免费文献传递   相关文献

Effects of clonal integration on growth of stoloniferous herb Centella asiatica suffering from heterogeneous heavy metal Cd2+ stress

异质性重金属镉胁迫下克隆整合对匍匐茎草本植物积雪草生长的影响


采用盆栽试验研究了异质性重金属镉胁迫下, 克隆整合对匍匐茎草本植物积雪草(Centella asiatica)生长的影响。将远端分株(相对年幼的分株)分别置于对照和镉胁迫处理下, 并对远端分株与近端分株(相对年长的分株)之间的匍匐茎进行切断或保持连接处理。研究结果显示: 镉胁迫处理显著降低了积雪草远端分株的净光合速率(Pn)、最大光量子产量(Fv/Fm)、叶绿素含量、叶面积、分株数和生物量; 克隆整合缓解了镉胁迫对远端分株生长的不利影响; 克隆整合不仅未导致相连近端分株的损耗, 而且相连近端分株的光合效率也没有表现出补偿性增加; 克隆整合降低了远端受胁迫分株的根冠比, 从而使之减少了对土壤中重金属镉的吸收; 匍匐茎切断和镉胁迫处理对近端分株、远端分株的叶柄长没有显著的影响。结果表明: 克隆整合提高了积雪草遭受镉胁迫的远端分株的生长, 改变了其生物量分配格局, 并有助于整个克隆片段在异质性重金属胁迫下的生长。该研究对于丰富和发展异质性环境胁迫下克隆整合的生态适应对策具有重要意义。

Aims A pot experiment to examine the effects of clonal integration on growth of the stoloniferous herb Centella asiatica suffering from heterogeneous heavy metal Cd2+ stress was conducted to address two questions: (1) does clonal integration alleviate the negative effects on growth of clonal plants suffering from heterogeneous heavy metal stress; and (2) do the ramets growing in unfavorable microhabitats incur increased photosynthetic efficiency in the connected ramets?
Methods Relatively young, distal ramets of C. asiatica were assigned to normal or Cd2+ stressed soil, and the stolon connections between the relatively old proximal ramets and the young distal ramets were either severed or left intact. The net photosynthetic rate (Pn), chlorophyll fluorescence (maximum quantum yield of PSII, Fv/Fm) and chlorophyll contents of distal ramets and Pn of proximal ramets were measured. The growth performance of distal and proximal ramets was investigated at the end of the experiment.
Important findings Cd2+ stress treatment significantly decreased the Pn, Fv/Fm, chlorophyll contents and growth of distal ramets. Clonal integration significantly alleviated the negative effect of Cd2+ stress to distal ramets in terms of Pn, Fv/Fm, chlorophyll contents and biomass of distal ramets. There was no significant cost to the connected proximal ramets, and clonal integration did not incur increased photosynthetic efficiency in the proximal ramets. In addition, clonal integration significantly decreased root to shoot ratio of distal ramets suffering from Cd2+ stress, and reduced the uptake of the heavy metal. Petiole length of proximal and distal ramets was not significantly affected by stolon severing and Cd2+ stress. It is suggested that clonal integration may
enhance growth of clonal plants suffering from heterogeneous heavy metal stress.


全 文 :植物生态学报 2011, 35 (8): 864–871 doi: 10.3724/SP.J.1258.2011.00864
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2011-04-26 接受日期Accepted: 2011-06-01
* 共同通讯作者 Co-author for correspondence (E-mail: lym3326@126.com; cjs74@163.com)
异质性重金属镉胁迫下克隆整合对匍匐茎草本植
物积雪草生长的影响
刘富俊1 黎云祥1 廖咏梅1* 陈劲松2* 权秋梅1 龚新越1
1西华师范大学生命科学学院, 南充 637009; 2中国科学院成都生物研究所, 成都 610041
摘 要 采用盆栽试验研究了异质性重金属镉胁迫下, 克隆整合对匍匐茎草本植物积雪草(Centella asiatica)生长的影响。将
远端分株(相对年幼的分株)分别置于对照和镉胁迫处理下, 并对远端分株与近端分株(相对年长的分株)之间的匍匐茎进行切
断或保持连接处理。研究结果显示: 镉胁迫处理显著降低了积雪草远端分株的净光合速率(Pn)、最大光量子产量(Fv/Fm)、叶
绿素含量、叶面积、分株数和生物量; 克隆整合缓解了镉胁迫对远端分株生长的不利影响; 克隆整合不仅未导致相连近端分
株的损耗, 而且相连近端分株的光合效率也没有表现出补偿性增加; 克隆整合降低了远端受胁迫分株的根冠比, 从而使之减
少了对土壤中重金属镉的吸收; 匍匐茎切断和镉胁迫处理对近端分株、远端分株的叶柄长没有显著的影响。结果表明: 克隆
整合提高了积雪草遭受镉胁迫的远端分株的生长, 改变了其生物量分配格局, 并有助于整个克隆片段在异质性重金属胁迫下
的生长。该研究对于丰富和发展异质性环境胁迫下克隆整合的生态适应对策具有重要意义。
关键词 适应策略, 镉胁迫, 克隆整合, 光合效率, 匍匐茎切断
Effects of clonal integration on growth of stoloniferous herb Centella asiatica suffering from
heterogeneous heavy metal Cd2+ stress
LIU Fu-Jun1, LI Yun-Xiang1, LIAO Yong-Mei1*, CHEN Jin-Song2*, QUAN Qiu-Mei1, and GONG Xin-Yue1
1College of Life Science, China West Normal University, Nanchong 637009, China; and 2Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu
610041, China
Abstract
Aims A pot experiment to examine the effects of clonal integration on growth of the stoloniferous herb Centella
asiatica suffering from heterogeneous heavy metal Cd2+ stress was conducted to address two questions: (1) does
clonal integration alleviate the negative effects on growth of clonal plants suffering from heterogeneous heavy
metal stress; and (2) do the ramets growing in unfavorable microhabitats incur increased photosynthetic efficiency
in the connected ramets?
Methods Relatively young, distal ramets of C. asiatica were assigned to normal or Cd2+ stressed soil, and the
stolon connections between the relatively old proximal ramets and the young distal ramets were either severed or
left intact. The net photosynthetic rate (Pn), chlorophyll fluorescence (maximum quantum yield of PSII, Fv/Fm)
and chlorophyll contents of distal ramets and Pn of proximal ramets were measured. The growth performance of
distal and proximal ramets was investigated at the end of the experiment.
Important findings Cd2+ stress treatment significantly decreased the Pn, Fv/Fm, chlorophyll contents and growth
of distal ramets. Clonal integration significantly alleviated the negative effect of Cd2+ stress to distal ramets in
terms of Pn, Fv/Fm, chlorophyll contents and biomass of distal ramets. There was no significant cost to the
connected proximal ramets, and clonal integration did not incur increased photosynthetic efficiency in the
proximal ramets. In addition, clonal integration significantly decreased root to shoot ratio of distal ramets
suffering from Cd2+ stress, and reduced the uptake of the heavy metal. Petiole length of proximal and distal ramets
was not significantly affected by stolon severing and Cd2+ stress. It is suggested that clonal integration may
enhance growth of clonal plants suffering from heterogeneous heavy metal stress.
Key words adaptation strategy, Cd2+ stress, clonal integration, photosynthetic efficiency, stolon severing

刘富俊等: 异质性重金属镉胁迫下克隆整合对匍匐茎草本植物积雪草生长的影响 865

doi: 10.3724/SP.J.1258.2011.00864
克隆生长使得克隆植物产生许多具有相同基
因型且相互连接的分株, 正是这种强大的侧向生长
能力, 使克隆基株或由若干相互连接的克隆分株组
成的克隆片段占据了广阔的水平空间, 同时使得同
一基株的不同克隆分株有可能处于不同资源斑块
或小生境中(Oborny & Cain, 1997)。克隆整合, 是克
隆植物特有的生活史性状, 处于不同资源斑块内的
相连克隆分株通过匍匐茎或根状茎等进行水分、养
分和光合产物等资源的共享(Stuefer & Hutchings,
1994; Shumway, 1995)。克隆整合可能存在耗费
(cost), 即对匍匐茎等克隆结构和分株的维持以及
分株间疾病(Oborny & Podani, 1996)等不利因素的
传递而导致整个克隆适合度的降低。已有研究表明,
在长期或严酷的胁迫条件下, 克隆整合可能导致克
隆植物适合度降低, 进而相连分株间的克隆整合还
可能终止 (Hartnett & Bazzaz, 1983; Jónsdóttir &
Callaghan, 1989)。然而更多的研究显示, 克隆整合
提高了异质性生境中受胁迫分株的存活和生长能
力, 对整个克隆片段所带来的收益(benefit)超过其
耗费 (van Kleunen et al., 2000; Yu et al., 2002,
2004)。光系统II最大光量子产量(Fv/Fm)是反映植物
光合效率的一个重要指标(Björkman & Demmig,
1987; Johnson et al., 1993)。已有的研究显示, 克隆
整合带来的收益超过耗费的原因可能是胁迫分株
的反馈调节引起相连的未受胁迫分株的补偿性生
长 (Roiloa & Retuerto, 2006, 2007; Wang et al.,
2008)。Chen等(2010)的研究显示: 克隆整合提高了
沙埋分株以及克隆片段的生长能力, 但并未造成相
连的未遭受沙埋的分株的明显耗费; 同时, 相连的
未遭受沙埋分株的最大光量子产量(Fv/Fm)和净光
合速率(Pn)显著增加。然而, 在异质性水淹处理下,
尽管克隆整合促进了遭受水淹胁迫分株以及整个
克隆片段的生长, 但其并没有影响相连的未遭受水
淹胁迫分株的Fv/Fm (张想英等, 2010)。因此, 异质
性胁迫处理下, 克隆整合是否引起相连的未遭受胁
迫分株的光合效率补偿性增强仍存在争议。
重金属镉是植物的非必需元素之一, 植物被动
地吸收土壤中的镉元素后, 其光合作用、叶绿素合
成和生长都受到抑制(Krupa, 1988)。土壤中的各种
资源常呈现异质性分布(Bell & Lechowicz, 1994),
且克隆植物的强大的侧向生长能力使得同一基株
的相连克隆分株很可能生长在异质性重金属土壤
环境中。虽然近年来关于克隆植物对资源异质性响
应的研究较多(Yu et al., 2004; He et al., 2007; 杨慧
玲等, 2009), 但克隆整合对重金属异质性响应的研
究较少(Roiloa & Retuerto, 2006)。
本文以匍匐茎草本克隆植物积雪草 (Cen-
tella asiatica)为研究对象, 研究异质性重金属镉胁
迫下克隆整合对植物生长的影响, 旨在回答以下问
题: 1)克隆整合是否减缓了重金属镉对遭受胁迫的
分株生长的负面影响? 2)基于源-汇假说, 克隆整合
是否引起相连未遭受重金属镉胁迫的分株光合效
率的补偿性增强? 克隆整合对克隆植物在各种逆
境中的生存(适应)能力的贡献一直是克隆植物生态
学研究的重要内容之一, 本研究对于深刻认识克隆
生长及其生态适应对策具有重要意义。
1 材料和方法
1.1 试验材料
积雪草系伞形科积雪草属的一种矮小的多年
生匍匐茎克隆植物。细长的匍匐茎节上可以形成由
多个叶组成的莲座状结构, 并与基部不定根构成具
有潜在独立生存能力的分株, 分株高度1.5–7.0 cm。
该物种在我国广布于华东、中南和西南地区, 喜生
于海拔2 000 m以下的路旁、沟边或草地等肥沃阴湿
处(中国科学院中国植物志编辑委员会, 1979)。
1.2 试验设计
2009年在南充市西山森林公园采集5株积雪草,
将其栽植于西华师范大学试验温室中进行培养。
2010年9月, 从每株积雪草中选择4个大小相近的由
两个分株组成的克隆片段为试验材料, 每个克隆片
段中相对较老的分株及其产生的后代分株被称为
近端分株(proximal ramets), 而另一个分株及其产
生的后代分株被称为远端分株(distal ramets)。将这
些分株分别移栽到直径8 cm、高10 cm的塑料花盆
中, 每个花盆装上等量的培养土(沙和黄壤的体积
比为1:1), 每千克培养土中加入1.0 g缓释肥(奥绿1
号, N 14%, P2O5 14%, K2O 14%), 进行一周的恢复
生长。
前期预试验显示, 浓度为60 mg·kg–1 (Cd2+/土壤
干重)的镉胁迫显著影响积雪草的生长。试验共包含
4个处理组合: 匍匐茎保持连接且对远端分株不实
施镉胁迫(NS-NS), 匍匐茎切断且对远端分株不实
施镉胁迫(NS||NS), 匍匐茎保持连接且对远端分株
866 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (8): 864–871

www.plant-ecology.com
实施浓度为60 mg·kg–1的镉胁迫(NS-CS), 匍匐茎切
断且对远端分株实施浓度为60 mg·kg–1的镉胁迫
(NS||CS), 每个处理组合重复5次(图1)。试验于2010
年9月10日开始, 持续8周。
1.3 光合效率的测定
1.3.1 净光合速率Pn测定
采用LI-6400光合仪(LI-Cor Inc., Lincoln, NE,
USA)测定Pn, 试验过程中每隔一周(第2周、第4周、
第6周和第8周)测定一次积雪草近端和远端分株的
Pn, 共测定4次, 测定时间为9:00–11:00, 测定时所
设定的环境条件为: CO2浓度为(400 ± 5) mmol·
mol–1, 温度为25 ℃, 光强为800 mmol·m–2·s–1。
1.3.2 叶绿素荧光测定
植物光系统II (PSII)的最大光量子产量Fv/Fm是
植物光合性能的一个敏感指标, 在环境胁迫下植物
的Fv/Fm会显著下降。伴随着净光合速率测定, 再用
LI-6400光合仪(LI-Cor Inc., Lincoln, NE, USA)的荧
光叶室对远端分株的相同叶片测定叶绿素荧光参
数。在测定前, 每个叶片先暗适应20 min, 然后打开
叶夹, 测定暗适应下的最小初始荧光Fo和最大荧光
Fm, 并采用公式Fv/Fm = (Fm–Fo)/Fm计算PSII的最大
光量子产量(Bolhàr-Nordenkampf et al., 1989)。
1.3.3 叶绿素含量测定
叶片叶绿素含量值(SPAD values)与叶片的叶
绿素含量呈显著线性相关关系 (Markwell et al.,
1995; 姜丽芬等, 2005)。镉胁迫会降低植物的叶绿
素含量, 从而影响植物的光合能力(Suzuki et al.,
2001)。为此, 采用便携式叶绿素测定仪(SPAD-502,
Minolta Co., Japan)对远端分株的相同叶片测定叶
片叶绿素含量值(SPAD values)。
1.4 生长和形态可塑性测定
试验结束时, 计数近端和远端克隆分株数, 采
用SHY-150型活体扫描式叶面积仪(SHY-150, 哈尔
滨光学仪器厂)测定叶面积, 用直尺测定叶柄长度,
最后分别收获远端和近端分株的地上和地下部分,
置于70 ℃的烘箱中烘干至恒重, 用1/10000的分析
天平称重。
1.5 统计分析
把匍匐茎切断(S)和镉胁迫(C)作为组间因素
(between-subject factors), 采用双因素重复测量方差
分析(Two-way repeated measure ANOVAs)研究匍匐
茎切断(S)和镉胁迫(C)对远端分株的净光合速率、


图1 试验设计图解。NS-CS, 匍匐茎保持连接且对远端分株
实施镉胁迫; NS||CS, 匍匐茎切断且对远端分株实施镉胁迫;
NS-NS, 匍匐茎保持连接且对远端分株不实施镉胁迫 ;
NS||NS, 匍匐茎切断且对远端分株不实施镉胁迫。
Fig. 1 Schematic representation of the experimental design.
NS-CS, stolon connections left intact and distal ramets are as-
signed to Cd2+ stressed soil; NS||CS, stolon connections are
severed and distal ramets are assigned to Cd2+ stressed soil;
NS-NS, stolon connections are left intact and distal ramets are
assigned to normal soil; NS||NS, stolon connections are severed
and distal ramets are assigned to normal soil.


最大光量子产量和叶绿素含量以及近端分株Pn的影
响; 采用双因素方差分析(two-way ANOVA)研究匍
匐茎切断(S)和镉胁迫(C)对近端、远端分株以及整个
克隆片段的叶柄长、叶面积、分株数、生物量累积
以及分配的影响; 采用Duncan法对均值进行多重比
较, 所有的分析统计分析采用SPSS10.0完成。
2 结果
2.1 远端分株的表现
镉胁迫对远端分株的叶面积、分株数、生物量
累积与分配有显著影响, 匍匐茎切断对远端分株数
有显著影响, 镉胁迫和匍匐茎切断的交互作用对远
端分株生物量有显著影响(表1)。镉胁迫和匍匐茎切
断显著降低了积雪草远端分株的叶面积、分株数和
生物量(图2A、2B、2C), 然而镉胁迫和匍匐茎切断
对远端分株叶柄长没有显著影响(图3A)。匍匐茎连
接显著降低了镉胁迫下远端分株的根冠比(图3B)。
匍匐茎切断、镉胁迫及二者的交互作用对远端分株
的净光合速率有显著影响, 匍匐茎切断、镉胁迫显
著影响远端分株的最大光量子产量, 镉胁迫显著影
响远端分株叶片的叶绿素含量(表2), 不同测定时
间及其与镉胁迫的交互作用显著影响远端分株叶
刘富俊等: 异质性重金属镉胁迫下克隆整合对匍匐茎草本植物积雪草生长的影响 867

doi: 10.3724/SP.J.1258.2011.00864
表1 匍匐茎切断(S)和镉胁迫(C)及其交互作用(S × C)对积雪草近端、远端分株和(或)整个克隆片段叶柄长、叶面积、分株数、
生物量和根冠比的双因素方差分析
Table 1 Results of two-way analysis of variance on the effects of stolen severing (S), Cd2+ stress (C) and their interaction (S × C)
on petiole length, leaf area, number of ramets, biomass and root to shoot ratio of the proximal, distal ramets and/or the whole clonal
fragments of Centella asiatica
ns, p > 0.05; *, p < 0.05; **, p < 0.01.


表2 积雪草远端分株净光合速率(Pn)、叶绿素荧光(最大光量子产量, Fv/Fm)和叶绿素含量(SPAD values)以及近端分株的Pn的
双因素重复测量方差分析, 以匍匐茎切断(S)和镉胁迫(C)作为组间因素
Table 2 Results of Two-way repeated-measure analysis of variance, with stolen severing (S) and Cd2+ stress (C) as between-subject
effects, for differences in net photosynthesis rate (Pn), chlorophyll fluorescence (maximum quantum yield of photosystem II, Fv/Fm)
and chlorophyll contents (SPAD values) between distal ramets and Pn between proximal ramets of Centella asiatica
ns, p > 0.05; *, p < 0.05; **, p < 0.01.


片的叶绿素含量(表2)。镉胁迫和匍匐茎切断处理显
著降低了积雪草远端分株的净光合速率(图4A), 镉
胁迫和匍匐茎切断处理也显著降低了积雪草远端
分株的最大光量子产量和叶绿素含量(图5A、5B)。
2.2 近端分株的表现
匍匐茎切断、镉胁迫以及二者的交互作用对近
端分株的叶柄长、叶面积、生物量的累计及分配影
响不显著(表1), 而匍匐茎切断有助于增加近端分
株数(图2B)。匍匐茎切断、镉胁迫、不同测定时间
及其交互作用对近端分株的净光合速率影响不显
著(表2)。
2.3 整个克隆片段的表现
镉胁迫显著影响整个克隆片段的叶面积、分株
数和生物量, 匍匐茎切断与镉胁迫二者的交互作用
叶柄长
Petiole length
叶面积
Leaf area
分株数
Number of ramets
生物量
Biomass
根冠比
Root to shoot ratio
近端分株 Proximal ramets, df (1,12)
S 0.14 ns 0.01 ns 25.00** 0.56 ns 1.50 ns
C 0.01ns 0.02ns 1.00 ns 0.16 ns 2.27 ns
S × C 0.04 ns 0.08 ns 1.00 ns 1.55 ns 2.39 ns
远端分株 Distal ramets, df (1,12)
S 0.40 ns 1.84 ns 6.25* 0.96 ns 1.83 ns
C 3.46 ns 11.01** 20.25** 39.38** 9.08*
S × C 0.08 ns 1.45 ns 2.25 ns 5.25* 3.44 ns
克隆片段 Whole clonal fragments, df (1,16)
S – 1.58 ns 0.00 ns 1.74 ns –
C – 21.66** 10.67* 34.70** –
S × C – 3.20 ns 0.67 ns 4.95* –
近端分株 Proximal ramets 远端分株 Distal ramets
Pn Pn Fv/Fm SPAD

df F df F df F df F
组间效应 Between-subject effects
S 1 0.03 ns 1 6.49* 1 5.71* 1 5.18*
C 1 0.54 ns 1 66.00** 1 5.89* 1 35.29**
S × C 1 0.39 ns 1 10.96 * 1 2.38 ns 1 1.80 ns
误差 Error 8 8 8 12
组内效应 Within-subject effects
次数 Time 3 0.41 ns 3 0.24 ns 2 0.84 ns 3 5.58*
切断×次数 S × time 3 0.17 ns 3 0.17 ns 2 2.20 ns 3 0.48 ns
镉胁迫×次数 C × time 3 0.14 ns 3 2.75 ns 2 5.17 ns 3 5.66*
切断×镉胁迫×次数 S × C × time 3 1.68 ns 3 0.14 ns 2 1.29 ns 3 0.23 ns
误差 Error 24 24 16 36
868 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (8): 864–871

www.plant-ecology.com


图2 近端、远端分株和整个克隆片段的叶面积(A)、分株数
(B)和生物量(C) (平均值±标准误差)。对于近端和远端分株,
相同的小写字母表示各处理间差异不显著(p = 0.05); 对于
整个克隆片段, 相同的希腊字母表示各处理间差异不显著
(p = 0.05)。NS-CS, 匍匐茎保持连接且对远端分株实施镉胁
迫; NS||CS, 匍匐茎切断且对远端分株实施镉胁迫; NS-NS,
匍匐茎保持连接且对远端分株不实施镉胁迫; NS||NS, 匍匐
茎切断且对远端分株不实施镉胁迫。
Fig. 2 Leaf area (A), number of ramets (B) and biomass (C)
of the proximal, distal ramets and the whole clonal fragments
(mean ± SE). For the proximal and distal ramets, the same low-
ercase letters are not significantly different at p = 0.05, for the
whole clonal fragments, the same Greek letters are not signifi-
cantly different at p = 0.05. NS-CS, stolon connections left
intact and distal ramets are assigned to Cd2+ stressed soil;
NS||CS, stolon connections are severed and distal ramets are
assigned to Cd2+ stressed soil; NS-NS, stolon connections are
left intact and distal ramets are assigned to normal soil; NS||NS,
stolon connections are severed and distal ramets are assigned to
normal soil.


显著影响整个克隆片段的生物量(表1)。匍匐茎切断
和镉胁迫显著降低了整个克隆片段的叶面积、分株
数和生物量(图2A、2B、2C)。
3 讨论
研究结果显示, 克隆整合缓解了镉胁迫对远端
分株的净光合速率、最大光量子产量和叶片的叶绿


图3 近端、远端分株的叶柄长(A)和根冠比(B) (平均值±标
准误差)。相同小写字母表示各处理间差异不显著(p = 0.05)。
NS-CS, 匍匐茎保持连接且对远端分株实施镉胁迫; NS||CS,
匍匐茎切断且对远端分株实施镉胁迫; NS-NS, 匍匐茎保持
连接且对远端分株不实施镉胁迫; NS||NS, 匍匐茎切断且对
远端分株不实施镉胁迫。
Fig. 3 Petiole length (A) and root to shoot ratio (B) of the
proximal and distal ramets (mean ± SE). The bars with the
same lowercase letters are not significantly different at p =
0.05. NS-CS, stolon connections left intact and distal ramets
are assigned to Cd2+ stressed soil; NS||CS, stolon connections
are severed and distal ramets are assigned to Cd2+ stressed soil;
NS-NS, stolon connections are left intact and distal ramets are
assigned to normal soil; NS||NS, stolon connections are severed
and distal ramets are assigned to normal soil.


素含量的不利影响(表2; 图4A, 图5A、5B), 这与
Wang等(2008)对空心莲子草(Alternanthera philox-
eroides)的试验结果类似, 克隆整合使竞争胁迫下
的空心莲子草受胁迫分株的Fv/Fm值维持在正常范
围内。克隆整合作用给予积雪草遭受镉胁迫远端分
株部分显著的收益, 同时对于近端分株部分没有带
来显著花费。因此, 克隆整合有助于积雪草抵御异
质性环境胁迫, 这与已有许多研究结果相一致(Yu
et al., 2002; Liu et al., 2006; 杨慧玲等, 2009)。尽管
克隆整合可以减轻异质性重金属胁迫的影响 ,
NS-CS处理下远端分株和整个克隆片段的生物量还
是小于对照处理。因此, 克隆整合可能仅在一定程
度上缓解了局部环境胁迫的负面影响(Chen et al.,
2010)。
重金属镉可以阻碍植物光系统II的电子传递、
降低叶绿素含量等 , 进而影响植物的光合速率
刘富俊等: 异质性重金属镉胁迫下克隆整合对匍匐茎草本植物积雪草生长的影响 869

doi: 10.3724/SP.J.1258.2011.00864


图4 远端分株(A)和近端分株(B)的净光合速率(Pn)随时间
的变化(平均值±标准误差)。◆、■、▲和×分别表示匍匐茎
切断且对远端分株实施镉胁迫处理、匍匐茎保持连接且对远
端分株实施镉胁迫处理、匍匐茎切断且对远端分株不实施镉
胁迫处理和匍匐茎保持连接且对远端分株不实施镉胁迫处
理。
Fig. 4 Variations of net photosynthetic rate (Pn) of distal
ramets (A) and proximal ramets (B) with time (mean ± SE). ◆,
■, ▲ and × represent stolon connections are severed and distal
ramets are assigned to Cd2+ stressed soil, stolon connections
left intact and distal ramets are assigned to Cd2+ stressed soil,
stolon connections are severed and distal ramets are assigned to
normal soil, and stolon connections are left intact and distal
ramets are assigned to normal soil treatments, respectively.


(Krupa, 1988)。植物适应重金属胁迫的一个重要策
略就是回避(avoidance), 通过这样一个回避策略使
得即使在高浓度重金属胁迫下, 植物仍能维持其正
常的生理功能(Prasad, 1995)。匍匐茎连接下受胁迫
远端分株比匍匐茎切断下受胁迫远端分株具有更
小的根冠比(图3B), 匍匐茎切断的远端分株地下部
分、地上部分和整株中重金属镉的浓度分别为
(502.13 ± 47.20)、(344.95 ± 50.64)和(355.51 ± 39.80)
μg·g–1, 且分别是匍匐茎连接下远端分株地下部分、
地上部分和整株的1.55倍、1.57倍和1.61倍(未发表
数据)。这可能是由于, 相比于匍匐茎切断的受胁迫
远端分株, 匍匐茎连接的受胁迫远端分株由于有近
端分株的水分和养分的支持, 从根部吸收的养分相


图5 远端分株的光系统II最大光量子产量(A)和叶绿素含量
(B)随时间的变化(平均值±标准误差)。◆、■、▲和×分别表
示匍匐茎切断且对远端分株实施镉胁迫处理、匍匐茎保持连
接且对远端分株实施镉胁迫处理、匍匐茎切断且对远端分株
不实施镉胁迫处理和匍匐茎保持连接且对远端分株不实施
镉胁迫处理。远端分株的第6周测定的最大光量子产量数据
不可用。
Fig. 5 Variations of maximum quantum yields of photosys-
tem II (A) and chlorophyll contents (B) of distal ramets with
time (mean ± SE). ◆, ■, ▲ and × represent stolon connections
are severed and distal ramets are assigned to Cd2+ stressed soil,
stolon connections left intact and distal ramets are assigned to
Cd2+ stressed soil, stolon connections are severed and distal
ramets are assigned to normal soil, and stolon connections are
left intact and distal ramets are assigned to normal soil treat-
ments, respectively. Data on maximum quantum yields of pho-
tosystem II in distal ramets is not available at sixth week.


对较少, 因此可以减少对地下部分生物量的分配,
相应地减少对土壤中重金属镉的吸收, 从而缓解了
其对受胁迫远端分株的伤害。
重金属胁迫下植物的另一个适应策略就是忍
耐(tolerance) (Prasad, 1995)。抗氧化酶活性的维持与
提高是增强植物耐受镉胁迫的重要物质基础(汪洪
等, 2008)。为此, 我们提出克隆整合可能影响了积
雪草的生化抗毒策略 (biochemical detoxification
strategies), 进而减缓远端分株所遭受的镉胁迫程
度。由于本研究未检测克隆整合是否影响受胁迫远
端分株的抗氧化酶活性, 未来进一步的相关研究是
870 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (8): 864–871

www.plant-ecology.com
非常必要的。
异质性环境胁迫下, 克隆整合没有引起相连的
未遭受胁迫的近端分株显著的耗费, 一个原因可能
是多余的资源从未遭受胁迫的分株传输到了相连
的遭受胁迫的分株(Yu et al., 2002), 多余资源传输
将不会对未遭受胁迫分株的生长表现产生显著影
响(van Kleunen & Stuefer, 1999)。此外, 异质性环境
胁迫下, 当与遭受胁迫分株相连时, 源-汇反馈调节
机制可能引起未遭受胁迫的分株光合效率补偿性
增加(Hartnett & Bazzaz, 1983; Roiloa & Retuerto,
2006; Chen et al., 2010)。然而, 本研究中当与遭受
胁迫的分株相连时, 相连的未遭受胁迫的分株的光
合速率并未显著增加(图4B)。为此, 我们猜测克隆
整合可能通过影响植物的适应策略(回避或忍耐),
进而增强其对镉胁迫的耐受能力, 提高了相连的遭
受胁迫的分株的光合速率, 从而导致相连的未遭受
胁迫的分株的净光合速率并没有显著增加。因此,
克隆整合对相连的未遭受胁迫的分株光合效率的
影响可能与胁迫处理条件和物种有关(张想英等,
2010)。
总之, 在异质性重金属镉胁迫环境下, 克隆整
合不仅提高了积雪草遭受镉胁迫的远端分株的生
长, 而且改变了其生物量分配格局, 缓解了重金属
镉对分株的伤害, 提高了受胁迫分株的光合效率,
从而减缓了镉胁迫对整个克隆片段生长的影响。因
此, 克隆整合特性有助于克隆植物抵御重金属胁
迫。
致谢 国家自然科学基金(30870389)和四川省教育
厅重点项目(08ZA017)资助。
参考文献
Bell G, Lechowicz MJ (1994). Spatial heterogeneity at small
scales and how plants respond to it. In: Caldwell MM,
Pearcy RW eds. Exploitation of Environmental Heteroge-
neity by Plants: Ecophysiological Processes Above- and
Belowground. Academic Press, San Diego. 391–414.
Björkman O, Demmig B (1987). Photon yield of O2 evolution
and chlorophyll fluorescence characteristics at 77 K
among vascular plants of diverse origins. Planta, 170,
489–504.
Bolhàr-Nordenkampf HR, Long SP, Baker NR, Öquist G,
Scheiber U, Lechner EG (1989). Chlorophyll fluorescence
as a probe of the photosynthetic competence of leaves in
the field: a review of current instrumentation. Functional
Ecology, 3, 497–514.
Chen JS, Lei NF, Dong M (2010). Clonal integration improves
the tolerance of Carex praeclara to sand burial by com-
pensatory response. Acta Oecologica, 36, 23–28.
Delectis Florae Reipublicae Popularis Sinicae Agendae Aca-
demiae Sinicae Edita (中国科学院中国植物志编辑委员
会) (1979). Flora Reipublicae Popularis Sinicae (中国植
物志), 55 (1). Science Press, Beijing. 31–33. (in Chinese)
Hartnett DC, Bazzaz FA (1983). Physiological integration
among intraclonal ramets in Solidago canadensis. Ecology,
64, 779–788.
He ZS, He WM, Yu FH, Shi PL, Zhang XZ, He YT, Zhong ZM,
Dong M (2007). Do clonal growth form and habitat origin
affect resource-induced plasticity in Tibetan alpine herbs?
Flora, 202, 408–416.
Jiang LF (姜丽芬), Shi FC (石福臣), Wang HT (王化田), Zu
YG (祖元刚) (2005). Application tryout of chlorophyll
meter SPAD-502 in forestry. Chinese Journal of Ecology
(生态学杂志), 24, 1543–1548. (in Chinese with English
abstract)
Johnson GN, Scholes JD, Young AJ, Horton P (1993). The
dissipation of excess excitation energy in British plant
species. Plant, Cell & Environment, 16, 673–679.
Jónsdóttir IS, Callaghan TV (1989). Localized defoliation
stress and the movement of 14C-photoassimilates between
tillers of Carex bigelowii. Oikos, 54, 211–219.
Krupa Z (1988). Cadmium-induced changes in the composition
and structure of the light-harvesting chlorophyll a/b pro-
tein complex II in radish cotyledons. Physiologia Planta-
rum, 73, 518–524.
Liu FH, Ye XH, Yu FH, Dong M (2006). Clonal integration
modifies responses of Hedysarum laeve to local sand bur-
ial in Mu Us sandland. Journal of Plant Ecology, 30,
278–285.
Markwell J, Osterman JC, Mitchell JL (1995). Calibration of
the Minolta SPAD-502 leaf chlorophyll meter. Photosyn-
thesis Research, 46, 467–472.
Oborny B, Cain ML (1997). Models of spatial spread and for-
aging in clonal plants. In: de Kroon H, van GroenendaelJ
eds. The Ecology and Evolution of Clonal Plants. Back-
huys Publishers, Leiden. 155–183.
Oborny B, Podani J (1996). The Role of Clonality in Plant
Communities. Opulus Press, Uppsala.
Prasad MNV (1995). Cadmium toxicity and tolerance in vas-
cular plants. Environmental and Experimental Botany, 35,
525–545.
Roiloa SR, Retuerto R (2006). Physiological integration ame-
liorates effects of serpentine soils in the clonal herb Fra-
garia vesca. Physiologia Plantarum, 128, 662–676.
Roiloa SR, Retuerto R (2007). Responses of the clonal Fra-
garia vesca to microtopographic heterogeneity under dif-
ferent water and light conditions. Environmental and Ex-
perimental Botany, 61, 1–9.
刘富俊等: 异质性重金属镉胁迫下克隆整合对匍匐茎草本植物积雪草生长的影响 871

doi: 10.3724/SP.J.1258.2011.00864
Shumway SW (1995). Physiological integration among clonal
ramets during invasion of disturbance patches in a New
England salt marsh. Annals of Botany, 76, 225–233.
Stuefer JF, Hutchings MJ (1994). Environmental heterogeneity
and clonal growth: a study of the capacity for reciprocal
translocation in Glechoma hederacea L. Oecologia, 100,
302–308.
Suzuki N, Koizumi N, Sano H (2001). Screening of cad-
mium-responsive genes in Arabidopsis thaliana. Plant,
Cell & Environment, 24, 1177–1188.
van Kleunen M, Fischer M, Schmid B (2000). Clonal
integration in Ranunculus reptans: by-product or
adaptation? Journal of Evolutionary Biology, 13, 237–248.
van Kleunen M, Stuefer JF (1999). Quantifying the effects of
reciprocal assimilate and water translocation in a clonal
plant by the use of steam-girdling. Oikos, 85, 135–145.
Wang H (汪洪), Zhao SC (赵士诚), Xia WJ (夏文建), Wang
XB (王秀斌), Fan HL (范洪黎), Zhou W (周卫) (2008).
Effect of cadmium stress on photosynthesis, lipid peroxi-
dation and antioxidant enzyme activities in maize (Zea
mays L.) seedings. Plant Nutrition and Fertilizer Science
(植物营养与肥料学报), 14, 36–42. (in Chinese with Eng-
lish abstract)
Wang N, Yu FH, Li PX, He WM, Liu FH, Liu JM, Dong M
(2008). Clonal integration affects growth, photosynthetic
efficiency and biomass allocation, but not the competitive
ability, of the alien invasive Alternanthera philoxeroides
under severe stress. Annals of Botany, 101, 671–678.
Yang HL (杨慧玲), Xue RL (薛瑞丽), Ye YZ (叶永忠), Wang
HQ (王会勤), Dong M (董鸣), Huang ZY (黄振英)
(2009). Effects of clonal integration on growth and sur-
vival of Bromus inermis (Poaceae) in heterogeneous saline
environments of the Otindag Sandland. Acta Ecologica
Sinica (生态学报), 29, 2827–2834. (in Chinese with Eng-
lish abstract)
Yu FH, Chen YF, Dong M (2002). Clonal integration enhances
survival and performance of Potentilla anserina, suffering
from partial sand burial on Ordos plateau, China. Evolu-
tionary Ecology, 15, 303–318.
Yu FH, Dong M, Krüsi B (2004). Clonal integration helps
Psammochloa villosa survive sand burial in an inland
dune. New Phytologist, 162, 697–704.
Zhang XY (张想英), Fan DY (樊大勇), Xie ZQ (谢宗强),
Xiong GM (熊高明), Li ZJ (李兆佳) (2010). Clonal inte-
gration enhances performance of Cynodon dactylon sub-
jected to submergence. Chinese Journal of Plant Ecology
(植物生态学报), 34, 1075–1083. (in Chinese with English
abstract)

责任编委: 于飞海 责任编辑: 王 葳