免费文献传递   相关文献

Primary Study on HMW-GS Inheritance Affected by 1BL/1RS Translocation

1BL/1RS易位系对小麦高分子量谷蛋白亚基遗传的影响初析


以1BL/1RS易位系小麦川农18(1, 7+9, 2+12)分别作母本和父本与川农19(N, 7+8, 2+12)杂交, 统计正反交F2单株后代中1BL/1RS易位染色体所占的比例及HMW-GS的遗传规律, 研究了1BL/1RS易位染色体对HMW-GS遗传的影响。结果表明, 1BL/1RS易位染色体在雌配子和雄配子中都不能完全传递至后代, 且雄配子的传递率低于雌配子。HMW-GS在正、反交F1中呈共显性遗传。在F2中, Glu-A1位点上亚基的分离正常; 而Glu-B1位点上亚基的分离以及Glu-A1Glu-B1位点之间的组合都与理论值不符。在川农19×川农18杂交F1中发现了一粒变异, 其HMW-GS组成为(1, 7+8, x+9, 2+12)。分别检测了其F2代HMW-GS和醇溶蛋白的组成, 并用SSR分子标记分析了F1变异和非变异株, 结果证实该变异粒确系两个亲本的杂交后代, 变异的亚基在SDS-PAGE电泳图上位于1Dx5和1Bx7亚基之间, 迁移率与1Bx6相似。

The common wheat (Triticum aestivum L.) Chuannong 18 with 1BL/1RS translocation chromosome, whose HMW-GS components is (1, 7+9, 2+12) as male and female parent respectively was crossed with Chuannong 19 (N, 7+8, 2+12). Both the female and male gametes of their F2 progenies showed significantly (P<0.01) lower rate of 1BL/1RS translocation compared with the theoretical value (75%), in which female gamete (65.1%) had higher rate than male gamete (52.4%). In both crosses, HMW-GS subunits (encoded by Glu-A1 and Glu-B1) of parents were all transmitted to F1 progenies as dominant trait, but deviated the Mendel’s segregation ratios at Glu-B1 and the combination of Glu-A1 & Glu-B1 loci in F2 progenies. We also found and confirmed a variant seed in F1 of Chuannong 19 × Chuannong 18 by detecting its genome DNA with 33 pairs of specific SSR markers and the components of HMW-GS and gliadin of its F2 progeny. The HMW-GS patterns of the variant seed were (1, 7+8, x+9, 2+12). The band of variant subunit was similar to 1Bx6 by SDS-PAGE analysis, which was between 1Dx5 and 1Bx7.


全 文 : ACTA AGRONOMICA SINICA 2008, 34(1): 167−170 http://www.chinacrops.org/zwxb/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn

:

 (30671136)
 :

1976– !#$%&()*+
*
,-).(Corresponding author):

/01*Tel: 0835-2882123; E-mail: renzllab@sicau.edu.cn
Received(2345): 2007-02-05; Accepted(67458: 2007-05-03.
DOI: 10.3724/SP.J.1006.2008.00167
1BL/1RS 
 1,2  1  1,*
(1  ,  625014; 2,  471022)
 :  1BL/1RS 18(1, 7+9, 2+12)  19(N, 7+8, 2+12), 
F2 1BL/1RS !#$% HMW-GS&(), *+, 1BL/1RS- HMW-GS&
./01234, 1BL/1RS5678978:;<=>?@, A978?BCD67
80HMW-GS5E F1FGHI&05 F2, Glu-A1JKLM NO; P Glu-B1JKLM
N%Glu-A1Glu-B1JQRST:UVW;X05 19× 18 F1YZ,[\]^, _HMW-GS
S`a(1, 7+8, x+9, 2+12)0 bc,_ F2 HMW-GSdefgS`, hi SSR 8jk l, F1]^m
]^, 12nop]^\qrst, ]^LM5 SDS-PAGEuvwKD 1Dx5 1Bx7LMQ
R, xyB 1Bx6z{0
: ; 1BL/1RS; | 8}~fgLM; &
Primary Study on HMW-GS Inheritance Affected by 1BL/1RS Translocation
GENG Hui-Min1,2, ZHANG Huai-Qiong1, and REN Zheng-Long1,*
(1 State Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Ya’an 625014, Sichuan; 2 College of Life Science,
Luoyang Normal University, Luoyang 471022, Henan, China)
Abstract: The common wheat (Triticum aestivum L.) Chuannong 18 with 1BL/1RS translocation chromosome, whose HMW-GS
components is (1, 7+9, 2+12) as male and female parent respectively was crossed with Chuannong 19 (N, 7+8, 2+12). Both the
female and male gametes of their F2 progenies showed significantly (P<0.01) lower rate of 1BL/1RS translocation compared with
the theoretical value (75%), in which female gamete (65.1%) had higher rate than male gamete (52.4%). In both crosses,
HMW-GS subunits (encoded by Glu-A1 and Glu-B1) of parents were all transmitted to F1 progenies as dominant trait, but devi-
ated the Mendel’s segregation ratios at Glu-B1 and the combination of Glu-A1 & Glu-B1 loci in F2 progenies. We also found and
confirmed a variant seed in F1 of Chuannong 19 × Chuannong 18 by detecting its genome DNA with 33 pairs of specific SSR
markers and the components of HMW-GS and gliadin of its F2 progeny. The HMW-GS patterns of the variant seed were (1, 7+8,
x+9, 2+12). The band of variant subunit was similar to 1Bx6 by SDS-PAGE analysis, which was between 1Dx5 and 1Bx7.
Keywords: Wheat; 1BL/1RS translocation; HMW-GS; Inheritance
€a‚ƒ„…†‡ˆ‰Š‹(Triticum aes-
tivum L.)&MŒŽ, ‘ ’i“”•‡–—
˜&MŒ, ™|š›IEœšžŸ ¡¢
†‡£ ¤¥¦§0¨(Secale cereale)–©“
”•‡, ª¤«‡šIM¬, –†‡[s­®P¯
5M¬°, ±²³´‹µ¶”, £·¸¹º
†,[»—¨¼E¢ , _ 1BL/1RS
³½¾}¿iDÀÁ[1]01BL/1RSœ‡ÂÃÄ
ŨšIM¬ [2], ÆÇȤÉÊ­ÁIË¿
I[3-5], ¬Ì5ÍÎÏÐÑÒa¿i[6]0ÓÔ 20ÍÕ 80Ö
†`œ‡, × 38%a 1BL/1RSœ‡, Ø_5
ÙÚÛÜÝÞÛÜ¿ißB|à 59% 42%[7]0
~fg×!á\âfg 10%, ãäfg
35%[8], -壜¤æç i0_| 8}~
f g L M (high molecular weight glutenin subunit,
HMW-GS)ãèéꜝëìzí, îï HMW-GSM
168      34

¬½‚5ð[ÆñòóK , ½ôõa
Glu-A1EGlu-B1 Glu-D1, öa Glu-1J0÷s Glu-1
J:¤rszøù“, úëûüM¬, ýþ X
LM YLM[9]0 HMW-GS¢M¬ýþ, ‹
O÷sKrsM¬ûü&, ùYÀæS[10]0
5Š‹, ¤í 1BL/1RS - I
œI./*+É« [11-16], P¤í[
5 ƒ?ßB%-z¿Ú
 HMW-GS &()./*+É0*+
l, 1BL/1RS- HMW-GS&./, €
a  åTU ’i 1BL/1RS †‡™UV
0
1 
1.1 
 19 18, _| 8}~fgLMS`
a(N, 7+8, 2+12)(1, 7+9, 2+12),  18a 1BL/1RS
02005 Ö 4 , i 18 , 
19,  F102006Ö 4,  F1\‡Å
 F2, E  281  269 s F20
ÔE 11 86001-3a-, _ HMW-GSS
` a(N, 7+8, 2+12)E(1, 7+8, 5+10 )(2’, 6+8, 5+10)0
1.2 A-PAGE 1BL/1RS
i International Seed Testing Association (ISTA)
juv·[17], - F2 l, ! JavornikÚ
[18]#$_–%ª¤ 1BL/1RS 0i&\‡8
‚ 1BL/1RS, (&\iD HMW-GS l0
1.3  SDS-PAGE
) Ng ¢Ú [19]™*‡8âfg% l
SDS-PAGE, -HMW-GS) Payne¢[20]™+ôõj
î,0
1.4  DNA SSR
i SDS ™*rstEF1 10 sO%]^
M¬Sâ DNA0„* 33-5rst3Z-^
SSR.•[21]‡/oI‚0PCRa 25 μL, ª
10×bufferE2.5 mmol L−1 MgCl2E200 μmol L−1 dNTPsE1 U
Taq0E250 nmol L−1.•E100 ng DNA012Á•i 3%
34567uvbc0
2 
2.1 1BL/1RS 
3 189, 1BL/1RS5678?ßB
a 65.1%, 5978a 52.4%, :CDUVW 75%0χ2
c;34, E:à< 1%=H>?@0A4;V5
678B–978, 1BL/1RS:;<=>?
@, A978?B C0
2.2 1BL/1RS HMW-GS !
 18  19 E F1:¤(1, 7+8+9,
2+12) 6C HMW-GSDÃ(w 1), FZT F1EF HMW-
GSGHI&ZG0

 1 1BL/1RS  
Table 1 The transmissibility of 1BL/1RS chromosome in both male and female gametes
 18 ×  19 Chuannong 18 × Chuannong 19

 19 ×  18 Chuannong 19 × Chuannong 18
HMW-Glu
Total plant 1BL/1RS plant
Non 1BL/1RS
plant χ
2
Total plant 1BL/1RS plant
Non 1BL/1RS
plant χ
2

14 5 9 14.1** 24 6 18 71.97**
N, 7+9, 2+12 20 16 4 10 8 2
1, 7+8, 2+12 70 26 44 64 4 60
1, 7+9, 2+12 35 32 3 60 50 10
N, 7+8+9, 2+12 32 25 7 29 19 10
1, 7+8+9, 2+12 110 79 31 82 54 28
**
 0.01 ** Significant at the 0.01probability level.


 1 F1 SDS-PAGE
Fig. 1 SDS-PAGE evaluation of F1 progenies and their parents
1 ; 2  19; 3~11 F1; 12  18; 13 F1; 14 
86001-3; 15  11  6 13
 !#$%& ()*+,-.#$%&
1: Chinese Spring; 2: Chuannong 19; 3–11: F1 progenies; 12: Chuan-
nong 18; 13: variant plant from F1 progeny; 14: Pan 86001-3; 15:
Mianyang 11. Lanes 6 and 13 are the same plant. The arrowheads indi-
cate the variant subunit. The numbers on the left and right of the landing
patterns display the glutenin subunits.
5 F2  , H Glu-A1 N()IàH>?@J ,
Glu-B1 N()%_ Glu-A1 ST:àH>?@,
34 Glu-B1JM¬ N%_ Glu-A1JKM¬ST
;XTKLM&()(3 2)0
2.3  F1
2.3.1  F1 HMW-GS 5 19×
18  F1 269 \á\, YZ[]^\, _fgLM
S`a(1, x+7N8+9, 2N12), _;ÆDrtLM5
SDS-PAGE uvwDKD 1Dx5  1Bx7 QR,  1Bx6
LMȤz{xyB(w 1)0
 1 : 1BL/1RS  169


 2 Glu-A1 Glu-B1 F2
Table 2 Inherence of alleles at Glu-A1 and Glu-B1 loci in F2 progeny
 18 ×  19 Chuannong 18 × Chuannong 19

 19 ×  18 Chuannong 19 × Chuannong 18

Locus 
Subunit

No. of plants
χ
2


Subunits

No. of plants
χ
2

N 66 0.27 N 63 0.28

Glu-A1
1 215 1 206

7+8 84 6.02* 7+8 88 10.62**
7+8+9 142 7+8+9 111

Glu-B1
7+9 55 7+9 70

N, 7+8 14 13.26* N 7+8 24 15.46**
N, 7+9 20 N 7+9 10
1, 7+8 70 1 7+8 64
1, 7+9 35 1 7+9 60
N, 7+8+9 32 N 7+8+9 29

Glu-A1 & Glu-B1
1, 7+8+9 110 1 7+8+9 82
* 0.05 , ** 0.01 * Significant at the 0.05 probability level. ** Significant at the 0.01probability level.

2.3.2  F2HMW-GS 
 ,   F2 
20,  SDS-PAGE  HMW-GS  !, #
 HMW-GS $%(& 2)

 2  F2 SDS-PAGE
Fig. 2 SDS-PAGE patterns of variant F2 progenies
1; 2~15 F2  HMW-GS
  !
1: Chinese Spring; 2–15: F2 progenies of variant seed.
The arrowheads indicate the variant HMW-GS. Numbers on the left of
the landing patterns display the glutenin subunits.

2.3.3  F2   ()*+
A-PAGE ,-&(& 3)./, % F20 ()*+
12345678, 89:;< 18(1BL/1RS =>?823
4!)@A, B0:;< 19 8@A, CD
;< 19×;< 18 E


 3  F2 A-PAGE 
Fig. 3 A-PAGE patterns of gliadin in variant F2 progenies
1; 2 18; 3~18 F2; 19 19
Gli-B11#$
1: Chinese Spring; 2: Chuannong 18; 3–18: the variant F2 progenies; 19:
Chuannong 19. The arrowheads show Gli-B11.

2.3.4 F1 SSR 33 SSRFGHIJKL
D,  MN F1(OPQRS)TU 89VWX,
CD ?YZ[EFG Xgwm282
,-JK/& 4

 4 SSR Xgwm282 F1
Fig. 4 Amplification patterns of F1 population and its parents
using SSR marker Xgwm282
1 19; 2;  18; 3~11F1%& 3; %& 7()*
1: Chuannong 19; 2: Chuannong 18; 3–11: F1 plants. Lane 3 is the
variant plant. Lane 7 is the false hybrid.
3 
3.1 1BL/1RS HMW-GS
Whelan ][22]^_`a4-b4c=>def%gh
a4ijk lm , no=>defpqr%stu
vr%wtu, lmxyz{Singh ][23]|}~`
Za4-34=>? 1BL/1R def%wtu€
‚lmKoebnerM Shepherd[24-25]^_LD, a4-34
=>? =>def%wtu€‚lm , %s
tu lmxz{, ƒ„ Whelan ][22]}~ lm…x
†N‡, Sˆdef:a4def W!Aˆ †,
|.‰%Šl‹ Œ, =>defŽ‰‚Šl, 
|‘\’“ 1BL/1RS =>def%w”stu
 lmxy{•–q—, CD˜8 1BL/1RS def
tu% F1lm™ F2 š›œ, ‘žVlmŸE
.r˜8 1BL/1RSdef tu% F1lm™ F2
š›:˜8 1B def tun `¡¢, £¤=>
? 1RS : 1BS Aˆ ¥{, ¦Xtuœƒ§
.:Šlij2¨, ©ª« ^_¬% 
­• 1BL/1RS def‘žVlmŸE , >•
1BL ‹ Glu-B1 >® Šl§¯°™±²£\’“
JK§#D, ³´µ Glu-B1 >®‹ ¶·% F2 !¸
170      34

y¹™`º»¼½, ¾ 1BL/1RS =>def%stu
!¸¹™`¿º»¼½, Àr 1BL/1RS def%st
u lmx©{Á
3.2 1BL/1RS HMW-GS
\’“% 269;< 19×;< 18PQ F1no` 1
HMW-GS  P´Qu, ·ÂM*+ÃHI# ¤
PQ rYZ[EÄÅ][26]a4—34ÆÇP
´E †? HMW-GS !µno, % 66
ZȒ?2 9 Z% Glu-1 >®n  , É
1BL/1RS=> ? Glu-1>® ÊËÌÍ, ¾ Î
ÏÐ% Glu-A1M Glu-B1>®‹, ÑI.r34 1RSd
ef ¦«ÒÓ`a4Ô34 1RS Õ֘8 ”וØÙ
ÚÛ ÜÝuMÞÜßÜÝu, £à`áâ HMW-GS
·Âãä DNA †åæçèé êëì, íîïÜß
ðG HMW-GSn ñ\’“Ž  ¶·òo%Y
Zgha4P´ E, ¾óôŠlŸ F2, ÀQ §.
r­õ\˜8 1BL/1RS =>def ö«F÷ , ø
ù§‘úRÕù . \’“ûrZü J
K, ÀZ HMW-GS  rý¶·‰þa4Ã
±²y%^_
References
[1] Zeller F J, Hasm S L K. Broadening the genetic variability of cul-
tivated wheat by utilizing of rye chromosome. In: Proc. 6th Intel
Wheat Genet Symp, Kyoto, Japan, 1983. pp 161−173
[2] Mclntosh R A. Catalogue of gene symbols for wheat. In: Proc. 7th
Intel Wheat Genet Symp, Cambridge. England, 1988. pp
1225−1323
[3] Villareal R L, Rajaram S, Mujeeb-Kazi A, Toro E D. The effect
of chromosome 1B/1R translocation on the yield potential of cer-
tain spring wheat. Plant Breed, 1991, 106: 77−81
[4] Carver B F, Rayburn A L. Comparison of related wheat stocks
possessing 1B or 1BL·1RS chromosomes: agronomic performance.
Crop Sci, 1994, 34: 1505−1510
[5] Moreno-Sevile B, Baenziger P S, Peterson C J, Graybosch R A,
McVey D J. The 1B/1R translocationAgronomic performance of
F3-derived lines from a winter wheat cross. Crop Sci, 1995, 35:
1051−1055
[6] Rabinovich S V. Importance of wheat-rye translocation for
breeding modem cultivars of Triticum aestivum L. Euphytica,
1998, 100: 323−340
[7] Zhou Y (), He Z-H (), Zhang G-S ( ), Xia L-Q
( ), Chen X-M (), Gao Y-C (), Jing Z-B (
), Yu G-J (). Utilization of 1BL/1RS translocation in
wheat breeding in China. Acta Agron Sin (), 2004, 30(6):
531−535 (in Chinese with English abstract)
[8] Sugiyama T, Rafalski A, Peterson D, Söll D. A wheat HMW glu-
tenin subunits gene reveals a highly repeated structure. Nucl Ac-
ids Res, 1985, 13: 8729−8737
[9] Payne P I. Genetics of wheat storage protein and the effect of al-
lelic variation on breadmaking quality. Ann New York Acad Sci,
1987, 38: 141−153
[10] Li B-Y ( ), Liu G-F (!#), Wang Y-G ($%&), Sun H
((), Liu G-T(!)). Inheritance of high molecular weight
glutenin subunits (HMW-GS) in wheat. J China Agric Univ (*
+,-), 2000, 5(1): 58−62 (in Chinese with English ab-
stract)
[11] Wei Y-M (./0), Zheng Y-L (123), Zhou Y-H (4),
Lan X-J ( 56). The effects of T1BL·1RS translocation chro-
mosome on partial correlations among agronomic characters in
wheat. J Triticeae Crops (78), 2000, 20(1): 20−23 (in
Chinese with English abstract)
[12] Villareal R L, Toro E D, Mujeeb-Kazi A, Rajaram S. The
1BL/1RS chromosome translocation effect on yield characteris-
tics in a Triticum aestivum L. cross. Plant Breed, 1995, 114:
497−500
[13] Burnett C J, Lorenz K J, Carver B F. Effect of 1BL/1RS translo-
cation in wheat on composition and properties of grain and flour.
Euphytica, 1995, 86: 159−166
[14] Dhaliwal A S, Mares D J, Marshall D R. Effect of 1B/1R chro-
mosome translocation on milling and quality characteristic of
bread wheat. Cereal Chem, 1987, 64: 72−76
[15] Dhaliwal A S, Mares D J, Marshall D R. Protein composition and
pentosan content in relation to dough stickiness of 1B/1R trans-
location wheat. Cereal Chem, 1988, 62: 143−149
[16] Dhaliwal A S, MacRitchie F. Contributions of protein fractions to
dough handling properties of wheat-rye translocation cultivars. J
Cereal Sci, 1990, 12: 113−122
[17] Draper S R. ISTA variety committee report of the working group
for biochemical tests for cultivar identification 1983–1986. Seed
Sci Technol, 1987, 15: 431−434
[18] Javornik B. A comparison of methods for identifying and survey-
ing the presence of 1BL/1RS translocation in bread wheat.
Euphytica, 1991, 54: 45−53
[19] Ng P K W, Bushuk W. Glutenin of Marquis wheat as a reference
for eatimating molecular weight of glutenin subunits by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis. Cereal Chem,
1987, 64: 324−327
[20] Payne P I, Lawrence G J. Catalogue of alleles for the complex
gene loci, Glu-A1, Glu-B1 and Glu-D1, which code for high mo-
lecular weight subunits of glutenin in hexaploid wheat. Cereal
Res Commun, 1983, 11: 29−35
[21] Röder M S , Korzun V, Wendehake K, Plaschke J, Tixier M H,
Leroy P, Ganal M W. A microsatellite map of wheat. Genetics,
1998, 149: 2007−2023
[22] Whelan E D P, Conner R L, Thomas J B, Kuzyk A D. Transmis-
sion of a wheat alien chromosome translocation with resistance to
the wheat curl mite in common wheat, Triticum aestivum L. Can J
Genet Cytol, 1986, 28: 294−297
[23] Singh N K, Shepherd K W, Mcintosh R A. Linkage mapping of
genes for resistance to leaf, stem, and stripe rusts and w-secalins
on the short arm of rye chromosome 1R. Theor Appl Genet, 1990,
80: 609−616
[24] Koebner R M D, Shepherd K W. Induction of recombination be-
tween rye chromosome 1RL and wheat chromosomes. Theor Appl
Genet, 1985, 71: 208−215
[25] Koebner R M D, Shepherd K W. Controlled introgression to
wheat of genes from rye chromosome arm 1RS by induction of
allosyndesis 1: Isolation of recombinants. Theor Appl Genet, 1986,
73: 197−208
[26] Ma X (9:), Ren Z-L(;<=), Yan B-J(>?@), Zhang H-Q
(AB). Variation analysis of Glu-A1, Glu-B1, Glu-D1 in 66
lines from a wide cross between wheat (Triticum aestivum L.) and
rye (Secale cereal L.). Seeds (CD), 2005, 24 (10): 4−7 (in Chi-
nese with English abstract)