. 皂荚南方天然群体种实表型多
样性 . 植物生态学报,37(1) : 61 - 69.
(Li W,Lin F R,Zheng Y Q,et al. 2013. Phenotypic diversity of pods
and seeds in natural populations of Gleditsia sinensis in Southern
China. Chinese Journal of Plant Ecology,37 ( 1 ) : 61 - 69. [in
Chinese])
李意德 . 1995. 海南岛热带森林的变迁及生物多样性的保护对策 .
林业科学研究,8(4) : 455 - 461.
(Li Y D. 1995. Biodiversity of tropical forest and its protection strategies
in Hainan Island,China. Forest Research,8(4) : 455 - 461. [in
Chinese])
庞广昌,姜冬梅 . 1995. 群体遗传多样性和数据分析 . 林业科学,31
(6) : 543 - 550.
(Pang G C,Jiang D M. 1995. Population genetic diversity and data
analysis. Scientia Silvae Sinicae, 31 ( 6 ) : 543 - 550. [in
Chinese])
王兰州 . 1985. 广东海南岛青皮原植物的研究 . 中山大学学报: 自
然科学版,(3) : 94 - 97.
(Wang L Z. 1985. A study on Vatica plants growing in Hainan of
161
林 业 科 学 51 卷
Guangdong. Acta Scientiarum Naturalium Universitatis Sunyatseni,
(3) : 94 - 97. [in Chinese])
许 涵,李意德,骆土寿,等 . 2007. 海南岛国家重点保护植物青皮
(Vatica mangachapoi) 研究综述 . 热带林业,35(2) : 8 - 11.
(Xu H,Li Y D,Luo T S,et al. 2007. The research review of national
key protected plant—Vatica mangachapoi in Hainan Island,China.
Tropical Forestry,35(2) : 8 - 11. [in Chinese])
臧润国,刘贵峰,巴哈尔古丽·阿尤甫,等 . 2009. 天山云杉球果大
小性状的地理变异规律 . 林业科学,45(2) : 27 - 32.
( Zang R G,Liu G F,Bahaerguli·A,et al. 2009. Geograhic variation of
cone size of Picea schrenkiana var. tianschanica in the Tianshan
Mountains of Xinjiang. Scientia Silvae Sinicae,45 (2 ) : 27 - 32.
[in Chinese])
曾 杰,郑海水,甘四明,等 . 2005. 广西西南桦天然居群的表型变
异 . 林业科学,41(2) : 59 - 65.
(Zeng J,Zheng H S,Gan S M,et al. 2005. Phenotypic variation in
natural populations of Betula alnoides in Guangxi,China. Scientia
Silvae Sinicae,41(2) : 59 - 65. [in Chinese])
Appanah S,Turnbull J M. 1998. A review of dipterocarps: Taxonomy,
ecology and silviculture. Bogor,Indonesia: Center for International
Forestry Research,195.
Blanco M. 1837. Flora de Filipinas: Segun el sistema sexual de Linneo.
ed. 1. Miguel Sanchez,Manila: Candido Lopez,The Philippines,
401.
Cardillo E,Bernal C. 2006. Morphological response and growth of cork
oak (Quercus suber L. ) seedlings at different shade levels. Forest
Ecology and Management,222(1) : 296 - 301.
Chechowitz N,Chappell D M,Guttman S I,et al. 1990. Morphological,
electrophoretic,and ecological analysis of Quercus macrocarpa
populations in the Black Hills of South Dakota and Wyoming.
Canadian Journal of Botany,68(10) : 2185 - 2194.
Dayanandan S,Ashton P S,Williams S M,et al. 1999. Phylogeny of
the tropical tree family Dipterocarpaceae based on nucleotide
sequences of the chloroplast rbcL gene. American Journal of Botany,
86(8) : 1182 - 1190.
Duminil J, Di Michele M. 2009. Plant species delimitation: a
comparison of morphological and molecular markers. Plant
Biosystems,143(3) : 528 - 542.
Frampton C,Ward J. 1990. The use of ratio variables in systematics.
Taxon,39(4) : 586 - 592.
Hausmann S,Lotter A F. 2001. Morphological variation within the
diatom taxon Cyclotella comensis and its importance for quantitative
temperature reconstructions. Freshwater Biology, 46 ( 10 ) :
1323 - 1333.
Lee S L,Chua L S,Ng K K,et al. 2013. Conservation management of
rare and predominantly selfing tropical trees: an example using
Hopea bilitonensis ( Dipterocarpaceae ) . Biodiversity and
Conservation,22(13 /14) : 2989 - 3006.
Lee S L,Ng K K,Saw L G,et al. 2006. Linking the gaps between
conservation research and conservation management of rare
dipterocarps: A case study of Shorea lumutensis. Biological
Conservation,131(1) : 72 - 92.
Leverett L D,Jolls C L. 2014. Cryptic seed heteromorphism in Packera
tomentosa (Asteraceae) : differences in mass and germination. Plant
Species Biology,29(2) : 169 - 180.
Li C, Zhang X, Liu X, et al. 2006. Leaf morphological and
physiological responses of Quercus aquifolioides along an altitudinal
gradient. Silva Fennica,40(1) : 5 - 13
Li X W,Li J,Ashton P S. 2007. Dipterocarpaceae∥Wu Z Y,Raven P
H. Flora of China, Vol. 13: Alangiaceae through Violaceae.
Beijing: Science Press; St. Louis: Missouri Botanical Garden
Press,48 - 54.
Maguire B P C,Ashton P S,Giannasi D E,et al. 1977. Pakaramoideae,
Dipterocarpaceae of the western hemisphere. Taxon, 26:
341 - 385.
Mamo N,Mihretu M,Fekadu M,et al. 2006. Variation in seed and
germination characteristics among Juniperus procera populations in
Ethiopia. Forest Ecology and Management,225(1) : 320 - 327.
Mizianty M,Frey L,Bieniek W,et al. 2007. Variability and structure of
natural populations of Hordelymus europaeus (L. ) Jess. ex Harz and
Leymus arenarius ( L. ) Hochst. as revealed by morphology and
DNA markers. Plant Systematics and Evolution, 269 ( 1 /2 ) :
15 - 28.
Parciak W. 2002. Seed size,number,and habitat of a fleshy-fruited
plant: consequences for seedling establishment. Ecology,83 ( 3 ) :
794 - 808.
Pigliucci M,Murren C J,Schlichting C D. 2006. Phenotypic plasticity
and evolution by genetic assimilation. Journal of Experimental
Biology,209(12) : 2362 - 2367.
Qin Y H,Zhang J,Cui J T,et al. 2011. Oligostilbenes from Vatica
mangachapoi with xanthine oxidase and acetylcholinesterase
inhibitory activities. RSC Advances,1(1) : 135 - 141.
Sanou H,Picard N,Lovett P, et al. 2006. Phenotypic variation of
agromorphological traits of the shea tree,Vitellaria paradoxa CF
Gaertn.,in Mali. Genetic Resources and Crop Evolution,53(1) :
145 - 161.
Simons A M,Johnston M O. 2006. Environmental and genetic sources of
diversification in the timing of seed germination: implications for the
evolution of bet hedging. Evolution,60(11) : 2280 - 2292.
Sisó S, Camarero J, Gil-Pelegrín E. 2001. Relationship between
hydraulic resistance and leaf morphology in broadleaf Quercus
species: a new interpretation of leaf lobation. Trees,15(6) : 341 -
345.
Suzuki E,Ashton P S. 1996. Sepal and nut size ratio of fruits of Asian
Dipterocarpaceae and its implications for dispersal. Journal of
Tropical Ecology,12(6) : 853 - 870.
Takenaka A. 1994. Effects of leaf blade narrowness and petiole length on
the light capture efficiency of a shoot. Ecological Research,9(2) :
109 - 114.
Venable D, Levin D. 1985. Ecology of achene dimorphism in
Heterotheca latifolia: I. Achene structure, germination and
dispersal. The Journal of Ecology,73(1) : 133 - 145.
Weight C,Parnham D,Waites R. 2008. LeafAnalyser: a computational
method for rapid and large-scale analyses of leaf shape variation.
The Plant Journal,53(3) : 578 - 586.
(责任编辑 徐 红)
261