免费文献传递   相关文献

Chemical constituents of Vitis thunbergii var. taiwaniana

小叶山葡萄的化学成分研究



全 文 :中草药 Chinese Traditional and Herbal Drugs 第 44 卷 第 6 期 2013 年 3 月

·660·
小叶山葡萄的化学成分研究
胥俊越 1, 3,陈全成 1,林 挺 1,孙翠玲 1,郑旗志 2,徐士兰 2*,陈海峰 1*
1. 厦门大学药学院,福建 厦门 361005
2. 台中荣民总医院教学研究部,台湾 台中 40705
3. 华北电网有限公司北京电力医院 检验科,北京 100073
摘 要:目的 研究中国台湾传统中药材小叶山葡萄 Vitis thunbergii var. taiwaniana 的化学成分。方法 利用大孔树脂、Sephadex
LH-20、ODS 及正相硅胶柱等色谱手段进行分离,通过多种波谱学数据分析进行单体化合物的结构鉴定。结果 从小叶山葡
萄 60%乙醇提取物中分离得到 12 个化合物,分别鉴定为白藜芦醇(1)、trans-ε-viniferin(2)、(7R, 8R)-threo-4, 7, 9, 9′-
tetrahydroxy-3, 3′-dimethoxy-8-O-4′-neolignan 7-O-β-D-glucopyranoside(3)、(7S, 8R)-urolignoside(4)、schizandriside(5)、vitisin
A(6)、vitisin B(7)、davidiol A(8)、3, 5, 4′-trihydroxystilbene 4′-O-β-D-glucopyranoside(9)、蛇葡萄素 C(10)、(7R, 8S)-
dihydrodehydrodiconiferyl alcohol 9-O-β-D-glucopyranoside(11)、表儿茶素(12)。结论 化合物 3~5 为首次从葡萄属中分
离,化合物 8、9、11、12 为首次从小叶山葡萄中分离。
关键词:小叶山葡萄;葡萄属;白藜芦醇;蛇葡萄素 C;表儿茶素
中图分类号:R284.1 文献标志码:A 文章编号:0253 - 2670(2013)06 - 0660 - 05
DOI: 10.7501/j.issn.0253-2670.2013.06.005
Chemical constituents of Vitis thunbergii var. taiwaniana
XU Jun-yue1, 3, CHEN Quan-cheng1, LIN Ting1, SUN Cui-ling1, ZHENG Qi-zhi2, XU Shi-lan2, CHEN Hai-feng1
1. School of Pharmacy, Xiamen University, Xiamen 361005, China
2. Department of Teaching and Research, Taichung Veterans General Hospital, Taichung City 40705, China
3. Beijing Electric Power Hospital, North China Grid Co., Ltd., Beijing 100073, China
Abstract: Objective To study the chemical constituents in Vitis thunbergii var. taiwaniana specially grown in Taiwan, China.
Methods The compounds were isolated by repeated HP20 macroporous adsorption resin column combined with Sephadex LH-20,
ODS, and silica gel column chromatography. Their structures were identified on the basis of extensive spectroscopic data analysis and
by comparison of their spectral data reported. Results Twelve compounds were identified as resveratrol (1), trans-ε-viniferin (2), (7R,
8R)-threo-4, 7, 9, 9′-tetrahydroxy-3, 3′-dimethoxy-8-O-4′-neolignan 7-O-β-D-glucopyranoside (3), (7S, 8R)-urolignoside (4),
schizandriside (5), vitisin A (6), vitisin B (7), davidiol A (8), 3, 5, 4′-trihydroxystilbene 4′-O-β-D-glucopyranoside (9), ampelopsin C
(10), (7R, 8S)-dihydrodehydrodiconiferyl alcohol 9-O-β-D-glucopyranoside (11), and epicatechin (12). Conclusion Compounds
3—5 are separated from the plants of Vitis L. for the first time, and compounds 8, 9, 11, and 12 are separated from V. thunbergii var.
taiwaniana for the first time.
Key words: Vitis thunbergii var. taiwaniana Lu; Vitis L.; resveratrol; ampelopsin C; epicatechin

小叶山葡萄 Vitis thunbergii var. taiwaniana Lu
属于葡萄科(Vitaceae)葡萄属 Vitis L. 植物,主要
分布于中国台湾地区,以及日本、韩国等国家,多
见于平地及山麓丛林内,中高地带也可偶尔见到。
作为台湾传统中药,小叶山葡萄具有抑菌[1]、抗炎[2]、
神经保护[3]等功效。然而,目前国内外对其化学成
分研究并不系统,分离到的化合物主要以茋类化合
物为主[2-3]。本研究利用多种分离分析手段,对小叶
山葡萄地上部分的化学成分进行研究,从中分离得
到 12 个化合物,分别鉴定为白藜芦醇(1)、trans-ε-

收稿日期:2012-10-02
基金项目:厦门市重大科技计划项目(3502Z20100006)
作者简介:胥俊越(1987—),男,硕士在读。Tel: 13661322939 E-mail: xujunyue1987@126.com
*通信作者 徐士兰 Tel: 00886-4-23592525 转 4037 E-mail: h2326@vghtc.gov.tw
陈海峰 Tel: (0592)2187225 E-mail: haifeng@xmu.edu.cn
中草药 Chinese Traditional and Herbal Drugs 第 44 卷 第 6 期 2013 年 3 月

·661·
viniferin(2)、(7R, 8R)-threo-4, 7, 9, 9′-tetrahydroxy-
3, 3′-dimethoxy-8-O-4′-neolignan 7-O-β-D-glucopyrano-
side(3)、(7S, 8R)-urolignoside(4)、schizandriside
(5)、vitisin A(6)、vitisin B(7)、davidiol A(8)、
3, 5, 4′-trihydroxystilbene 4′-O-β-D-glucopyranoside
(9)、蛇葡萄素 C(10)、(7R, 8S)-dihydrodehydro-
diconiferyl alcohol 9-O-β-D-glucopyranoside(11)、表
儿茶素(12)。其中,化合物 3~5 为首次从葡萄属
中分离,化合物 8、9、11、12 为首次从小叶山葡
萄中分离。
1 仪器与试剂
Bruker Avance II 400 型核磁共振仪(瑞士布鲁
克公司)。3200 Q-trap 质谱仪(美国 ABI 公司)。各
种色谱硅胶均系青岛海洋化工厂生产,HP20 大孔
树脂为三菱化学株式会社生产,ODS、Sephadex
LH-20 为 Pharmacia 公司进口分装产品,岛津 LC—
20AD 高效液相色谱仪。
小叶山葡萄干粉由台湾台中荣民总医院教学研
究部提供,由台中荣民总医院徐士兰教授鉴定为小
叶山葡萄 Vitis thunbergii var. taiwaniana Lu,标本
(XYSPT-T)现存放于厦门大学药学院天然产物化
学研究中心。
2 提取与分离
将小叶山葡萄的干粉(5.5 kg)用 8 倍量 60%
乙醇进行加热回流 3 次,每次 2.5 h,提取液浓缩得
到浸膏 600 g。浸膏以大孔树脂为填料依次采用水,
20%、60%、95%乙醇梯度洗脱得到 4 个馏份 V0~
V3,其中 V2 经硅胶柱色谱,以氯仿-甲醇为洗脱剂
分离得到 11 个馏份 V2-A~V2-K,V2-D 馏份以氯
仿-甲醇为流动相,采用柱色谱方法,以薄层色谱硅
胶 GF254 为填料进行分离,得到化合物 1(40 mg)。
V2-E 馏份再经过薄层硅胶柱色谱法得到 8 个馏份
V2-E1~V2-E8,其中对 V2-E6 馏份采用反相 ODS
硅胶柱色谱得到 7 组馏份 V2-E6-1~V2-E6-7。V2-
E6-2 馏份经制备 HPLC 法,以 30%色谱乙腈为流动
相分离得到单体化合物 2(86 mg)。对 V2-F 馏份采
取柱色谱手段得到 7 个馏份 V2-F1~V2-F7,其中
V2-F3 馏份采用反相 ODS 硅胶色谱进行分离得到 6
个馏份 V2-F3-A~V2-F3-F,其中 V2-F3-C 馏份采
用 HPLC 法,以 25%色谱乙腈为流动相制备得到单
体化合物 5(15 mg)和 7(22 mg),V2-F4 馏份采
用反相 ODS 硅胶色谱进行分离得到 7 组馏份
V2-F4-A~V2-F4-G,对 V2-F4-A 馏份采用 HPLC
法,以 13%色谱乙腈为流动相制备得到化合物 12,
对 V2-F4-E 馏份采用 HPLC 法,以 17%色谱乙腈为
流动相制备得到化合物 3(12 mg)和 4(9 mg),对
V2-F4-F 馏份采用 HPLC 法,以 20%色谱乙腈为流
动相制备得到化合物 8(11 mg)和 11(16 mg),对
V2-F4-G 馏份采用 HPLC 法,以 45%色谱甲醇为流
动相制备得到化合物 6(8 mg)和 10(14 mg),V2-F5
馏份采用反相 ODS 硅胶色谱进行分离得到 5 组馏
份 V2-F5-A~V2-F5-E,其中对 V2-F5-C 馏份采用
HPLC 法,以 30%色谱甲醇为流动相制备得到化合
物 9(10 mg)。
3 结构鉴定
化合物 1:白色晶体(丙酮),ESI-MS m/z 227
[M-H]−。1H-NMR (400 MHz, CD3COCD3) δ: 7.43
(2H, d, J = 8.8 Hz, H-2′, 6′), 7.03 (1H, d, J = 16.4 Hz,
H-8), 6.90 (1H, d, J = 16.4 Hz, H-7), 6.86 (2H, d, J =
8.8 Hz, H-3′, 5′), 6.58 (2H, d, J = 2.0 Hz, H-2, 6), 6.31
(1H, t, J = 2.0 Hz, H-4); 13C-NMR (100 MHz,
CD3COCD3) δ: 159.4 (C-3, 4), 158.0 (C-4′), 140.8
(C-1), 129.8 (C-1′), 129.1 (C-8), 128.6 (C-2′, 6′),
126.7 (C-7), 116.2 (C-3′, 5′), 105.6 (C-2, 6), 102.5
(C-4)。以上数据与文献报道一致[2,4],故鉴定化合物
1 为白藜芦醇。
化合物 2:黄色粉末,ESI-MS m/z: 453 [M-H]−。
1H-NMR (400 MHz, CD3COCD3) δ: 7.19 (2H, d, J =
8.8 Hz, H-2′, 6′), 7.15 (2H, d, J = 8.8 Hz, H-2, 6), 6.89
(1H, d, J = 16.4 Hz, H-8), 6.82 (2H, d, J = 8.8 Hz, H-3′,
5′), 6.73 (2H, d, J = 8.8 Hz, H-3, 5), 6.72 (1H, brs,
H-12), 6.69 (1H, d, J = 16.4 Hz, H-7), 6.33 (1H, brs,
H-14), 6.23 (3H, s, H-10′, 12′, 14′), 5.42 (1H, d, J = 6.4
Hz, H-7′), 4.47 (1H, d, J = 5.2 Hz, H-8′);13C-NMR
(100 MHz, CD3OD) δ: 162.8 (C-11), 160.0 (C-11′,
13′), 159.9 (C-4′), 159.6 (C-4), 158.4 (C-13), 147.5
(C-9′), 136.8 (C-9), 133.8 (C-1′), 130.5 (C-8), 130.1
(C-1), 128.9 (C-2, 6), 128.3 (C-2′, 6′), 123.6 (C-7),
120.0 (C-10), 116.5 (C-3, 5), 116.3 (C-3′, 5′), 107.0
(C-10′, 14′), 104.3 (C-14), 102.0 (C-12′), 96.8 (C-12),
94.2 (C-7′), 57.3 (C-8′)。以上数据与文献报道一致[2,5],
故鉴定化合物 2 为 trans-ε-viniferin。
化合物 3:白色粉末,ESI-MS m/z: 591 [M+
Na]+。1H-NMR (400 MHz, CD3OD) δ: 7.16 (1H, d, J =
2.0 Hz, H-2), 6.90 (1H, dd, J = 8.4, 1.6 Hz, H-6), 6.82
(1H, d, J = 2.0 Hz, H-2′), 6.78 (1H, d, J = 8.0 Hz,
中草药 Chinese Traditional and Herbal Drugs 第 44 卷 第 6 期 2013 年 3 月

·662·
H-5), 6.77 (1H, d, J = 8.0 Hz, H-5′), 6.65 (1H, dd, J =
8.4, 1.6 Hz, H-6′), 5.21 (1H, d, J = 4.0 Hz, H-7), 4.34
(1H, ddd, J = 8.0, 4.0, 4.0 Hz, H-8), 4.13 (1H, d, J = 7.6
Hz, H-1′′), 3.87 (1H, dd, J = 11.6, 5.6 Hz, H-9a), 3.86
(1H, dd, J = 9.6, 2.4 Hz, H-6′′a), 3.84 (1H, dd, J = 11.6,
5.6 Hz, H-9b), 3.83 (3H, s, 3-OCH3), 3.82 (3H, s,
3′-OCH3), 3.70 (1H, dd, J = 9.6, 2.4 Hz, H-6′′b), 3.52
(2H, dd, J = 2.8, 6.0 Hz, H-9′), 3.33~3.27 (3H, m,
H-3′′, 4′′, 5′′), 3.16 (1H, m, H-2′′), 2.60 (2H, dd, J =
7.6, 7.6 Hz, H-7′), 1.84~1.77 (2H, m, H-8′);13C-
NMR (100 MHz, CD3OD) δ: 151.5 (C-3′), 149.1
(C-3), 147.7 (C-4), 147.5 (C-4′), 138.0 (C-1′), 130.4
(C-1), 122.0 (C-6), 121.9 (C-6′), 119.0 (C-5′), 115.9
(C-5), 113.9 (C-2′), 112.8 (C-2), 101.1 (C-1′′), 86.4
(C-8), 78.0 (C-7), 77.9 (C-3′′), 77.8 (C-5′′), 75.2
(C-2′′), 71.9 (C-4′′), 62.9 (C-9), 62.3 (C-6′′), 62.0
(C-9′), 56.6 (C-3), 56.5 (C-3′), 35.6 (C-8′), 32.7
(C-7′)。以上数据与文献报道一致[6],故鉴定化合
物 3 为 (7R, 8R)-threo-4, 7, 9, 9′-tetrahydroxy-3, 3′-
dimethoxy-8-O-4′-neolignan 7-O-β-D-glucopyranoside。
化合物 4:白色粉末,ESI-MS m/z: 545 [M+
Na]+。1H-NMR (400 MHz, CD3OD) δ: 7.15 (1H, d, J =
8.4 Hz, H-5′), 7.05 (1H, d, J = 1.6 Hz, H-2′), 6.95 (1H,
dd, J = 8.4, 1.6 Hz, H-6′), 6.75 (1H, brs, H-6), 6.73
(1H, brs, H-2), 5.52 (1H, d, J = 6.0 Hz, H-7′), 4.91
(1H, d, J = 7.6 Hz, H-1′′), 3.87 (3H, s, 3-OCH3), 3.84
(3H, s, 3′-OCH3), 3.77 (1H, m, H-9′), 3.70 (2H, m,
H-6′′), 3.58 (2H, t, J = 6.4 Hz, H-9), 3.40~3.52 (5H,
m, H-8′, 2′′, 3′′, 4′′, 5′′), 2.64 (2H, t, J = 7.6 Hz, H-7),
1.83 (2H, m, H-8);13C-NMR (100 MHz, CD3OD) δ:
151.0 (C-3), 147.8 (C-4), 147.6 (C-4′), 145.4 (C-3′),
138.5 (C-1), 137.3 (C-1′), 129.7 (C-5′), 119.5 (C-5),
118.3 (C-6), 118.1 (C-6′), 114.4 (C-2′), 111.4 (C-2),
103.0 (C-1′′), 88.6 (C-7), 78.3 (C-3′′), 78.0 (C-5′′),
75.1 (C-2′′), 71.5 (C-4′′), 65.2 (C-9), 62.7 (C-9′), 62.5
(C-6′′), 57.0 (3′-OCH3), 56.9 (3-OCH3), 55.8 (C-8),
35.9 (C-7′), 33.0 (C-8′)。以上数据与文献报道一致[7],
故鉴定化合物 4 为 (7S, 8R)-urolignoside。
化合物 5:白色粉末,ESI-MS m/z: 515 [M+
Na]+。1H-NMR (400 MHz, CD3OD) δ: 6.79 (1H, d, J =
8.0 Hz, H-5′), 6.74 (1H, s, H-5), 6.69 (1H, brs, H-2′′′),
6.64 (1H, d, J = 8.0 Hz, H-6′), 6.17 (1H, s, H-8), 4.10
(1H, d, J = 7.0 Hz, H-1′′), 3.99 (1H, m, H-3α), 3.94
(1H, m, H-3α), 3.81 (1H, d, J = 7.0 Hz, H-1), 3.81
(3H, s, 6-OCH3), 3.78 (3H, s, 3′-OCH3), 3.75 (1H, m,
H-2α), 3.68 (1H, m, H-2α), 2.81 (2H, d, J = 7.0 Hz,
H-4), 2.05 (2H, m, H-3); 13C-NMR (100 MHz,
CD3OD) δ: 148.9 (C-3′), 147.1 (C-6), 145.4 (C-4′),
144.7 (C-7), 138.7 (C-1′), 134.1 (C-9), 129.4 (C-10),
123.1 (C-6′), 117.2 (C-8), 116.1 (C-5′), 113.9 (C-5),
112.6 (C-2′), 105.6 (C-1′′), 77.6 (C-3′′), 74.7 (C-2′′),
71.0 (C-4′′), 69.9 (C-2α), 66.5 (C-5′′), 65.1 (C-3α),
56.6 (6-OCH3), 56.5 (3′-OCH3), 47.7 (C-1), 45.6
(C-2), 39.5 (C-3), 33.5 (C-4)。以上数据与文献报道一
致[8],故鉴定化合物 5 为 schizandriside。
化合物 6:黄色固体(甲醇),ESI-MS m/z: 905
[M-H]−。1H-NMR (400 MHz, CD3COCD3) δ: 7.18
(2H, d, J = 2.0, 8.4 Hz, H-2′, 6′);7.14 (2H, d, J = 8.4
Hz, H-2′′′, 6′′′), 7.03 (2H, d, J = 8.0 Hz, H-2′′′′, 6′′′′),
6.86 (1H, dd, J = 8.4, 2.4 Hz, H-6′′), 6.82 (2H, d, J =
8.4 Hz, H-3′, 5′), 6.77 (2H, d, J = 8.4 Hz, H-3′′′, 5′′′),
6.70 (1H, d, J = 8.4 Hz, H-5′′), 6.65 (2H, d, J = 8.4
Hz, H-3′′′′, 5′′′′), 6.50 (1H, d, J = 2.0 Hz, H-14′′), 6.38
(2H, brs, H-7′′, 8′′), 6.26 (1H, d, J = 2.0 Hz, H-12′′),
6.22 (1H, d, J = 2.0 Hz, H-14′′′), 6.21 (1H, d, J = 2.0
Hz, H-12′), 6.16 (2H, d, J = 2.0 Hz, H-10′, 14′), 6.08
(1H, d, J = 2.0 Hz, H-2′′), 6.06 (1H, d, J = 2.0 Hz,
H-12′′′′), 6.04 (1H, d, J = 2.0 Hz, H-14′′′′), 6.03 (1H,
d, J = 2.0 Hz, H-12′′′), 5.87 (1H, d, J = 11.6 Hz,
H-7′′′), 5.47 (1H, d, J = 5.6 Hz, H-8′′′′), 5.38 (1H, d,
J = 3.2 Hz, H-7′′′′), 5.35 (1H, d, J = 3.2 Hz, H-7′),
4.40 (1H, d, J = 5.6 Hz, H-8′), 4.20 (1H, d, J = 11.6
Hz, H-8′′′);13C-NMR (100 MHz, CD3OD) δ: 162.7
(C-11′′′), 160.4 (C-11′′′′), 159.9 (C-11′, 13′), 159.6
(C-4′′′′), 158.8 (C-13′′′, 11′′′), 158.6 (C-13′′), 158.5
(C-4′), 156.9 (C-13′′′′), 155.9 (C-4′′′), 155.6 (C-4′′),
147.3 (C-9′), 142.6 (C-9′′′′), 141.7 (C-9′′′), 137.3
(C-9′′), 136.1 (C-1′′′), 134.1 (C-1′), 133.0 (C-3′′),
132.8 (C-2′′), 131.4 (C-8′′), 131.2 (C-1′′′′), 130.3
(C-2′′′′, 6′′′′), 129.4 (C-1′′), 129.2 (C-2′′′, 6′′′), 128.2
(C-2′, 6′), 123.7 (C-6′′), 122.6 (C-7′′), 121.2 (C-10′′′),
121.1 (C-10′′′′), 119.5 (C-10′′), 116.2 (C-3′, 5′, 3′′, 5′′),
116.2 (C-3′′′′, 5′′′′), 115.6 (C-3′′′, 5′′′), 110.5 (C-14′′′),
107.5 (C-10′, 14′), 104.8 (C-14′′′′), 104.5 (C-14′′),
102.3 (C-12′), 101.0 (C-12′′′′), 96.6 (C-12′′), 96.2
(C-12′′′), 94.8 (C-7′), 89.1 (C-7′′′′), 58.2 (C-8′), 49.8
中草药 Chinese Traditional and Herbal Drugs 第 44 卷 第 6 期 2013 年 3 月

·663·
(C-8′′′′), 41.7 (C-8′′′), 41.2 (C-7′′′)。以上数据与文献
报道一致[2],故鉴定化合物 6 为 vitisin A。
化合物7:黄色粉末,ESI-MS m/z: 905 [M-H]−。
1H-NMR (400 MHz, CD3COCD3) δ: 7.27 (2H, d, J =
8.4 Hz, H-2′, 6′), 7.21 (2H, d, J = 8.4 Hz, H-2′′′′, 6′′′′),
7.03 (1H, dd, J = 8.4, 1.6 Hz, H-6′′), 6.91 (2H, d, J =
8.4 Hz, H-3′, 5′), 6.84 (2H, d, J = 8.4 Hz, H-3′′′′, 5′′′′),
6.78 (1H, d, J = 16.0 Hz, H-8′′), 6.70~6.62 (5H, m,
H-5′′, 2′′, 14′′, 2′′′, 6′′′), 6.60 (1H, d, J = 16.0 Hz,
H-7′′), 6.58 (2H, d, J = 8.6 Hz, H-3′′′, 5′′′), 6.31 (1H,
d, J = 1.2 Hz, H-12′′′), 6.26~6.20 (5H, m, H-12′′,
10′′′′, 14′′′′, 12′′′′, 14′′′), 6.20 (1H, t, J = 2.4 Hz, H-12′),
6.12 (2H, d, J = 2.4 Hz, H-10′, 14′), 5.54 (1H, d, J =
4.8 Hz, H-7′′′), 5.42 (2H, m, H-7′′′′, 7′), 4.53 (1H, d,
J = 4.8 Hz, H-8′), 4.46 (1H, d, J = 5.2 Hz, H-8′′′′),
4.32 (1H, d, J = 4.8 Hz, H-8′′′);13C-NMR (100 MHz,
CD3OD) δ: 161.8 (C-11′′), 161.7 (C-11′′′), 159.6
(C-13′′′), 159.2 (C-4′′), 159.1 (C-11′, 13′), 159.0
(C-11′′′′, 13′′′′), 158.7 (C-13′′), 157.5 (C-4′′′′), 157.4
(C-4′), 146.3 (C-4′′′), 141.5 (C-9′), 136.3 (C-9′′′′),
134.3 (C-9′′′), 134.2 (C-9′′), 133.7 (C-1′), 132.9
(C-1′′′′), 131.8 (C-1′′, 1′′′), 131.4 (C-3′′), 129.6 (C-8′′),
127.3 (C-2′′′, 6′′′), 126.9 (C-2′′′′, 6′′′′), 126.8 (C-2′, 6′),
125.8 (C-6′′), 124.5 (C-2′′), 123.3 (C-7′′), 119.2
(C-10′′), 119.1 (C-10′′′), 115.6 (C-3′, 5′), 115.4 (C-3′′′′,
5′′′′), 115.1 (C-3′′′, 5′′′), 109.7 (C-5′′), 106.7 (C-10′′′′,
14′′′′), 106.6 (C-14′′′), 106.1 (C-10′, 14′), 103.8 (C-14′′),
101.6 (C-12′), 101.4 (C-12′′′′), 96.0 (C-12′′), 95.8
(C-12′′′), 93.9 (C-7′′′′), 93.8 (C-7′), 91.3 (C-7′′′), 57.2
(C-8′′′′), 57.0 (C-8′), 52.0 (C-8′′′)。以上数据与文献报道
一致[2],故鉴定化合物 7 为 vitisin B。
化合物8:白色粉末,ESI-MS m/z: 679 [M-H]−。
1H-NMR (400 MHz, CD3COCD3) δ: 7.22 (2H, d, J =
8.8 Hz, H-2′, 6′), 7.05 (2H, d, J = 8.8 Hz, H-2′′, 6′′),
6.79 (2H, d, J = 8.8 Hz, H-3′, 5′), 6.76 (2H, d, J = 8.3
Hz, H-2′′′, 6′′′), 6.62 (2H, d, J = 8.3 Hz, H-3′′′, 5′′′),
6.60 (2H, d, J = 8.8 Hz, H-3′′, 5′′), 6.45 (1H, brs,
H-14′), 6.44 (1H, brs, H-12′), 6.40 (2H, d, J = 2.9 Hz,
H-10′′′, 14′′′), 6.16 (1H, t, J = 2.9 Hz, H-12′′′), 6.09
(1H, d, J = 2.8 Hz, H-7′), 6.03 (1H, s, H-12′′), 5.30
(1H, brs, H-7′′), 4.43 (1H, d, J = 10.0 Hz, H-7′′′), 4.41
(1H, d, J = 2.8 Hz, H-8′), 4.24 (1H, d, J = 11.6 Hz,
H-8′′), 3.00 (1H, dd, J = 11.6, 10.0 Hz, H-8′′′);
13C-NMR (100 MHz, CD3COCD3) δ: 158.9 (C-11′′),
158.2 (C-11′′′, 13′′′), 158.0 (C-4′′), 157.6 (C-11′),
156.4 (C-13′), 155.8 (C-4′′′), 155.1 (C-4′), 154.2
(C-13′′′), 146.8 (C-9′), 143.9 (C-9′′′), 143.1 (C-9′′),
137.4 (C-1′′), 134.5 (C-1′), 134.0 (C-1′′′), 129.5
(C-2′′′, 6′′′), 129.1 (C-2′′, 6′′), 127.3 (C-2′, 6′), 122.3
(C-14′′), 118.8 (C-10′′), 117.9 (C-10′), 115.5 (C-3′, 5′),
114.9 (C-3′′′, 5′′′), 114.8 (C-3′′, 5′′), 108.1 (C-10′′′,
14′′′), 103.0 (C-14′), 101.3 (C-12′′′), 100.7 (C-12′),
95.6 (C-12′′), 85.8 (C-7′), 67.4 (C-8′′′), 56.5 (C-7′′′),
51.2 (C-8′′), 50.3 (C-8′), 36.4 (C-7′′)。以上数据与文
献报道一致[9],故鉴定化合物 8 为 davidiol A。
化合物9:白色粉末,ESI-MS m/z: 389 [M-H]−。
1H-NMR (400 MHz, CD3OD) δ: 7.46 (2H, d, J = 8.6
Hz, H-2′, 6′), 7.09 (2H, d, J = 8.6 Hz, H-3′, 5′), 7.03
(1H, d, J = 16.0 Hz, H-8), 6.89 (1H, d, J = 16.0 Hz,
H-7), 6.49 (2H, brs, H-2, 6), 6.20 (1H, brs, H-4), 4.90
(1H, d, J = 7.6 Hz, H-1′′), 3.92 (1H, dd, J = 12.0, 1.6
Hz, H-6′′a), 3.70 (1H, dd, J = 12.0, 5.6 Hz, H-6′′b),
3.40~3.56 (4H, m, H-2′′~5′′);13C-NMR (CD3OD,
100 MHz) δ: 159.0 (C-3, 5), 157.5 (C-4′), 139.4 (C-1),
128.7 (C-8), 128.3 (C-1′), 128.1 (C-2′, 6′), 125.4
(C-7), 115.8 (C-3′, 5′), 107.3 (C-6), 104.9 (C-2), 102.9
(C-4), 100.8 (C-1′′), 77.2 (C-3′′), 76.9 (C-5′′), 73.5
(C-2′′), 70.0 (C-4′′), 60.8 (C-6′′)。以上数据与文献报
道一致[10],故鉴定化合物9为3, 5, 4′-trihydroxystilbene
4′-O-β-D-glucopyranoside。
化合物 10:黄色固体,ESI-MS m/z: 679 [M-
H]−。1H-NMR (400 MHz, CD3COCD3) δ: 7.26 (2H, d,
J = 8.8 Hz, H-2′′, 6′′), 7.18 (2H, d, J = 8.4 Hz, H-2′,
6′), 7.01 (2H, d, J = 8.8 Hz, H-2′′′, 6′′′), 6.80 (2H, d,
J = 8.8 Hz, H-3′′, 5′′), 6.73 (2H, d, J = 8.8 Hz, H-3′′′,
5′′′), 6.68 (2H, d, J = 8.4 Hz, H-3′, 5′), 6.35 (1H, d, J =
2.4 Hz, H-12′′), 6.18 (2H, d, J = 2.0 Hz, H-10′′′, 14′′′),
6.17 (1H, t, J = 2.0 Hz, H-12′′′), 6.16 (1H, d, J = 2.0
Hz, H-14′′), 6.15 (1H, s, H-12′), 5.83 (1H, d, J = 11.6
Hz, H-7′′), 5.27 (1H, d, J = 3.6 Hz, H-7′), 4.46 (1H, d,
J = 11.6 Hz, H-8′′), 4.24 (1H, d, J = 9.2 Hz, H-7′′′),
3.76 (1H, dd, J = 11.6, 9.2 Hz, H-8′′′), 3.63 (1H, d, J =
11.6 Hz, H-8′);13C-NMR (100 MHz, CD3COCD3) δ:
159.0 (C-11′′′), 158.5 (C-11′′, 13′′), 158.4 (C-13′′′),
156.4 (C-4′′), 156.3 (C-4′), 155.8 (C-4′′′), 155.3
(C-13′), 154.4 (C-11′), 147.0 (C-9′′′), 144.3 (C-9′),
中草药 Chinese Traditional and Herbal Drugs 第 44 卷 第 6 期 2013 年 3 月

·664·
141.5 (C-9′′), 133.6 (C-1′), 132.9 (C-1′′′), 130.4 (C-2′,
6′), 130.3 (C-1′′), 130.0 (C-2′′, 6′′), 129.8 (C-2′′′, 6′′′),
125.4 (C-10′′), 121.1 (C-14′), 116.1 (C-10′), 115.8
(C-3′′, 5′′), 115.6 (C-3′′′, 5′′′), 115.1 (C-3′, 5′), 107.4
(C-10′′′, 14′′′), 105.4 (C-14′′), 101.3 (C-12′′′), 101.1
(C-12′′), 96.3 (C-12′), 90.7 (C-7′′′), 62.4 (C-8′′′), 57.9
(C-7′′′), 52.3 (C-8′), 49.4 (C-8′′), 37.4 (C-7′)。以上数据
与文献报道一致[2],故鉴定化合物 10 为蛇葡萄素 C。
化合物 11:黄色粉末,ESI-MS m/z: 521 [M-
H]−。1H-NMR (400 MHz, CD3OD) δ: 7.01 (1H, d, J =
1.5 Hz, H-2), 6.88 (1H, dd, J = 8.0, 1.5 Hz, H-6), 6.82
(1H, brs, H-2′), 6.79 (1H, d, J = 8.0 Hz, H-5), 6.74
(1H, brs, H-6′), 5.69 (1H, d, J = 6.5 Hz, H-7), 4.38
(1H, d, J = 8.0 Hz, H-1′′), 4.12 (1H, dd, J = 9.5, 5.5
Hz, H-9a), 3.86 (3H, s, 3′-OCH3), 3.84 (3H, s,
5-OCH3), 3.82 (1H, m, H-9b), 3.60 (2H, t, J = 10.0
Hz, H-6′′a), 3.23~3.41 (7H, m, H-2′′, 3′′, 4′′, 5′′, 8,
9′a, 6′′b), 2.64 (2H, t, J = 7.5 Hz, H-7′), 1.81 (2H, m,
H-8′);13C-NMR (100 MHz, CD3OD) δ: 149.2 (C-3),
147.6 (C-4′), 147.6 (C-4), 145.3 (C-3′), 137.1 (C-1′),
134.8 (C-1), 129.9 (C-5′), 119.9 (C-6), 118.4 (C-2′),
116.3 (C-5), 114.4 (C-6′), 111.1 (C-2), 104.4 (C-1′′),
89.3 (C-7), 78.3 (C-2′′), 78.2 (C-5′′), 75.3 (C-2′′), 72.5
(C-9a), 71.8 (C-4′′), 62.9 (C-6′′a), 62.4 (C-9′a), 56.9
(-OCH3), 56.6 (-OCH3), 53.1 (C-8), 35.9 (C-8′), 33.0
(C-7′)。以上数据与文献报道一致[11],故鉴定化合物
11 为 (7R, 8S)-dihydrodehydrodiconiferyl alcohol 9-O-
β-D-glucopyranoside。
化合物 12:白色粉末,ESI-MS m/z: 289 [M-
H]−。1H-NMR (400 MHz, CD3OD) δ: 7.00 (1H, s,
H-2′), 6.82 (1H, dd, J = 2.8, 8.4 Hz, H-6′), 6.79 (1H, d,
J = 8.4 Hz, H-5′), 5.97 (1H, d, J = 2.2 Hz, H-6), 5.95
(1H, d, J = 2.2 Hz, H-8), 4.83 (1H, s, H-2), 4.19 (1H,
s, H-3), 2.90 (1H, dd, J = 4.4, 16.4 Hz, H-4α), 2.75
(1H, dd, J = 3.4, 16.4 Hz, H-4β);13C-NMR (100 MHz,
CD3OD) δ: 156.6 (C-9), 156.2 (C-7), 156.0 (C-5),
144.5 (C-3′), 144.4 (C-4′), 130.9 (C-1′), 118.1 (C-6′),
114.6 (C-2′), 114.0 (C-5′), 98.8 (C-10), 95.1 (C-8), 94.6
(C-6), 78.5 (C-2), 66.1 (C-3), 27.9 (C-4)。以上数据与
文献报道一致[12],故鉴定化合物 12 为表儿茶素。
4 讨论
由于小叶山葡萄主要分布在我国台湾地区,因
此目前对其研究相对较少,本研究从小叶山葡萄中
分离得到了 12 个单体化合物,其中 9 个单体化合物
系首次从该植物中分离,并且分离得到的化合物多为
多酚类。多酚类化合物具有抗氧化,清除自由基等活
性,而氧化和自由基的产生又与肿瘤[2]、阿尔茨海默
病[13]等疾病具有密切的关系,因此本研究可能为阐述
小叶山葡萄的民间应用提供依据。
参考文献
[1] Peng S C, Cheng C Y, Sheu F, et al. The antimicrobial
activity of heyneanol A extracted from the root of
Taiwanese wild grape [J]. Appl Microbiol, 2008, 105(2):
485-491.
[2] Wang K T, Chen L G, Tseng S H, et al. Anti-inflammatory
effects of resveratrol and oligostilbenes from Vitis
thunbergii var. taiwaniana against lipopolysaccharide-
induced arthritis [J]. Agric Food Chem, 2011, 59(8):
3649-3656.
[3] Chung I M, Yeo M A, Kim S J, et al. Neuroprotective
effects of resveratrol derivatives from the roots of Vitis
thunbergii var. sinuate against glutamate-induced
neurotoxicity in primary cultured rat cortical cells [J].
Hum Exp Toxicol, 2011, 30(9): 1404-1408.
[4] Huang K S, Lin M. Oligostilbenes from the roots of Vitis
amurensis [J]. Asian Nat Prod Res, 1999, 2(1): 21-28.
[5] Bala A E A, Kollmann A, Ducrot P H, et al.
Cis-ε-viniferin: A new antifungal resverateol dehydrodimer
from Cyphostemma crotalarioides roots [J]. J Phytopathol,
2000, 148(1): 29-32.
[6] Cai W H, Matsunami K, Otsuka H, et al. Lignan and
neolignan glucosides, and tachioside 2′-O-4′′-O-
methylgallate from the leaves of Glochidion rubrum [J]. J
Nat Med, 2009, 63(4): 408-414.
[7] Kuang H X, Xia Y G, Yang B Y, et al. Lignan constituents
from Chloranthus japonicus Sieb. [J]. Arch Pharm Res,
2009, 32(3): 329-334.
[8] Xu J F, Li F S, Feng Z M, et al. A new sesquiterpenoid
from Mallotus apelta [J]. Chem Nat Compd, 2011, 47(2):
218-219.
[9] Tanakaa T, Itoa T, Iinumaa M, et al. Stilbene oligomers in
roots of Sophora davidii [J]. J Phytochemistry, 2000,
53(2): 1009-1014.
[10] Fan W, Tezuka Y, Kadota S. Prolyl endopeptidase
inhibitory activity of fourteen Kampo formulas and
inhibitory constituents of Tokaku-joki-to [J]. Chem
Pharma Bull, 2000, 48(7): 1055-1061.
[11] Su D M, Tang W Z. Lignan glycosides from
Neoalsomitra integrifoliola [J]. J Nat Prod, 2008, 71(5):
784-788.
[12] 胡 姱, 李 军, 屠鹏飞. 布渣叶的化学成分研究 [J].
中草药, 2012, 43(5): 844-846.
[13] Lamoral-Theys D, Pottier L, Dufrasne F, et al. Natural
polyphenols that display anticancer properties through
inhibition of kinase activity [J]. Curr Med Chem, 2008,
71(5): 812-825.