免费文献传递   相关文献

Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: a review

陆地生态系统植被氮磷化学计量研究进展


因化学功能的耦合和元素的不可替代性, 植物对N、P的需求和利用存在严格的比例。植物N、P化学计量在不同功能群、生长地区、生长季、器官之间以及环境梯度下存在明显的变化规律。多数研究从N、P浓度、N:P及N、P间异速指数等角度分析了植物化学计量变化规律, 并探讨其在全球范围内的具体数值。为增进对植物响应全球变化的理解, 该文综述了N、P化学计量的影响因素及其机理的最新研究进展, 并指出未来拟重点研究的方向。

Nitrogen (N), phosphorus (P) and their stoichiometry play pivotal roles in plant structure and functions, development and ecological strategies in terrestrial ecosystems due to their coupling with each other and their irreplaceability. Plant N and P can be influenced by biotic and abiotic factors, such as individual traits, climate change and human disturbance, and it is those factors that determine the plant community composition and structure that finally affect the ecosystem processes. According to previous studies, there is an allometric relationship between N and P. Relationships between plant N and P depend on the soil nutrient condition and species plasticity in N and P. Understanding the relationships between plant N and P in major ecological gradients can further our knowledge about vegetation restoration, succession, biodiversity, ecosystem trophic structure and biogeochemical cycles. This information could help predict potential changes in terrestrial ecosystems in response to future climate change. We review recent advances in the influencing factors and mechanism of stoichiometry in order to improve understanding of plant responses to global change.


全 文 :植物生态学报 2012, 36 (11): 1205–1216 doi: 10.3724/SP.J.1258.2012.01205
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2012-07-20 接受日期Accepted: 2012-09-13
* 通讯作者Author for correspondence (E-mail: wanggx@zju.edu.cn)
陆地生态系统植被氮磷化学计量研究进展
刘 超 王 洋 王 楠 王根轩*
浙江大学生命科学学院生态研究所, 杭州 310058
摘 要 因化学功能的耦合和元素的不可替代性, 植物对N、P的需求和利用存在严格的比例。植物N、P化学计量在不同功
能群、生长地区、生长季、器官之间以及环境梯度下存在明显的变化规律。多数研究从N、P浓度、N:P及N、P间异速指数
等角度分析了植物化学计量变化规律, 并探讨其在全球范围内的具体数值。为增进对植物响应全球变化的理解, 该文综述了
N、P化学计量的影响因素及其机理的最新研究进展, 并指出未来拟重点研究的方向。
关键词 异速关系, 生态化学计量学, 内稳态, N:P, 植物功能群
Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial eco-
systems: a review
LIU Chao, WANG Yang, WANG Nan, and WANG Gen-Xuan*
Institute of Ecology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
Abstract
Nitrogen (N), phosphorus (P) and their stoichiometry play pivotal roles in plant structure and functions, develop-
ment and ecological strategies in terrestrial ecosystems due to their coupling with each other and their irreplace-
ability. Plant N and P can be influenced by biotic and abiotic factors, such as individual traits, climate change and
human disturbance, and it is those factors that determine the plant community composition and structure that fi-
nally affect the ecosystem processes. According to previous studies, there is an allometric relationship between N
and P. Relationships between plant N and P depend on the soil nutrient condition and species plasticity in N and P.
Understanding the relationships between plant N and P in major ecological gradients can further our knowledge
about vegetation restoration, succession, biodiversity, ecosystem trophic structure and biogeochemical cycles.
This information could help predict potential changes in terrestrial ecosystems in response to future climate
change. We review recent advances in the influencing factors and mechanism of stoichiometry in order to improve
understanding of plant responses to global change.
Key words allometric relationship, ecological stoichiometry, homeostasis, N:P, plant functional group

作为植物生存和生长的必需元素, 氮(N)、磷(P)
对蛋白质、磷酸的合成以及能量传递等代谢过程至
关重要, 并且两者可协同影响植物个体功能运行甚
至整个生态系统进程 (Koerselman & Meuleman,
1996; Güsewell, 2004; Wright et al., 2004; Ågren,
2008; Ordoñez et al., 2009; Vitousek et al., 2010)。植
物N、P化学计量受非生物因素(如温度、水分、土
壤养分、CO2浓度等)和生物因素(如遗传特性、生长
阶段、种群分类等)的综合影响, 是预测陆地生态系
统变化的重要指标。植物N、P化学计量特征与植物
特性之间的关系解释了植物群落的功能差异及其
对环境变化的适应性(Bedford et al., 1999; Matson et
al., 1999; Venterink et al., 2003), 同时对评定N、P对
陆地生态系统初级生产力的限制作用具有重要意
义(Reich & Oleksyn, 2004; Han et al., 2005; Town-
send et al., 2007)。因此植物N、P化学计量逐渐成为
陆地植物生态学问题的研究热点。本文试图综述近
年来相关植物化学计量的最新研究进展, 着重分析
植物N、P化学计量特征的变化规律及其机制, 并探
讨其潜在的规律特征, 为准确地评估陆地生态系统
生产力及其功能变化提供依据。
1 植物N和P的关系
作为蛋白质和RNA的组成元素, N、P对植物生
1206 植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (11): 1205–1216

www.plant-ecology.com
长和代谢十分重要(Elser et al., 2000, 2003; Ågren,
2004; Niklas et al., 2005; Reich et al., 2006b;
Makarieva et al., 2008; Tjoelker et al., 2008)。通常认
为植物生长受相对含量最少的元素限制(Liebig最
小因子定律), 但近期研究发现N、P协同限制植物代
谢, 同时施加N、P造成的植物生长响应比单独施加
时更明显(Elser & Hamilton, 2007; Harpole et al.,
2011)。植物个体生物量受气候环境变化影响, 并与
代谢密切相关(Cheng et al., 2009, 2010)。Elser等
(2010)综述了近年来在全球变化和植物生态学框架
下生态化学计量学理论 (biological stoichiometry
theory)和代谢尺度理论(metabolic scaling theory)相
结合的研究进展, 对植物化学计量的研究具有重要
意义。植物化学计量、体型与气候变化之间关系的
相关研究加深了我们对植物响应全球变化的理解。
关于N、P关系的假说主要存在两种: 内稳态假
说和相对生长率假说。
内稳态假说: 有机体能够维持自身特性的相对
稳定, 使内部环境变化保持在一个较小的范围内,
并不随外部环境而剧烈变动(Zhang et al., 2004)。
Sterner和Elser (2002)提出植物可能通过内稳态机制
使C:N:P维持某一动态平衡。N、P通过某些变化机
制相互影响, 例如P可通过影响有机物的分解、N矿
化过程来控制植物的固N效率(Vitousek & Hobbie,
2000; Gressel & McColl, 2003)。Demars和Edwards
(2007)研究发现养分供应条件各异的41种野生湿地
植物和水生植物组织N:P变化较小, 这证明了内稳
态机制的存在。
相对生长率假说: 早期研究猜测在细胞、组织
甚至整个有机体水平上植物化学计量变化与生长
率相关(Sterner & Elser, 2002; Vrede et al., 2004)。
Elser等(2000, 2003)提出的生长率假说认为: 生长
速率高使植物分配到RNA中的P增多, 进而导致植
物整体P和N含量不同速变化。Ågren (2004)也发现
相对生长速率低时, 植物N:P先增加至最大值, 然
后随相对生长速率的增高而逐渐减少。蛋白质合成
速率决定植物生长速度, 而P在细胞内多以核酸磷
的形式存在, 所以快速生长时植物组织P浓度较高
(Güsewell, 2004)。但由于植物液泡可储存养分, 导
致生长率假说可能不适用于养分充足的植物
(Ågren, 2004; Matzek & Vitousek, 2009)。
植物叶片中N、P分配因物种、生理生长策略以
及土壤环境等的不同而异, 但长期研究发现叶片
N、P的分配必然服从某一化学计量规律(Sterner &
Elser, 2002; Güsewell, 2004; Kerkhoff et al., 2005;
Niklas et al., 2005; Niklas, 2006; Townsend et al.,
2007; Ågren, 2008; Lambers et al., 2008)。植物许多
生理特征之间存在异速关系, 各种生理特征的变化
对生态学和进化学进程具有重要影响(Sterner &
Elser, 2002; McGroddy et al., 2004; Wright et al.,
2004; Matzek & Vitousek, 2009)。研究表明叶片N、
P对于植物光合作用、蛋白质合成、基因表达等代
谢反应十分重要, 并且在浓度变化上存在明显的异
速关系: rN∝rPα (Sterner & Elser, 2002; Ågren, 2004,
2008; McGroddy et al., 2004; Wright et al., 2004;
Kerkhoff et al., 2005; Niklas et al., 2005; Kerkhoff et
al., 2006; Elser & Hamilton, 2007; Reich et al.,
2010)。
2 影响植物N、P化学计量的非生物因素
综合生物学、化学和物理学原理并结合生态进
程中各种化学元素的平衡关系, 生态化学计量学为
研究生态系统中植物C、N、P等元素的相互关系、
生物地球化学循环以及生态学进程提供了新的方
法和思路(Sterner & Elser, 2002; Güsewell, 2004; 贺
金生和韩兴国, 2010)。作为限制陆地生态系统植物
生长发育的重要因素, N、P化学计量很容易受到非
生物因素的影响。
2.1 温度
全球尺度上植物N、P化学计量与温度的变化关
系可能是对热带地区土壤P可利用量较少或是对寒
冷地区生长季节较短的一种适应(Vitousek, 1984;
McGroddy et al., 2004; Reich & Oleksyn, 2004)。随
着温度升高, 植物叶片N浓度基本不变, P浓度逐渐
减少, N:P呈增加趋势(McGroddy et al., 2004; Reich
& Oleksyn, 2004; Han et al., 2005; Kerkhoff et al.,
2005; 任书杰等, 2012)。低温时植物可能激活某种
温度敏感机制促进N、P浓度增加, 从而弥补酶效率
和RNA合成速率的降低(Reich & Oleksyn, 2004)。
2.2 水分
降水可改变土壤水分含量, 影响微生物的分解
和N矿化作用, 进而影响土壤中N的可利用性(Liu et
al., 2006)。Reich和Oleksyn (2004)发现热带地区降
水较多, 土壤淋溶严重、有效养分含量低, 从而导
刘超等: 陆地生态系统植被氮磷化学计量研究进展 1207

doi: 10.3724/SP.J.1258.2012.01205
致植物N、P含量较低。降水量不同的地区植物N、
P含量存在明显差异。Zheng和Shangguan (2007)研
究发现随年降水量减少, 黄土高原植物叶片N:P增
加; 但是Townsend等(2007)发现巴西热带雨林的植
物N:P与降水量无关。李玉霖等(2010)发现中国北方
典型荒漠和荒漠化地区的植物叶片N、P及N:P与降
水显著相关。因此, 只有在可利用量较少时水分才
能对植物化学计量产生明显影响 (Huang et al.,
2009)。
2.3 光
近期研究发现光与植物养分间可能存在一定
的计量关系(Dickman et al., 2008; Striebel et al.,
2008)。植物的光合作用与光合器官中的N含量密切
相关(Field & Mooney, 1986), N、P吸收和运输所需
的能量最终靠光合作用提供。养分充足时, 减弱光
照会导致植物地上部分快速生长以捕获更多光能,
因而植物地上部分N:P减小; 而增强光照可使植物
地上部分的生长速度减慢 , 导致植物N:P增加
(Valladares et al., 2000; Wright et al., 2005; Zheng &
Shangguan, 2007; Sims et al., 2012)。另外, Sims等
(2012)研究发现增强光照可以缓解N对Zizania pal-
ustris的生长限制。
2.4 土壤养分
土壤养分可直接影响植物对养分的吸收和利
用, 改变植物N、P化学计量甚至植物整体生物量分
配和生态策略(Tessier & Raynal, 2003; Güsewell,
2004; Hogan et al., 2010)。研究发现植物叶片的元素
浓度取决于土壤养分的可利用性(Reich & Oleksyn,
2004; Han et al., 2005; Townsend et al., 2007;
Richardson et al., 2008)。王绍强和于贵瑞(2008)通过
总结不同地区的土壤养分发现, 不同陆地生态系统
的土壤N:P存在明显差异。土壤养分差异对植物化
学计量具有重要影响: 土壤P含量增加可促进受P限
制植物的生长, 增加其组织内的P浓度, 降低N:P
(Olsen & Bell, 1990; Perring et al., 2008)。热带土壤
淋溶效应严重, 使其N、P可利用性低, 最终导致植
物N、P含量较低(Reich & Oleksyn, 2004), 如巴西热
带雨林(Townsend et al., 2007)。在地中海气候地区
也发现土壤N、P浓度和N:P可对植物化学计量产生
影响(Stock & Verboom, 2012)。研究发现中国土壤P
含量从湿润区向干旱半干旱区呈增加趋势, 干旱半
干旱区的土壤P含量相对较高, 导致荒漠地区植物
叶片的P浓度明显高于非荒漠地区(Han et al., 2005;
任书杰等, 2007; 汪涛等, 2008; 李玉霖等, 2010)。湿
地土壤N、P含量的差异导致植物N:P波动较大
(Wassen et al., 1995; Güsewell & Koerselman, 2002;
Venterink et al., 2003)。
2.5 CO2浓度
CO2浓度变化通过改变光合作用产物分配影响
植物化学计量, 进而改变自然生态系统的生产和分
解进程 , 最终影响整个N、P循环(Loladze, 2002;
Finzi et al., 2004; Johnson et al., 2004; Vrede et al.,
2004; Nguyen et al., 2006; Wang et al., 2010; Huang
et al., 2012)。CO2浓度升高可促进干物质积累和植
物生长, 而植物养分吸收速率相对较慢, 导致养分
在组织内相对稀释(Cotrufo et al., 1998; Loladze et
al., 2002; Reich et al., 2006b; Larsen et al., 2011)。高
浓度CO2促进某些植物地下部分释放P从而导致植
物P浓度迅速降低(Lagomarsino et al., 2008; Lukac et
al., 2010); 并且高浓度CO2还可通过影响植物N同
化能力、蒸腾作用和植物形态来减少N的吸收和同
化(Taub & Wang, 2008; Sardans & Peñuelas, 2010)。
总体而言, CO2浓度升高可降低陆地生态系统植物
的N、P浓度 , 但对一些C4植物的影响并不明显
(Polley et al., 2011), 目前仍不能确定CO2浓度对植
物N:P的具体影响(Körner et al., 2005; Sardans et al.,
2012)。Novotny等(2007)发现增加CO2浓度对于5种
固N和非固N的双子叶植物N:P无显著影响。
2.6 综合因素
无论是在全球尺度还是在小区域范围内, 植物
N、P化学计量都可能受多种因素的协同影响, 从而
改变了从单因素限制角度分析获得的植物化学计
量变化规律。植物化学计量随纬度和海拔变化是多
种因素共同作用的结果, 其变化规律可能为: 在赤
道低纬度地区, 因降水较多、快速生长、有效N淋
溶等原因, 植物N、P浓度较小(Reich & Oleksyn,
2004); 在高纬度地区, 低温降低了土壤N的有效性,
导致植物N浓度较低(任书杰等, 2009), 因此随纬度
增加, 植物N浓度可能先增加后减小, P浓度逐渐增
加, 植物N:P逐渐减小(Reich & Oleksyn, 2004)。温
度、降水和土壤特性等因素因海拔高度而变化, 对
植物N、P化学计量具有重要影响。因同一地区不同
海拔高度植物种类的差异性, 植物化学计量随海拔
的变化规律较难研究。
1208 植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (11): 1205–1216

www.plant-ecology.com
因不同因素的综合影响, 某些地区的植物N、P
化学计量变化不符合全球大尺度范围得出的规律:
Hobbie和Gough (2002)发现美国阿拉斯加高山冻原
植物叶片养分浓度由土壤养分和植物类群共同影
响。巴西热带雨林的植物N:P与温度和降水无明显
关系, 而与植物类群和土壤土纲有关(Townsend et
al., 2007)。任书杰等 (2009)对兴安落叶松 (Larix
gmelinii)进行研究时发现, 随纬度升高, 年平均温
度和年降水量减少, 叶片N浓度明显降低, 而P浓度
无显著变化。不同气候地区主要影响因素不同: 内
蒙古温带草原植物主要受降水限制, 而西藏高寒草
原植物主要受温度限制, 新疆山地草原植物则受温
度和降水的共同限制(He et al., 2008)。因此在不同
区域范围内综合不同因素来研究植物化学计量具
有重要意义。
3 影响植物N、P化学计量的生物因素
3.1 生长阶段
不同生长阶段的植物化学计量特征存在明显
差异, 叶片N浓度随植物年龄增加而减小。植物幼
株同时进行生长和发育等多种生物过程, 对N、P需
求量大; 而成熟个体的生长仅限于幼叶、茎尖等活
跃组织, 大部分成熟叶虽进行光合作用但不再生
长, 对P的需求相对较少, 因此成熟个体N:P相对较
高(Usuda, 1995)。植物对衰老组织养分的重吸收将
进一步加速组织衰老, 并且N:P高的多年生植物组
织衰老更快(Usuda, 1995; Schachtman et al., 1998;
Limpens et al., 2003)。
Orgeas等(2002)发现不同生长季的植物N、P浓
度变化明显。湿地草本植物叶片N、P浓度随生长季
节变化而变化: 生长初期显著高于其他生长季节,
生长旺季逐渐降低并达到最小值, 随后叶片不再生
长而逐渐回升, 叶片衰老时再次下降; 叶片N:P在
生长初期较小, 生长旺季先升高后降低, 叶片成熟
不再生长时又逐渐增加并趋于稳定 (吴统贵等 ,
2010)。但Ågren (2008)总结陆地生态系统N:P变化趋
势为: 生长初期逐渐降低, 到生长旺季达到最低点,
生长季末期回升至生长初期水平, 然后随叶片衰
老, N:P逐渐降低。湿地系统和陆地生态系统在N:P
随季节变化规律上存在的差异还需进一步研究。
3.2 器官间差异
不同植物同一类器官的N、P变化明显不同, 如
木本植物和草本植物(Kerkhoff & Enquist, 2006)。同
一植物不同器官间的N、P化学计量也存在明显差
异, 不同器官(如叶、茎、根和生殖器官)的N、P浓
度变化密切相关。周鹏等(2010)发现, 草本植物根的
N、P浓度低于叶片和生殖器官, 然而其N:P与叶片
无差异但高于生殖器官。徐冰等(2010)发现草本植
物细根N浓度和N:P均低于叶片。生殖器官可能因代
谢活跃, P含量明显高于其他部位。Yuan等(2011)发
现陆地植物根N:P与叶的基本相似, N、P浓度较低;
不同类别根的N、P浓度差异明显, 根直径增加可使
N、P浓度降低而N:P增加。植物各器官由于养分储
存及其功能差异性导致其化学计量变化显著。
3.3 不同物种和功能群
Sardans等(2012)发现不同系统分类的树种间的
N、P化学计量存在明显差异。植物不同功能群间N、
P化学计量特征也明显不同(Aerts, 1996; Bedford et
al., 1999; Han et al., 2005; Rejmánková, 2005; 宋彦
涛等, 2012)。植物功能群(plant functional groups)通
常被定义为: 在应对一系列环境变化时, 形态、生
理及生命史等进程的响应模式基本一致, 并对生态
系统过程具有相似影响的植物种群的集合(Wang et
al., 2012)。功能群亲缘关系越远, 其N、P含量差异
越大, 亲缘越近的差异越小(任书杰等, 2007)。植物
不同物种间N、P含量及N:P存在明显差异(Han et al.,
2005)。通过对热带雨林地区(Townsend, 2007)、中
国草原(He et al., 2006, 2008)以及地中海气候区
(Stock & Verboom, 2012)的研究发现, 植物的N、P
浓度和N:P变化均与分类系统分支相关。同一地区
不同生活型的植物N、P化学计量存在明显差异(王
晶苑等, 2011)。湿地不同功能群间N、P浓度及N:P
差异显著(鲁静等, 2011)。松嫩草地豆科植物可通过
共生根瘤菌固N, 叶片N:P显著高于其他功能群, 而
其余各功能群间N:P无显著差异(Güsewell & Bol-
lens, 2003; 宋彦涛等, 2012)。C4植物在N、P受限时
比其他植物长势更好, 但C3和C4植物叶片N、P浓度
无明显差异 , 说明可能与植物碳同化途径无关
(Güsewell, 2004; Han et al., 2005)。黄建军和王希华
(2003)发现3种树木叶片N、P浓度关系为: 针叶植物
<常绿阔叶植物<落叶植物, 且常绿树种幼苗叶片
N、P浓度明显低于落叶树(施家月等, 2006)。落叶
树叶片N、P浓度高于常绿树可能是对养分缺乏的一
种适应, 常绿树叶片因寿命较长养分损失较少, 在
刘超等: 陆地生态系统植被氮磷化学计量研究进展 1209

doi: 10.3724/SP.J.1258.2012.01205
养分匮乏环境中竞争力更强(阎恩荣等, 2008)。
4 生态系统管理措施
随着社会生产力的提高和科学的进步, 人类活
动对陆地生态系统的影响逐渐增多。人为的控制施
肥、轮牧和刈割、间伐和火烧等行为可迅速改变生
态系统结构功能、养分限制力和种群优势, 对全球
生态系统具有重要影响 (Vitousek et al., 1997;
Falkowski et al., 2000; Anderson et al., 2007; Cech et
al., 2008; Gruber & Galloway, 2008)。
4.1 施肥
陆地生态系统生产力主要受N元素的限制
(LeBauer & Treseder, 2008), 增加生态系统中的有
效N含量可提高植物光合作用和生态系统的初级生
产力(Perring et al., 2008; Xia & Wan, 2008; Granath
et al., 2009)。施肥严重影响植物N、P吸收机制, 改
变群落的优势物种, 促使植物调整化学计量、改变
生物量分配以更好地竞争有效资源。施肥通过直接
改变土壤养分影响植物N、P含量(Vitousek, 1982)。
营养匮乏地区的施肥差异可导致植物养分吸收能
力的显著变化: 在P缺乏的沼泽地施N可促使植物
根系死亡(El-Kahloun et al., 2000)。而夏威夷森林中
植物根在N匮乏地区比P匮乏地区更替的速度快,
前者施P后效果更显著(Ostertag, 2001)。通常在半干
旱草地中施N会增加植物N:P, 但同时增加水分可明
显降低植物N:P (Lü et al., 2012a)。因为施N可刺激
植物根部的磷酸酶活性 , 进而增加叶片P浓度
(Fujita et al., 2010); 而增加水分可减弱N对植物磷
酸酶活性的刺激(Lü et al., 2012a)。
4.2 火烧和刈割
火烧和刈割可迅速改变养分循环, 是生态系统
管理的重要措施。火烧可能通过影响土壤微生物群
落、减少土壤水分、降低土壤有机物含量等方面来
降低植物组织养分含量(Anderson et al., 2007)。研究
发现短期的火烧和刈割对草原植物N、P化学计量变
化影响不明显(Lü et al., 2012b), 而长期重复火烧会
降低土壤N的有效性, 导致植物N元素缺乏(Cech et
al., 2008; Cui et al., 2010)。也有研究发现火烧可显
著影响植物对某些资源, 如光、土壤水分和养分等
的利用(Cui et al., 2010)。
4.3 放牧
不同的放牧强度和频率对草地生态系统植物
化学计量的影响差异显著。围封和放牧中的植物N、
P化学计量存在明显差异 (Frank, 2008; 董晓玉 ,
2010; He et al., 2011)。受牲畜类别、食性偏好等影
响, 放牧对生态系统的干扰程度也明显不同。放牧
可影响植物功能和生产、养分的积累, 改变土壤养
分状况和显著影响植物化学计量特征(杨慧敏和王
冬梅, 2011)。Anderson等(2007)认为可能是因为动物
的啃食促进了植物的生长, 进而影响植物的化学计
量。同时, 放牧对生态系统植物物种组成及其丰富
度的影响也可改变植物化学计量。
5 总结和展望
植物N、P化学计量对研究陆地生态系统应对全
球变化具有重要意义。全球和部分区域尺度上的N、
P变化研究已取得很大进展, 但是植物N、P化学计
量变化规律某些方面的研究仍存在很多不足与争
议, 未来应加强以下研究:
5.1 N、P限制原因及最佳比例的研究
生长在N、P匮乏土壤中的落叶植物, 其养分重
吸收率低, 但养分利用率较高(Aerts, 1996, 1997;
Aerts & Chapin, 2000)。近期发现一些植物种类受某
特定元素限制, 可能是因为其对该元素的再吸收利
用率较低 , 而并非土壤养分匮乏 (Drenovsky &
Richards, 2006), 这对于研究陆地植被化学计量的
准确性和普遍性至关重要 , 需进一步研究。
Koerselman和Meuleman (1996)研究表明 , 当植物
N:P > 16时, 植物受P限制; N:P < 14时, 受N限制。
但经过总结大量研究发现, 不同地域、生态系统、
功能群以及不同植物物种之间的N、P化学计量存在
明显差异。植物的N、P浓度及最佳N:P等受到多种
因素(如干旱指数、温度、光照等)的协同控制。应
采用不同的叶片N:P临界值作为标准来评判不同地
区不同物种是否受N、P限制(Zhang et al., 2004)。阎
恩荣等(2010)发现受N、P限制的植物, 其元素重吸
收率不一定高, 不能简单地以叶片某种养分含量来
预测植物生存环境中相关养分供应状况及植物的
养分重吸收效率。因此Koerselman和Meuleman
(1996)提出的相关理论并不具普适性, 有待进一步
研究。
5.2 地下根部化学计量变化
因根系生物量测量及活根辨别的困难性, 目前
对植物地下生物量及生态学特性的研究相对较少
1210 植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (11): 1205–1216

www.plant-ecology.com
(徐冰等, 2010)。研究发现地下部分化学计量与地上
部分相关, 根部N、P浓度比叶片低, 但两者N:P相似
(Wu et al., 2011)。不同群落的根部N:P差异明显, 且
根部N:P与纬度变化呈非线性关系 (Yuan et al.,
2011)。目前对根部进行大尺度地理和系统分类范围
内的研究很难也很少, 因此对地下和地上生物器官
的化学计量关系以及大尺度范围内不同植物根系
化学计量变化规律的研究必将成为热点。
5.3 对气候变化的响应
虽然植物化学计量在全球不同纬度和降水梯
度下表现出一定的变化规律, 但将其作为单一因素
来研究可能不太准确。纬度和降水存在明显的气候
协同变化, 在时间和空间上差异较大, 不易控制。
虽然降水在地理梯度上变化明显, 但因区域温度、
植被密度的不同, 地区潜在蒸发量存在显著差异。
所以, 今后研究中用干旱指数或湿润度可能更为合
适。植被物种组成状况对于研究生态系统应对气候
变化具有重要意义, 化学元素限制与物种组成更替
密切相关(刘万德等, 2010)。近期国内对不同地区不
同演替阶段植物N、P化学计量变化进行了研究, 为
群落恢复提供了科学、正确的指导(高三平等, 2007;
阎恩荣等, 2008; 刘万德等, 2010; 刘兴诏等, 2010;
银晓瑞等, 2010)。生态系统物种组成变化在一定程
度上是生态系统N、P化学计量随气候变化的改变。
生态系统不同物种间植被化学计量变化以及种间
的协同变化值得进一步研究。
5.4 N、P及N:P与其他必需元素化学计量关系的研

Sterner和Elser (2002)提出植物可能通过化学计
量学内稳态机制, 使C:N:P维持某一动态平衡。从植
物个体到生态系统水平, C、N、P相互耦合(Güsewell,
2004; Lal, 2004; Schipper et al., 2004)。植物C、N和
P中某一元素的缺乏或过量必将导致另外两种元素
的相对积累或消耗(Hessen et al., 2004; McGroddy et
al., 2004; 曾德慧和陈广生, 2005)。在某种程度上C
的含量受N、P控制, N、P的匮乏就意味着C的相对
过量(Güsewell et al., 2003; Tessier & Raynal, 2003;
Güsewell, 2004)。McGroddy等(2004)研究了全球森
林生态系统的C:N:P计量学关系, 发现全球森林生
态系统植物叶片 C:N:P相对稳定 , 比值约为
1 212:28:1。可能因中国土壤含P量较低导致多种类
型森林的C:N:P高于全球平均水平(阎恩荣等, 2010;
王晶苑等, 2011)。随后许多研究发现不同生态系统
植物C:P、C:N及N:P相对稳定。植物体按一定的比
例关系吸收利用各种必需元素, 并在体内保持相对
平衡(秦海等, 2010)。越来越多的研究发现许多植物
必需元素在不同温度、水分等条件下的化学计量变
化规律与N、P相似, 各元素间可能因为生物合成或
代谢等因素协同变化(Wright et al., 2005; Watanabe
et al., 2007; Ladanai et al., 2010; Ågren & Weih,
2012; Zhang et al., 2012)。植物组织N、P浓度及N:P
以及它们与其他元素之间不同程度的协同变化可
能对应着不同的环境差异。然而, 目前对N、P浓度
及N:P与其他元素之间的具体变化关系及其机制的
研究相对较少, 亟待具体研究。
致谢 国家自然科学基金项目(30730020)和“十二
五”农村领域国家科技计划课题(2011AA100503)资
助。浙江大学生命科学院张炜平和高静同学对文章
写作提供了支持和帮助, 特此致谢。
参考文献
Aerts R (1996). Nutrient resorption from senescing leaves of
perennials: Are there general patterns? Journal of Ecol-
ogy, 84, 597–608.
Aerts R (1997). Nitrogen partitioning between resorption and
decomposition pathways: a trade-off between nitrogen use
efficiency and litter decomposability? Oikos, 80, 603–606.
Aerts R, Chapin FS III (2000). The mineral nutrition of wild
plants revisited: a re-evaluation of processes and patterns.
Advances in Ecological Research, 30, 1–67.
Ågren GI (2004). The C:N:P stoichiometry of autotrophs―
theory and observations. Ecology Letters, 7, 185–191.
Ågren GI (2008). Stoichiometry and nutrition of plant growth
in natural communities. Annual Review of Ecology, Evolu-
tion, and Systematics, 39, 153–170.
Ågren GI, Weih M (2012). Plant stoichiometry at different
scales: element concentration patterns reflect environment
more than genotype. New Phytologist, 194, 944–952.
Anderson TM, Ritchie ME, Mayemba E, Eby S, Grace JB,
McNaughton SJ (2007). Forage nutritive quality in the
Serengeti ecosystem: the roles of fire and herbivory. The
American Naturalist, 170, 343–357.
Bedford BL, Walbridge MR, Aldous A (1999). Patterns in nu-
trient availability and plant diversity of temperate North
American wetlands. Ecology, 80, 2151–2169.
Cech PG, Kuster T, Edwards PJ, Venterink HO (2008). Effects
of herbivory, fire and N2-fixation on nutrient limitation in
a humid African savanna. Ecosystems, 11, 991–1004.
刘超等: 陆地生态系统植被氮磷化学计量研究进展 1211

doi: 10.3724/SP.J.1258.2012.01205
Cheng DL, Li T, Zhong QL, Wang GX (2010). Scaling rela-
tionship between tree respiration rates and biomass. Biol-
ogy Letters, 6, 715–717.
Cheng DL, Wang GX, Zhong QL (2009). Age-related rela-
tionship between annual productivity and body size of
trees: testing the metabolic theory. Polish Journal of
Ecology, 57, 441–449.
Cotrufo MF, Ineson P, Scott A (1998). Elevated CO2 reduces
nitrogen concentration of plant tissues. Global Change
Biology, 4, 43–54.
Cui Q, Lü XT, Wang QB, Han XG (2010). Nitrogen fertiliza-
tion and fire act independently on foliar stoichiometry in a
temperate steppe. Plant and Soil, 334, 209–219.
Demars BOL, Edwards AC (2007). Tissue nutrient concentra-
tions in freshwater aquatic macrophytes: high inter-taxon
differences and low phenotypic response to nutrient sup-
ply. Freshwater Biology, 52, 2073–2086.
Dickman EM, Newell JM, González MJ, Vanni MJ (2008).
Light, nutrients, and food-chain length constrain plank-
tonic energy transfer efficiency across multiple trophic
levels. Proceedings of the National Academy of Sciences
of the United States of America, 105, 18408–18412.
Dong XY (董晓玉), Fu H (傅华), Li XD (李旭东), Niu DC (牛
得草), Guo D (郭丁), Li XD (李晓东) (2010). Effects on
plant biomass and CNP contents of plants in grazed and
fenced steppe grasslands of the Loess Plateau. Acta Pra-
taculturae Sinica (草业学报), 19, 175–182. (in Chinese
with English abstract)
Drenovsky RE, Richards JH (2006). Low leaf N and P resorp-
tion contributes to nutrient limitation in two desert shrubs.
Plant Ecology, 183, 305–314.
El-Kahloun M, Boeye D, Verhagen B, van Haesebroeck V
(2000). A comparison of the nutrient status of Molinia
caerulea and neighbouring vegetation in a rich fen. Bel-
gian Journal of Botany, 133, 91–102.
Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T,
Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner
RW (2003). Growth rate-stoichiometry couplings in di-
verse biota. Ecology Letters, 6, 936–943.
Elser JJ, Fagan WF, Kerkoff AJ, Swenson NG, Enquist BJ
(2010). Biological stoichiometry of plant production: me-
tabolism, scaling and ecological response to global
change. New Phytologist, 186, 593–608.
Elser JJ, Hamilton A (2007). Stoichiometry and the new biol-
ogy: the future is now. PLoS Biology, 5, 1403–1405.
Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA,
Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ
(2000). Biological stoichiometry from genes to ecosys-
tems. Ecology Letters, 3, 540–550.
Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D,
Elser J, Gruber N, Hibbard K, Hogberg P, Linder S,
Mackenzie FT, Moore B III, Pedersen T, Rosenthal Y,
Seitzinger S, Smetacek V, Steffen W (2000). The global
carbon cycle: a test of our knowledge of earth as a system.
Science, 290, 291–296.
Field CB, Mooney HA (1986). The photosynthesis-nitrogen
relationship in wild plants. In: Givnish TJ ed. On the
Economy of Plant Form and Function. Cambridge Uni-
versity Press, London. 25–55
Finzi AC, Delucia EH, Shlesinger WH (2004). Canopy N and P
dynamics of a south-eastern US pine forest under elevated
CO2. Biogeochemistry, 69, 363–378.
Frank DA (2008). Ungulate and topographic control of nitro-
gen: phosphorus stoichiometry in a temperate grassland;
soils, plants and mineralization rates. Oikos, 117, 591–
601.
Fujita Y, Robroek BJM, de Ruiter PC, Heil GW, Wassen MJ
(2010). Increased N affects P uptake of eight grassland
species: the role of root surface phosphatase activity.
Oikos, 119, 1665–1673.
Gao SP (高三平), Li JX (李俊祥), Xu MC (徐明策), Chen X
(陈熙), Dai J (戴洁) (2007). Leaf N and P stoichiometry
of common species in successional stages of the evergreen
broad-leaved forest in Tiantong National Forest Park,
Zhejiang Province, China. Acta Ecologica Sinica (生态学
报), 27, 947–952. (in Chinese with English abstract)
Granath G, Strengbom J, Breeuwer A, Heijmans MMPD, Ber-
endse F, Rydin H (2009). Photosynthetic performance in
Sphagnum transplanted along a latitudinal nitrogen depo-
sition gradient. Oecologia, 159, 705–715.
Gressel N, McColl JG (2003). Phosphorus mineralisation and
organic matter decomposition: a critical review. In:
Cadisch G, Giller KE eds. Driven by Nature: Plant Litter
Quality and Decomposition. CAB International, Walling-
ford, UK. 297–309.
Gruber N, Galloway JN (2008). An earth-system perspective of
the global nitrogen cycle. Nature, 451, 293–296.
Güsewell S (2004). N:P ratios in terrestrial plants: variation and
functional significance. New Phytologist, 164, 243–266.
Güsewell S, Bollens U (2003). Composition of plant species
mixtures grown at various N:P ratios and levels of nutrient
supply. Basic and Applied Ecology, 4, 453–466.
Güsewell S, Koerselman W (2002). Variation in nitrogen and
phosphorus concentrations of wetland plants. Perspectives
in Plant Ecology, Evolution and Systematics, 5, 37–61.
Güsewell S, Koerselman W, Verhoeven JTA (2003). Biomass
N:P ratios as indicators of nutrient limitation for plant
populations in wetlands. Ecological Applications, 13,
1212 植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (11): 1205–1216

www.plant-ecology.com
372–384.
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen
and phosphorus stoichiometry across 753 terrestrial plant
species in China. New Phytologist, 168, 377–385.
Harpole SW, Ngai JT, Cleland EE, Seabloom EW, Borer ET,
Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin
JB, Smith JE (2011). Nutrient co-limitation of primary
producer communities. Ecology Letters, 14, 852–862.
He JS (贺金生 ), Han XG (韩兴国 ) (2010). Ecological
stoichiometry: searching for unifying principles from in-
dividuals to ecosystems. Chinese Journal of Plant Ecology
(植物生态学报), 34, 2–6. (in Chinese with English ab-
stract)
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z
(2006). Stoichiometry and large-scale patterns of leaf car-
bon and nitrogen in the grassland biomes of China.
Oecologia, 149, 115–122.
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY
(2008). Leaf nitrogen: phosphorus stoichiometry across
Chinese grassland biomes. Oecologia, 155, 301–310.
He NP, Han XG, Yu GR, Chen QS (2011). Divergent changes
in plant community composition under 3-decade grazing
exclusion in continental steppe. PLoS One, 6(11), e26506.
Hessen DO, Ågren GI, Anderson TR, Elser JJ, de Ruiter PC
(2004). Carbon sequestration in ecosystems: the role of
stoichiometry. Ecology, 85, 1179–1192.
Hobbie SE, Gough L (2002). Foliar and soil nutrients in tundra
on glacial landscapes of contrasting ages in northern
Alaska. Oecologia, 131, 453–462.
Hogan EJ, Minnullina G, Smith RI, Crittenden PD (2010).
Effects of nitrogen enrichment on phosphatase activity and
nitrogen: phosphorus relationships in Cladonia porten-
tosa. New Phytologist, 186, 911–925.
Huang JJ (黄建军), Wang XH (王希华) (2003). Leaf nutrient
and structural characteristics of 32 evergreen broad-leaved
species. Journal of East China Normal University (Natu-
ral Science Edition) (华东师范大学学报(自然科学版)),
(1), 92–97. (in Chinese with English abstract)
Huang JY, Yu HL, Li LH, Yuan ZY, Bartels S (2009). Water
supply changes N and P conservation in a perennial grass
Leymus chinensis. Journal of Integrative Plant Biology,
51, 1050–1056.
Huang WJ, Zhou GY, Liu JX, Zhang DQ, Xu ZH, Liu SZ
(2012). Effects of elevated carbon dioxide and nitrogen
addition on foliar stoichiometry of nitrogen and phospho-
rus of five tree species in subtropical model forest ecosys-
tems. Environmental Pollution, 168, 113–120.
Johnson DW, Cheng W, Joslin JD, Norby RJ, Edwards NT,
Todd JDE (2004). Effects of elevated CO2 on nutrient cy-
cling in a sweetgum plantation. Biogeochemistry, 69,
379–403.
Kerkhoff AJ, Enquist BJ (2006). Ecosystem allometry: the
scaling of nutrient stocks and primary productivity across
plant communities. Ecology Letters, 9, 419–427.
Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005). Plant
allometry, stoichiometry and the temperature-dependence
of primary productivity. Global Ecology and Biogeogra-
phy, 14, 585–598.
Kerkhoff AJ, Fagan WF, Elser JJ, Enquist JB (2006). Phyloge-
netic and growth form variation in the scaling of nitrogen
and phosphorus in the seed plants. The American Natural-
ist, 168, 103–122.
Koerselman W, Meuleman AFM (1996). The vegetation N:P
ratio: a new tool to detect the nature of nutrient limitation.
Journal of Applied Ecology, 33, 1441–1450.
Körner C, Asshoff R, Bignucolo O, Hattenschwiler S, Keel SG,
Peláez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005).
Carbon flux and growth in mature deciduous forest trees
exposed to elevated CO2. Science, 309, 1360–1362.
Ladanai S, Ågren GI, Olsson BA (2010). Relationships be-
tween tree and soil properties in Picea abies and Pinus
sylvestris forests in Sweden. Ecosystems, 13, 302–316.
Lagomarsino A, Moscatelli MC, Hoosbeek MR, de Angelis P,
Grego S (2008). Assessment of soil nitrogen and phos-
phorous availability under elevated CO2 and N-fertiliza-
tion in a short rotation poplar plantation. Plant and Soil,
308, 131–147.
Lal R (2004). Soil carbon sequestration impacts on global cli-
mate change and food security. Science, 304, 1623–1627.
Lambers H, Raven JA, Shaver GR, Smith SE (2008). Plant
nutrient-acquisition strategies change with soil age. Trends
in Ecology and Evolution, 23, 95–103.
Larsen KS, Andresen LC, Beier C, Jonasson S, Albert KR,
Ambus P, Arndal MF, Carter MS, Christensen S, Holm-
strup M, Ibrom A, Kongstad J, van der Linden L, Maraldo
K, Michelsen A, Mikkelsen TN, Pilegaard K, Priemé A,
Ro-Poulsen H, Schmidt IK, Selsted MB, Stevnbak K
(2011). Reduced N cycling in response to elevated CO2,
warming, and drought in a Danish heathland: synthesizing
results of the climaite project after two years of treat-
ments. Global Change Biology, 17, 1884–1899.
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net
primary productivity in terrestrial ecosystems is globally
distributed. Ecology, 89, 371–379.
Li YL (李玉霖), Mao W (毛伟), Zhao XY (赵学勇), Zhang
TH (张铜会 ) (2010). Leaf nitrogen and phosphorus
stoichiometry in typical desert and desertified regions,
North China. Environmental Science (环境科学), 31,
刘超等: 陆地生态系统植被氮磷化学计量研究进展 1213

doi: 10.3724/SP.J.1258.2012.01205
1716–1725. (in Chinese with English abstract)
Limpens J, Berendse F, Klees H (2003). N deposition affects N
availability in interstitial water, growth of Sphagnum and
invasion of vascular plants in bog vegetation. New Phy-
tologist, 157, 339–347.
Liu P, Huang JH, Han XG, Sun OJ, Zhou ZY (2006). Differen-
tial responses of litter decomposition to increased soil nu-
trients and water between two contrasting grassland plant
species of Inner Mongolia, China. Applied Soil Ecology,
34, 266–275.
Liu WD (刘万德), Su JR (苏建荣), Li SF (李帅锋), Zhang ZJ
(张志钧), Li ZW (李忠文) (2010). Stoichiometry study of
C, N and P in plant and soil at different successional
stages of monsoon evergreen broad-leaved forest in Pu’er
Yunnan Province. Acta Ecologica Sinica (生态学报), 30,
6581–6590. (in Chinese with English abstract)
Liu XZ (刘兴诏), Zhou GY (周国逸), Zhang DQ (张德强),
Liu SZ (刘世忠), Chu GW (褚国伟), Yan JH (闫俊华)
(2010). N and P stoichiometry of plant and soil in lower
subtropical forest successional series in southern China.
Chinese Journal of Plant Ecology (植物生态学报), 34,
64–71. (in Chinese with English abstract)
Loladze I (2002). Rising atmospheric CO2 and human nutrition:
Toward globally imbalanced plant stoichiometry? Trends
in Ecology and Evolution, 17, 457–461.
Lu J (鲁静), Zhou HX (周虹霞), Tian GY (田广宇), Liu GH
(刘贵华) (2011). Nitrogen and phosphorus contents in 44
wetland species from the Lake Erhai Basin. Acta
Ecologica Sinica (生态学报), 31, 709–715. (in Chinese
with English abstract)
Lü XT, Kong DL, Pan QM, Simmons ME, Han XG (2012a).
Nitrogen and water availability interact to affect leaf
stoichiometry in a semi-arid grassland. Oecologia, 168,
301–310.
Lü XT, Lü FM, Zhou LS, Han X, Han XG (2012b).
Stoichiometric response of dominant grasses to fire and
mowing in a semi-arid grassland. Journal of Arid Envi-
ronments, 78, 154–160.
Lukac M, Calfapietra C, Lagomarsino A, Loreto F (2010).
Global climate change and tree nutrient: effects of ele-
vated CO2 and temperature. Tree Physiology, 30,
1209–1220.
Makarieva AM, Gorshkov VG, Li BL, Chown SL, Reich PB,
Gavrilov VM (2008). Mean mass-specific metabolic rates
are strikingly similar across life’s major domains: evi-
dence for life’s metabolic optimum. Proceedings of the
National Academy of Sciences of the United States of
America, 105, 16994–16999.
Matson PA, McDowell WH, Townsend AR, Vitousek PM
(1999). The globalization of N deposition: ecosystem
consequences in tropical environments. Biogeochemistry,
46, 67–83.
Matzek V, Vitousek PM (2009). N:P stoichiometry and protein:
RNA ratios in vascular plants: an evaluation of the
growth-rate hypothesis. Ecology Letters, 12, 765–771.
McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of
C:N:P stoichiometry in forest worldwide: implications of
terrestrial Redfield-type ratios. Ecology, 85, 2390–2401.
Nguyen NT, Mohapatra PK, Fujita K (2006). Elevated CO2
alleviates the effects of low P on the growth of N2-fixing
Acacia auriculiformis and Acacia mangium. Plant and
Soil, 285, 369–379.
Niklas KJ (2006). Plant allometry, leaf nitrogen and phospho-
rus stoichiometry, and interspecific trends in annual
growth rates. Annals of Botany, 97, 155–163.
Niklas KJ, Owens T, Reich PB, Cobb ED (2005). Nitrogen/
phosphorus leaf stoichiometry and the scaling of plant
growth. Ecology Letters, 8, 636–642.
Novotny AM Schade JD, Hobbie SE, Kay AD, Kyle M, Reich
PB, Elser JJ (2007). Stoichiometric response of nitrogen-
fixing and non-fixing dicots to manipulations of CO2, ni-
trogen, and diversity. Oecologia, 151, 687–696.
Olsen JK, Bell LC (1990). A glasshouse evaluation of ‘critical’
N and P concentrations and N:P ratios in various plant
parts of six Eucalypt species. Australian Journal of Bot-
any, 38, 291–298.
Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich
PB, Aerts R (2009). A global study of relationships be-
tween leaf traits, climate and soil measures of nutrient fer-
tility. Global Ecology and Biogeography, 18, 137–149.
Orgeas J, Ourcival JM, Bonin G (2002). Seasonal and spatial
patterns of foliar nutrients in cork oak (Quercus suber L.)
growing on siliceous soils in Provence (France). Plant
Ecology, 164, 201–211.
Ostertag R (2001). Effects of nitrogen and phosphorus avail-
ability on fine-root dynamics in Hawaiian montane for-
ests. Ecology, 82, 485–499.
Perring MP, Hedin LO, Levin SA, McGroddy M, de Mazan-
court C (2008). Increased plant growth from nitrogen ad-
dition should conserve phosphorus in terrestrial ecosys-
tems. Proceedings of the National Academy of Sciences of
the United States of America, 105, 1971–1976.
Polley HW, Fay PA, Jin VL, Combs GF Jr (2011). CO2 en-
richment increases element concentrations in grass mix-
tures by changing species abundances. Plant Ecology,
212, 945–957.
Qin H (秦海), Li JX (李俊祥), Gao SP (高三平), Li C (李铖),
1214 植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (11): 1205–1216

www.plant-ecology.com
Li R (李蓉), Shen XH (沈兴华) (2010). Characteristics of
leaf element contents for eight nutrients across 660 terres-
trial plant species in China. Acta Ecologica Sinica (生态
学报), 30, 1247–1257. (in Chinese with English abstract)
Reich PB, Hobbie SE, Ellsworth DS, West JB, Tilman D,
Knops JMH, Naeem S, Trost J (2006a). Nitrogen limita-
tion constrains sustainability of ecosystem response to
CO2. Nature, 440, 922–925.
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and
P in relation to temperature and latitude. Proceedings of
the National Academy of Sciences of the United States of
America, 101, 11001–11006.
Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin L, Elser JJ
(2010). Evidence of a general 2/3-power law of scaling
leaf nitrogen to phosphorus among major plant groups and
biomes. Proceedings of the Royal Society B: Biological
Sciences, 277, 877–883.
Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006b).
Universal scaling of respiratory metabolism, size and ni-
trogen in plants. Nature, 439, 457–461.
Rejmánková E (2005). Nutrient resorption in wetland macro-
phytes: comparison across several regions of different nu-
trient status. New Phytologist, 167, 471–482.
Ren SJ (任书杰), Yu GR (于贵瑞), Jiang CM (姜春明), Fang
HJ (方华军), Sun XM (孙晓敏) (2012). Stoichiometric
characteristics of leaf carbon, nitrogen, and phosphorus of
102 dominant species in forest ecosystems along the
North-South Transect of East China. Chinese Journal of
Applied Ecology (应用生态学报), 23, 581–586. (in Chi-
nese with English abstract)
Ren SJ (任书杰), Yu GR (于贵瑞), Tao B (陶波), Guan LL
(官丽莉), Fang HJ (方华军), Jiang CM (姜春明) (2009).
Spatial patterns for variations in leaf nutrient contents of
Dahurian larch (Larix gmelinii Rupr.). Acta Ecologica
Sinica (生态学报), 29, 1899–1906. (in Chinese with Eng-
lish abstract)
Ren SJ (任书杰), Yu GR (于贵瑞), Tao B (陶波), Wang SQ
(王绍强) (2007). Leaf nitrogen and phosphorus stoichiom-
etry across 654 terrestrial plant species in NSTEC. Envi-
ronmental Science (环境科学), 28, 2665–2673. (in Chi-
nese with English abstract)
Richardson SJ, Allen RB, Doherty JE (2008). Shifts in leaf N:P
ratio during resorption reflect soil P in temperate rainfor-
est. Functional Ecology, 22, 738–745.
Sardans J, Peñuelas J (2010). Soil enzyme activity in a Medi-
terranean forest after six years of drought. Soil Science
Society of America Journal, 74, 838–851.
Sardans J, Rivas-Ubach A, Peñuelas J (2012). The C:N:P
stoichiometry of organisms and ecosystems in a changing
world: a review and perspectives. Perspectives in Plant
Ecology, Evolution and Systematics, 14, 33–47.
Schachtman DP, Reid RJ, Ayling SM (1998). Phosphorus up-
take by plants: from soil to cell. Plant Physiology, 116,
447–453.
Schipper LA, Schipper LA, Percival HJ, Sparling GP (2004).
An approach for estimating when soils will reach maxi-
mum nitrogen storage. Soil Use and Management, 20,
281–286.
Shi JY (施家月), Wang XH (王希华), Yan ER (阎恩荣),
Cheng MH (程铭华) (2006). Saplings nutrient character-
istics of common plants in Tiantong National Forest Park.
Journal of East China Normal University (Natural Science
Edition) (华东师范大学学报(自然科学版)), (2), 121–
129. (in Chinese with English abstract)
Sims L, Pastor J, Lee T, Dewey B (2012). Nitrogen, phospho-
rus and light effects on growth and allocation of biomass
and nutrients in wild rice. Oecologia, 170, 65–76.
Song YT (宋彦涛), Zhou DW (周道玮), Li Q (李强), Wang P
(王平), Huang YX (黄迎新) (2012). Leaf nitrogen and
phosphorus stoichiometry in 80 herbaceous plant species
of Songnen grassland in Northeast China. Chinese Journal
of Plant Ecology (植物生态学报), 36, 222–230. (in Chi-
nese with English abstract)
Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the
Biology of Elements from Molecules to the Biosphere.
Princeton University Press, Princeton. 906–907.
Stock WD, Verboom GA (2012). Phylogenetic ecology of
foliar N and P concentrations and N:P ratios across medi-
terranean-type ecosystems. Global Ecology and Biogeog-
raphy, doi: 10.1111/j.1466-8238.2011.00752.x.
Striebel M, Sporl G, Stibo H (2008). Light-induced changes of
plankton growth and stoichiometry: experiments with
natural phytoplankton communities. Limnology and
Oceanography, 53, 513–522.
Taub DR, Wang XZ (2008). Why are nitrogen concentrations
in plant tissues lower under elevated CO2? A critical ex-
amination of the hypotheses. Journal of Integrative Plant
Biology, 50, 1365–1374.
Tessier JT, Raynal DY (2003). Use of nitrogen to phosphorus
ratios in plant tissue as an indicator of nutrient limitation
and nitrogen saturation. Journal of Applied Ecology, 40,
523–534.
Tjoelker MG, Oleksyn J, Reich PB, Żytkowiak R (2008). Cou-
pling of respiration, nitrogen, and sugars underlies con-
vergent temperature acclimation in Pinus banksiana
刘超等: 陆地生态系统植被氮磷化学计量研究进展 1215

doi: 10.3724/SP.J.1258.2012.01205
across wide-ranging sites and populations. Global Change
Biology, 14, 782–797.
Townsend AR, Cleveland CC, Asner GP, Bustamante MMC
(2007). Controls over foliar N:P ratios in tropical rain for-
ests. Ecology, 88, 107–118.
Usuda H (1995). Phosphate deficiency in maize. V. Mobiliza-
tion of nitrogen and phosphorus within shoots of young
plants and its relationship to senescence. Plant and Cell
Physiology, 36, 1041–1049.
Valladares F, Martinez-Ferri E, Balaguer L, Perez-Corona E,
Manrique E (2000). Low leaf-level response to light and
nutrients in Mediterranean evergreen oaks: a conservative
resource-use strategy? New Phytologist, 148, 79–91.
Venterink HO, Wassen MJ, Verkroost AWM, de Ruiter PC
(2003). Species richness-productivity patterns differ be-
tween N-, P-, and K-limited wetlands. Ecology, 84, 2191–
2199.
Vitousek PM (1982). Nutrient cycling and nutrient use effi-
ciency. The American Naturalist, 119, 553–572.
Vitousek PM (1984). Litterfall, nutrient cycling, and nutrient
limitation in tropical forests. Ecology, 65, 285–298.
Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA,
Schindler DW, Schlesinger WH, Tilman DG (1997). Hu-
man alteration of the global nitrogen cycle: sources and
consequences. Ecological Applications, 7, 737–750.
Vitousek PM, Hobbie S (2000). Heterotrophic nitrogen fixation
in decomposing litter: patterns and regulation. Ecology,
81, 2366–2376.
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010).
Terrestrial phosphorus limitation: mechanisms, implica-
tions, and nitrogen-phosphorus interactions. Ecological
Applications, 20, 5–15.
Vrede T, Dobberfuhl DR, KooijmanS ALM, Elser JJ (2004).
Fundamental connections among organism C:N:P
stoichiometry, macromolecular composition, and growth.
Ecology, 85, 1217–1229.
Wang JY (王晶苑), Wang SQ (王绍强), Li RL (李纫兰), Yan
JH (闫俊华), Sha LQ (沙丽清), Han SJ (韩士杰) (2011).
C:N:P stoichiometric characteristics of four forest types’
dominant tree species in China. Chinese Journal of Plant
Ecology (植物生态学报), 35, 587–595. (in Chinese with
English abstract)
Wang N, Xu SS, Jia X, Gao J, Zhang WP, Qiu YP, Wang GX
(2012). Variations in foliar stable carbon isotopes among
functional groups and along environmental gradients in
China—a meta-analysis. Plant Biology, doi: 10.1111/
j.1438-8677.2012.00605.x.
Wang SQ (王绍强), Yu GR (于贵瑞) (2008). Ecological
stoichiometry characteristics of ecosystem carbon, nitro-
gen and phosphorus elements. Acta Ecologica Sinica (生
态学报), 28, 3937–3947.
Wang T (汪涛), Yang YH (杨元合), Ma WH (马文红) (2008).
Storage, patterns and environmental controls of soil phos-
phorus in China. Acta Scientiarum Naturalium Universita-
tis Pekinensis (北京大学学报(自然科学版)), 44, 945–
952. (in Chinese with English abstract)
Wang YP, Law RM, Pak B (2010). A global model of carbon,
nitrogen and phosphorus cycles for the terrestrial bio-
sphere. Biogeosciences, 7, 2261–2282.
Wassen MJ, Olde Venterink HGM, de Swart EOAM (1995).
Nutrient concentrations in mire vegetation as a measure of
nutrient limitation in mire ecosystems. Journal of Vegeta-
tion Science, 6, 5–16.
Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Sa-
take K, Takamatsu T, Tuah SJ, Osaki M (2007). Evolu-
tionary control of leaf element composition in plants. New
Phytologist, 174, 516–523.
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK,
Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J,
Osada N, Poorter H, Warton DI, Westoby M (2005).
Modulation of leaf economic traits and trait relationships
by climate. Global Ecology and Biogeography, 14, 411–
421.
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z,
Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC,
Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hi-
kosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ,
Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H,
Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC,
Tjoelker MG, Veneklaas EJ, Villar R (2004). The world-
wide leaf economics spectrum. Nature, 428, 821–827.
Wu GL, Li W, Shi ZH, Shangguan ZP (2011). Aboveground
dominant functional group predicts belowground proper-
ties in an alpine grassland community of western China.
Journal of Soils and Sediments, 11, 1011–1019.
Wu TG (吴统贵), Wu M (吴明), Li L (刘丽), Xiao JH (萧江
华) (2010). Seasonal variations of leaf nitrogen and phos-
phorus stoichiometry of three herbaceous species in
Hangzhou Bay coastal wetlands, China. Chinese Journal
of Plant Ecology (植物生态学报), 34, 23–28. (in Chinese
with English abstract)
Xia JY, Wan SQ (2008). Global response patterns of terrestrial
plant species to nitrogen addition. New Phytologist, 179,
428–439.
Xu B (徐冰), Cheng YX (程雨曦), Gan HJ (甘慧洁), Zhou WJ
(周文嘉), He JS (贺金生) (2010). Correlations between
1216 植物生态学报 Chinese Journal of Plant Ecology 2012, 36 (11): 1205–1216

www.plant-ecology.com
leaf and fine root traits among and within species of typi-
cal temperate grassland in Xilin River Basin, Inner Mon-
golia, China. Chinese Journal of Plant Ecology (植物生态
学报), 34, 29–38. (in Chinese with English abstract)
Yan ER (阎恩荣), Wang XH (王希华), Guo M (郭明), Zhong
Q (仲强), Zhou W (周武) (2010). C:N:P stoichiometry
across evergreen broad-leaved forests, evergreen conifer-
ous forests and deciduous broad-leaved forests in the
Tiantong region, Zhejiang Province, eastern China. Chi-
nese Journal of Plant Ecology (植物生态学报), 34, 48–
57. (in Chinese with English abstract)
Yan ER (阎恩荣), Wang XH (王希华), Zhou W (周武) (2008).
N:P stoichiometry in secondary succession in evergreen
broad-leaved forest, Tiantong, Eastern China. Journal of
Plant Ecology (Chinese Version) (植物生态学报), 32,
13–22. (in Chinese with English abstract)
Yang HM (杨慧敏), Wang DM (王冬梅) (2011). Advances in
the study on ecological stoichiometry in grass-environ-
ment system and its response to environmental factors.
Acta Prataculturae Sinica (草业学报), 20, 244–252. (in
Chinese with English abstract)
Yin XR (银晓瑞), Liang CZ (梁存柱), Wang LX (王立新),
Wang W (王炜), Liu ZL (刘钟龄), Liu XP (刘小平)
(2010). Ecological stoichiometry of plant nutrients at dif-
ferent restoration succession stages in typical steppe of
Inner Mongolia, China. Chinese Journal of Plant Ecology
(植物生态学报), 34, 39–47. (in Chinese with English ab-
stract)
Yuan ZY, Chen HYH, Reich PB (2011). Global-scale latitu-
dinal patterns of plant fine-root nitrogen and phosphorus.
Nature Communications, 2, 344.
Zeng DH (曾德慧), Chen GX (陈广生) (2005). Ecological
stoichiometry: a science to explore the complexity of liv-
ing systems. Acta Phytoecologica Sinica (植物生态学报),
29, 1007–1019. (in Chinese with English abstract)
Zhang LX, Bai YF, Han XG (2004). Differential responses of
N:P stoichiometry of Leymus chinensis and Carex kor-
shinskyi to N additions in a steppe ecosystem in Nei
Mongol. Acta Botanica Sinica, 46, 259–270.
Zhang SB, Zhang JL, Ferry Slik JW, Cao KF (2012). Leaf ele-
ment concentrations of terrestrial plants across China are
influenced by taxonomy and the environment. Global
Ecology and Biogeography, 21, 809–818.
Zheng SX, Shangguan ZP (2007). Spatial patterns of leaf nu-
trient traits of the plants in the Loess Plateau of China.
Trees-Structure and Function, 21, 357–370.
Zhou P (周鹏), Geng Y (耿燕), Ma WH (马文红), He JS (贺金
生) (2010). Linkages of functional traits among plant or-
gans in the dominant species of the Inner Mongolia grass-
land, China. Chinese Journal of Plant Ecology (植物生态
学报), 34, 7–16. (in Chinese with English abstract)


特邀编委: 刘贵华 责任编辑: 李 敏