免费文献传递   相关文献

Fermentation production of L-lactate from xylose by engineered Escherichia coli

重组大肠杆菌利用木糖发酵产高纯度L-乳酸



全 文 :!11
"!

#
2013
$

%
&
 

 
(
 
)
 
*
 
+
ChineseJournalofBioprocessEngineering
Vol.11No.3
May2013
doi:10.3969/j.issn.1672-3678.2013.03.005
!"#$
:2012-11-15
%&(

–…’¢ÃŽôV
(NSFC31070094);
@ö.ÜgÃ756
(2011CDA008,2011CDB076);
@ö.Rogè½¢h$1256
(Q20121405);
@ö.i¨Žzj5ôV
)*+,

òák
(1987—),
Ç

@Al¸1

ËE78&

78FG

IJ)+

mVZ

PQ1
),
RS
,Email:wangjinhua@mail.hbut.edu.cn
‘lÜÝÞT-.ß1346¬às

á:
tLu

vwx

Kyz

v
 
{

KG|

}d2345 672;5< ~2;€‚BCDEF

ƒ„
430068)
>
 
?

C‚©678
JH16
*+9,2%:dD

¿6“á78

!"Ú;<=w
EscherichiacoliJH12
8>
–s
EcoliJH16,
=w°D8>8ۈd²%9
31%,
?6@ABC9
43%;
eD›œîï:;
Mg2+
ˆdC
EcoliJH16
2

¿6DEF

STJâ
Mg2+
kaˆd«
025g/L;EcoliJH16
‰
60g/L
9,«

^

e
7L

F/0Gœ+,
025g/LMg2+,
¿6@Aa²%9
18%,
r
3818g/L,
¿6:d%r
95%;EcoliJH16
e
30g/L
9,b
30g/L
HI,JÞ



UK*+HI,

LHI,kaˆd&K
156g/L
°

8ÛM[*+9,“á
¿6/0

J1–s
39g/L
¿6

@AB

‚©678
;L
¿6

9,
CDEFG
:Q78    
HIJKL
:A    
HMNG
:1672-3678(2013)03-0024-05
FermentationproductionofLlactatefromxylosebyengineeredEscherichiacoli
XULiyuan,ZHAOJinfang,WANGYongze,ZHAOXiao,WANGJinhua
(KeyLaboratoryofFermentationEngineeringoftheMinistryofEducation,ColegeofBioengineering,
HubeiUniversityofTechnology,Wuhan430068,China)
Abstract:Underanaerobicconditions,thecharacteristicsoflactatefermentationwereinvestigatedby
engineeredEscherichiacoliJH16usingxyloseascarbonsourcesuppliedintotheculturemedium.E.coli
JH12wasdomesticatedinanaerobictube,andtheresultedstrainE.coliJH16celmasswasincreasedby
31%,theacetateconcentrationwasdecreasedby43%.Inaddition,theefectofMg2+ontheproductionof
lactatewasstudied,andtheoptimalconcentrationwas025g/L.Llacticacidproductionofthestrainina
7Lfermenterwasevaluatedin60g/Lxylose.Thelactateconcentrationachieved3818g/L,increasedby
18% in025g/LMg2+.Thepurityoflactateachievedto95%.Whenculturedinmixtureof30g/L
glucoseand30g/Lxylose,lactatereached39g/Lwhentheglucoseconcentrationwasbelow156g/L.
Keywords:engineeredEscherichiacoli;Llacticacid;xylose
  
FW5Å10j`W"c

~€‚Y¡Š

†‡

ˆ‰Š

æ{v&
[1-2]。
FW5Åcd0n
hˆŽŠ

ÌÍ÷§sþ

9rs&דøbFW
žøFW
(PLA)
o‚hc!±²ïp

%‚¶
·€

ÌÍsþháñ&ƒ·
———
Ðp‹à
IJ&×FW
,^
¨áQrsFWh&דø

9
ÆáQ%ÏÚ¡q›Ûr

6ï#“Å78±
é
[3]。
sæp‹!C*mdKL¡

áQ•ž

·
ëÑhtÏ¿

?²‘õö÷Os÷ª“
)[4-5]。
õö÷5Åcdôø

·áQ~t0]ŠhH&
+%‚

¢9ƒj}%‚s÷֝d3}LMÅ
Ck†‚h׊h¨¢H&è‡A˜
[6]。
Åí
ƒëñ%‚sæp‹!WtÏ¿ÙÎtÏ¿¢h

·

H&^¨²ƒ3}%‚õö÷9Ɔ²Öƒ
3}%‚s÷


,¨
¢H&¢ƒs÷j}LMÅ

FWh[ÖÖ^]

9Ɛ’s÷§FWḧ
*^3Y
80%,
ÆFWh×\^3Y
90%[7-10]
h
uv
。Zhou
{
[11]
§¨¢%‚s÷h
EcoliB
lv
‚{

•žéä2˜IJ[Ö
SZ470(ΔfrdBC
ΔldhA ΔackA ΔfocApflB ΔpdhR::pflBp6pflBrbs
aceEFlpd),
2P-*œsƸXœs5=æuí
†àn

yz%‚h[Ö
EcoliJH12

SZ470
w® é ä ³ x Î Ö [ ã í ¦ ·
Pediococcus
acidilactici
h
ldhL
ôž9•ž

’¿sôõû

d
IJ××\3

IJåƒç

’ŸôL½§[
Ölvœsyˆ•ž
EcoliJH16,
ñzÜæƒk
l

FW_`h‚†‡Mg2+
Qp3
Ecoli
JH16
×

FWhƒn

‚¡

§ds÷Oõö÷
ߕ÷h%‚Žlv„–¢Ü

Q#Åd×&
ˆ‚§ôL

1 
OPQRS
11 
OP
111 

±ª0–{[
JH12
‘yz+’‘ʼ
‹„

dÅ|&0–{[

¢ìNWàWÑÏ
Îôž
(pflB)、D
FW³xÎôž
(ldhA)、
éW#
Îôž
(ackA)、
éä³xÎôž
(adhE)、
t}ÜW
Îôž
(frdBC)5
!ôžh›i[

2P-*Þn
e~㜝[㦷FWñ[
(Pediococcus
acidilactici)L
FW³xÎôž
(ldhL)。
±ª0–
{[
JH16
űª0–{[
JH12
œsyˆ¡h


112 
?²¤Oùø
?²¤

Àfg

JÈkOÄ`èY
Oxiod
ï
ð
,D
s֏Y
Sigma
ïð

ñí×õö÷
、NaCl
O
MgSO4·7H2OèY–‡ÔˆŽ¤jÊïð。
?²ùø

>€)5

-u-‚€ˆ=îj
Êïð
)、
3YÅ[5

½1Dƒ&jÊïð†„
=î…
)、
ۈ´µ

ۈ¶·òó°

½1m†ñ
íùøË{jÊïð
)、
‡¿ø


Eppendorf
ï
ð
),GmbH37070
IJˆ


SartoriusStedim
Biotech
ïð
)。
113 
òóô
LB
¿eòóô
(g/L):
Àfg
10,
JÈk
5,
NaCl5;
LB
¹eòóô
:LB
¿eòóô¢(
20g/L
h
Ä`

dXòóô
:LB
¿eòóô¢(
20g/L
h


´âIJòóô
:LB
¿eòóô¢(
60g/L
hs÷

IJˆ‚òóô
:LB
¿eòóô¢(
60g/L
hs÷Ù
30g/L
s÷O
30g/L
õö÷

12 
]^RS
121 
dXòó
EcoliJH12
 
-80℃
‰°Mã¹euµ¢

37℃
òó°òó

¬ˆ

L

¬ˆçhuµC[
Š
EcoliJH12
Ù
EcoliJH16
Mã>j
100mL
d
Xòóôh
250mL
h¯eâ¢

’
200r/min、
37℃
ôõû´âòó
10h,
ŸÅcbdX

¤
10mL
cbdXMã>j
200mL
dXòóôh
500mL
h¯eâ¢

’
200r/min、37℃
ôõûòó
10h,
ÇÅÁbdX

122 
œsðyˆ

EcoliJH12
ÁbdXMYœsð¢òó

ò
ó
24h
ñÌY:»hœsðdXòóô¢òó
24h,
òó
10


ÌY:»dXòóô¢òó
12
h,´ 10
Lòó

‚¡-*uµñWæC[Š
Ecoli
JH16,
‚Y

FWhIJ

123 
VX
Mg2+
‡\èˆ
100mLLB
òóô
(250mL
¯eâ


60
g/L
hs÷

ñ­’òóô¢Ž(文\Å
010、
015、020、025、030
O
035g/LMg2+,

EcoliJH16
ÁbdX¡

Y
200r/min、37℃
IJò
ó
84h,
¤‚hIJ¿ÏFWh–

¥!
.

auv

124 
IJˆIJòó
òóçh
EcoliJH16
ÁbdX‰
5%
hMd
–Mãxj’¸¨ÉQµh
7L
IJˆ¢

>je

4LLB
hòóô

IJˆôõÅ
60g/L


ÌÍ
200r/min、37℃,
Q
6mol/LKOH
5Å¢O


£‚’¸þ(F%zË
pH
݁’

’“


P¤ó


OD600、™÷‡\、L FW‹d:kW
Oéä–

52 
!

# òák{

±ª0–{[%‚s÷IJ×3×L
FW
125 
s÷Oõö÷ߕIJ
7L
IJˆ¢2P(ã
30g/L
hs÷O
30g/L
õö÷hߕ

·
,025g/LMg2+
(ãòóô¢

Å[¡Mã
5%
h
EcoliJH16
ÁbdX

-*þ(
6mol/L
h
KOH

pH
’
70
’“

P¤ó


OD600、™÷‡\、L FW‹d:kWOéä
–

126 
[ÏF
+¤IJ¿¤ó’
10000r/min
ôõûWš
10
min,¯
®¨©™‹

ÓÔ½«¿‚Yρ™÷‹d
:LM×h–

OD600£‚õ¦ñôô\;ϖ。
™÷–Oj`W[Ï£‚3}¿÷nø
(HPLC)


[ÏôõÅ
Agilent1200series

3}¿÷nøù

nøüÅ
BioRadHPX87H,
þ¸
ց
4mmol/LH2SO4(pH25),þÍÅ05mL/min,
N-[Ïø[Ï

üˆ
35℃[12]。
éä–h[Ïôõ
ShimadzuGC 2014
ö÷


[ψ\Å
200℃;
üˆ
30℃;
þÍÅ

mL/min;
ñWgÅ
15∶1;
»ìä5ŔÐ
[13]。
FWhôŽ×\[Ïôõ
:Agilent1200series
.
÷3}¿÷nøù

ŠåüÅ
EC250/4NUCLEOSIL
Chiral1,
õ¦[Ïø

8[
250nm;
üˆ
35℃,
þ¸
ց
02mmol/LCuSO4,þÍÅ05mL/min。
2 
_`Qab
21 
âãäYZåæTU
Åíp3
EcoliJH12
’IJ*+¢hIJå
ƒ

§
JH12
lvœsðLMlˆQp3d’¿s
ôõûh¨©&[
[14]。

EcoliJH16
K
Ecoli
JH12
2PMY
100mL
dXòóô
(250mL
¯e
â

òó

Œ
2h
ρd
OD600,3@461。‘61
á7

[֒œsð¢yˆ¡

&[Í*÷S…Ö
Ôjæ3;
Áb’
8h
¡
,EcoliJH16
â
ã‘Í&[
,EcoliJH12
&[%˜
,OD600’Ÿéæ
3í—0h-­

Y[§Š&[hPwôøcq

16h
¡lãí݁#

ŸP
EcoliJH16
h
OD600÷
§Y
EcoliJH12
p3í
31%(
5
1)。
ÁFWhÂ
–ƒˆ^;<

3@?),
boÏKœsð¢
pH
hƒˆj°

C[ς
pH
Å
55
’“

’Ÿ
pH


FWh_`ZǞcË
[10]。
0–{[%‚s÷&×

FW*+¢

éWb
?²h6×

Ç>’
EcoliJH16
¢w®íIJ
D
1 
‹ŒçèTU;
OD600©é
Fig.1 ComparisonofstrainsofOD600before
andafterevolution
*+¢&“éWïðhéW#Îôž
(ack),
j˜
–héW&“
[14]。
’*+¢I3

-*œsy
ˆáQ@˜
43%
héWh&“

’÷LM*+¢

饎Ẅ“éW*+¢ŒˆÎôžhw®

’
O2’hôõû,áƒZpq饏ΠA•“Îô
ž
(acs)
OìNWsˆÎôž
(poxB)
h#¬
[15]。
é
¥Î

•“Î
(acs)
’QéWÅ

·hŽûƒ
>
Ecoli
ìNẄ“éW

Áb’÷JÏ*+
¢

áQìNẄÅéW
[14-15]。
Ÿ¦

’js
ÙHsôõû

ìNWsˆÎôž
(poxB)
_áì
NWsˆ“éW
[14]。
’œsð¢yˆh[Ö

>
éWh_`—0Q@˜

22 Mg2+
rsc
JH16
6

á:;de˜œê
rs;ëì
  Mg
KYWX„ØP

bò]±²Îh#¬

^ÁSTôæhsˆ

†STÀfæh•“
。Mg2+
b0–{[%‚s÷×

FWh?²ïð
(EMP
ïð

¢]d°ÿÎh#¬

¬­b§ŽW@÷
#άåh#¬

žŸáQj}p3÷JÏÍ
*
[16],
cùQ¶’FWIJ¢5Åcd±²hŽ(
lv78
[9,16]。
5ÅÎh#¬

0j’‚†º
h‡\2ƒI‘‚ƒ5‚

ÁsÙÁ3STáƒ^
;<

şg|}‚†
Mg2+
‡\§

FWזh
ST

ñ­’
100mLLB(250mL
¯eâ

òóô¢
Ž(^2文\h
Mg2+,
IJ3—¡¤
15mL
I
J¿ÏFW–

¥!.

auv

3@M6

+N

‘6

á7
:Mg2+
hŽ(áQ>FWh‡
\•žp3

ÆTU‡\hu(FWhז•ž÷
hp3

Á
Mg2+
文\>*
025g/L
P

kl
5‚êë@f

62
&
 

 
(
 
)
 
*
 
+
  
!
11
"
 
D2 Mg2+
¿wrscá:6w;de
Fig.2 EfectsofdiferentMg2+concentrations
onlacticacidproduction
23 7L
34íîÜYZ
Åílc–íÏ
Mg2+
§
EcoliJH16
×

FWP[Öh&[Ž

÷Ẅ*Q‹d:6
×h&“Ž

’xj’¸¨Éøh
7L
IJ
ˆ¢IJòó
。4LLB
òóô(ãž
7L
IJˆ
¢

Q
60g/L
s÷5Å

·


5% Ecoli
JH16
hÁbdXY
200r/min、37℃
IJòó

-*þ(
6mol/L
h
KOH

pH
’
70
’“

ª
EcoliJH16
òóô¢Ž(
025g/L
Mg2+,
§3ª^Ž(
Mg2+,
P¤ó[ÏFWh
ז

3@46
3。
D
3 
‹Œçèá:;6w©é
Fig.3 Comparisonofstrainsoflacticacidconcentration
beforeandafterevolution
  
‘6

á7

YªRæ3í
6h
h×Wts#

’
30h
"ï×WÍ*”•÷2
。30h
¡

ª½
¢„âUFW_`h§Šu(#

K
30h
=žhF
Wh‚0&“Í*”•âu

cùâãž
72h
¡2
lãíFW_`h݁#

KŸ2P

§3ªFW
u(hÍ*êë@˜

FWu[Í*˜

FW_`
– 
3233g/L
p3ž
3818g/L,
p38\=
18%

5
1)。
boÏ

e_òOÎh¬nj°

yˆ"
¡h[Ö

jUBvh&[ƒn
[14],
2P’
Mg2+
5
‚û

÷JÏLMh°ÿÎh¬n_•žp3
[16],
‚_Z{“FWזhu(

f
1 
34Ã¥C­‚ï;©é
Table1 Comparisonofvariousparametersinfermentationprocess
ª­
OD600
ρ(™÷)/
(g·L-1)
ρ(FW)/
(g·L-1)
÷WÌ
ˆ*
/%
s÷~*

(g·L-1·h-1)
‚0hFW
&“Í*

(g·L-1·h-1)

ρ(éW)/(g·L-1)
E.coliJH12 2230 2089 3233 87 090 061(30) 078
E.coliJH16 2322 1837 3819 95 111 060(30) 062
    
T

8S¢ŠbÅ=ž‚0FW&“Í*hPwé

  
cùQ¶

%‚s÷×FWh÷Ẅ*÷§B
s

6×éWh–B3
[6]。
’¨¢%‚s÷h[
Ö¢

M
Streptococcussp(Enterococcussp)、Lactobaci
lusthermophilusT1[6]
Q‹d:hc$FW&ר[
×&{’“héWOFW

00u(íñW“ø

y
z78h[Ö
EcoliJH16
w®íIJ*+¢éW&
“hÎôžéW#Îôž
(ack),
’œsðyˆ¡
,^
Áp3í[Öh¬nOFWז

2Pp3í÷WÌ
ˆ*

@˜í6×h&“

5
1)。EcoliJH16

60g/L
hs÷IJ&×

FW

÷Ẅ* 
87%
p3ž
95%,
éW文\ 
078g/L
@˜ž
062
g/L(
5
1)。
·¸W

àWOéä’YÖ[hIJ¿
¢RsY[Ï()

24 EcoliJH16
-.ß1Åðñ1;ò¤

t5
6

á:;ëì
  
Åíëñ%‚”•tÏ¿¢hõö÷Os÷

|}
EcoliJH16
[֒õö÷Os÷ߕ¢h
IJ×

FWhƒn

3@46
4。
‘6

á7

Põö÷h文\rž
156g/L

,Ecoli
JH16
S…%‚s÷IJ

s÷áQOõö÷2P%
‚

‚•ž
39g/L
FW

”•OC7%‚s÷I
J••žh

FWhזcq

‘Y
EcoliJH16
ა’FW×hcË5‚
[17],
s÷‚™÷
文\Å
22g/L。
éW_`–…KYBst
u

‘ŸáQI3
EcoliJH16
ij’”•tÏ¿
¢IJ×

FWh–n

72 
!

# òák{

±ª0–{[%‚s÷IJ×3×L
FW
D4 EcoliJH16
ó
30g/L
;ß1Å
30g/L
;ðñ
1C

t;-.ôõÅ{|6¾;rs
Fig.4 Llactateproductionandsubstrateutilisation
ofEcoliJH16adualcarbonsourcemedium
containing30g/Lglucoseand30g/Lxylose
3 
_
 
b
1)
-*§[Ö
EcoliJH12
’(j
5%
hs÷
h
LB
òóô¢œsð¢yˆ•ž
EcoliJH16,
EcoliJH16
֤Y
EcoliJH12
[–p3í
31%,
éW–rsí
43%,
Å
EcoliJH16
%‚s÷&×

FWזOFW×\hp3

pj%ôõ

2)
|}í
Mg2+
§
EcoliJH16
×

FWhS
T

3@I3dklFW–p3h‚ƒ
Mg2+
æ–
‡\Å
025g/L。
3)
’
7L
xj’¸¨Éøh"0IJ§g
¢


EcoliJH16
’
025g/LMg2+
hòóô¢

÷§Y§3ª

œ
Mg2+)
FWזp3í
18%,
=
3818g/L。EcoliJH16
hLM×¢

·¸W

à
W

éähזsY[Ï()
,L
FWh×\3=
95%。EcoliJH16
bcÖijSI–nh[Ö

4)EcoliJH16
’
30g/L
hs÷O
30g/L

ö÷ߕ¢IJ

Põö÷文\sY
156
g/L
¡

[ÖS…%‚s÷IJ

5;dij%‚”
•tÏ¿¢

d÷hƒn

ij–’h)&ÌO

‚ƒHI

[1] WeeYJ,KimJN,RyuHW.Biotechnologicalproductionof
lacticacidanditsrecentapplications[J].FoodTechnol
Biotechnol,2006,44(2):163172.
[2] ZhouS,ShanmugamKT,IngramLO.Functionalreplacementof
theEscherichiacolid()lactatedehydrogenasegene(ldhA)
withthe l(+)lactate dehydrogenase gene (ldhL) from
Pediococcusacidilactici[J].ApplEnvironMicrobiol,2003,69
(4):22372244.
[3] JohnRP,NampoothiriKM,PandeyA.Fermentativeproduction
oflacticacidfrombiomass:anoverviewonprocessdevelopments
andfutureperspectives[J].ApplMicrobiolBiotechnol,2007,74
(3):524534.
[4] Hofvendahl K,HahnHagerdal B.Factors afecting the
fermentativelacticacidproductionfromrenewableresources[J].
EnzymeMicrobTechnol,2000,26(2/3/4):87107.
[5] OkanoK,TanakaT,OginoC,etal.Biotechnologicalproductionof
enantiomericpurelacticacidfromrenewableresources:recent
achievements,perspectives,and limits[J].ApplMicrobiol
Biotechnol,2010,85(3):413423.
[6] TanakaK,KomiyamaA,SonomotoK,etal.Twodiferent
pathwaysforDxylosemetabolism andtheefectofxylose
concentrationontheyieldcoeficientofLlactateinmixedacid
fermentationbythelacticacidbacteriumLactococcuslactisIO1
[J].ApplMicrobiolBiotechnol,2002,60(1):160167.
[7] TaniguchiM,TokunagaT,HoriuchiK,etal.ProductionofL
lacticacidfromamixtureofxyloseandglucosebycocultivation
oflacticacidbacteria[J].ApplMicrobiolBiotechnol,2004,66
(2):160165.
[8] GardeA,JonssonG,SchmidtAS,etal.Lacticacidproduction
from wheatstraw hemicelulosehydrolysatebyLactobacilus
pentosusandLactobacilusbrevis[J].BioresourTechnol,2002,81
(3):217223.
[9] 
,Ju

y½—

mV©

{

cÖ%‚s÷×

FW¨[h
IJŒ78
[J].
¡ŠKIJÜ
,2009,35(6):1317.
[10] DienBS,NicholsNN,BothastRJ.RecombinantEscherichiacoli
engineeredforproductionofLlacticacidfromhexoseandpentose
sugars[J].JIndMicrobiolBiotechnol,2001,27(4):259264.
[11] ZhouS,IversonAG,GrayburnW S.Doublingthecatabolic
reducingpower(NADH)outputofEscherichiacolifermentation
forproductionofreducedproducts[J].BiotechnolProg,2011,26
(1):4551.
[12] ZhouS,CauseyTB,HasonaA,etal.Productionofopticalypure
Dlacticacidinmineralsaltsmediumbymetabolicalyengineered
EscherichiacoliW3110[J].ApplEnvironMicrobiol,2003,69
(1):399407.
[13] ZhaoJF,XuLY,WangYZ,etal.TheefectsofadhEdeletion
onthemetabolismforDlacticacidproductionbytheEscherichia
coliJH11[J].AdvMatRes,2012,476:20512054.
[14] WangY,TianT,ZhaoJ,etal.HomofermentativeproductionofD
lacticacidfromsucrosebyametabolicalyengineeredEscherichia
coli[J].BiotechnolLet,2012.DOI10.1007/s10529012
10037.
[15] ClarkDP.ThefermentationpathwaysofEscherichiacoli[J].
FEMSMicrobiolLet,1989,63(3):223234.
[16] 
à˜

™´

LG¸

{

ҚF{[

FW³xΒ0–{
[¢h5=

׈‹ÎŽåæ
[J].
H&Ž-)
,2011,38
(10):14821487.
[17] IyerPV,ThomasS,LeeYY.Highyieldfermentationofpentoses
intolacticacid[J].ApplBiochemBiotechnol,2000,84(1):665
677.
82
&
 

 
(
 
)
 
*
 
+
  
!
11
"