作 者 :Chen De-xing and Wang Tian-duo
Keywords:Photosynthesis, Stomatal conductance, Mathematical model,
Abstract:A mathematical model of leaf photosynthesis has been established. In this model, the processes of photosynthesis are divided into two parts, ie., the carboxylation process driven by light which is dependent on temperature and CO2 concentration, and the diffusion of CO2 from atmosphere to the carboxylation site. Finatly, CO2 uptake by the leaf is understood as dependent on 1), the CO2 response curve of the leaf mesophyll and 2). the CO2 partial pressure in the intercellular space in leaf. The COs response curve of the leaf photosynthesis is described mathematically in terms of carboxylation efficiency (Ca) or its initial slope and the photosynthetic capacity (Pm) or the CO2-saturated uptake rate of CO2 uptake, and dark respiration (Rd). The dependency of photosynthesis on leaf temperature and incident light intensity is incorporated into variations of those parameters which establish an appropriate response to internal CO2 pressure for particular light and temperature conditions prevailing at any time. Secondly the interactiion of stomata with photosynthesis is represented as an empirical relation between stomatal conductance and a combined environmental physiological index, APn·Hx/CaThe parameters used in the modelwere estimated with Marquardt-Newton method for non-linear function. Field measurements of mulberry leaf photosynthesis provided a data set for model testing. The resuks show that the simulated values of the model agree well with observed data. The model was used to analyse the response surface of leaf conductance and photosynthesis to environmental factors—Applications and limitations of the model are discussed
全 文 :